Research article

Decision support system based on fuzzy credibility Dombi aggregation operators and modified TOPSIS method

  • Received: 17 July 2022 Revised: 10 August 2022 Accepted: 18 August 2022 Published: 29 August 2022
  • MSC : 03E72, 47S40

  • The operational law plays an important role in the aggregation operator for group decision system. The aggregation information has high influence in aggregating group decision information. Therefore, the main objective of the proposed work is to develop some operational laws as aggregation operator for fuzzy credibility numbers based on Dombi norms. Dombi operations can benefit from the best operational parameter flexibility. To the best of our knowledge, Dombi operations have so far not been used in for fuzzy credibility numbers (FCNs). Using these Dombi t-norm and t-conorm to define some different fuzzy credibility aggregation operators. i.e., fuzzy credibility Dombi weighted averaging (FCDWA) operator, fuzzy credibility Dombi ordered weighted averaging (FCDOWA) operator, fuzzy credibility Dombi hybrid weighted averaging (FCDHWA) operator. Next, we used TOPSIS method procedure for multi-attribute grouped decision-making (MAGDM). Finally, we provided an example, as well as a discussion of the comparative result analysis, to ensure that their findings are credible and practical.

    Citation: Muhammad Qiyas, Talha Madrar, Saifullah Khan, Saleem Abdullah, Thongchai Botmart, Anuwat Jirawattanapaint. Decision support system based on fuzzy credibility Dombi aggregation operators and modified TOPSIS method[J]. AIMS Mathematics, 2022, 7(10): 19057-19082. doi: 10.3934/math.20221047

    Related Papers:

  • The operational law plays an important role in the aggregation operator for group decision system. The aggregation information has high influence in aggregating group decision information. Therefore, the main objective of the proposed work is to develop some operational laws as aggregation operator for fuzzy credibility numbers based on Dombi norms. Dombi operations can benefit from the best operational parameter flexibility. To the best of our knowledge, Dombi operations have so far not been used in for fuzzy credibility numbers (FCNs). Using these Dombi t-norm and t-conorm to define some different fuzzy credibility aggregation operators. i.e., fuzzy credibility Dombi weighted averaging (FCDWA) operator, fuzzy credibility Dombi ordered weighted averaging (FCDOWA) operator, fuzzy credibility Dombi hybrid weighted averaging (FCDHWA) operator. Next, we used TOPSIS method procedure for multi-attribute grouped decision-making (MAGDM). Finally, we provided an example, as well as a discussion of the comparative result analysis, to ensure that their findings are credible and practical.



    加载中


    [1] K. T. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Set. Syst., 33 (1989), 37–45. https://doi.org/10.1016/0165-0114(89)90215-7 doi: 10.1016/0165-0114(89)90215-7
    [2] S. Ayub, S. Abdullah, F. Ghani, M. Qiyas, M. Y. Khan, Cubic fuzzy Heronian mean Dombi aggregation operators and their application on multi-attribute decision-making problem, Soft Comput., 25 (2021), 4175–4189. https://doi.org/10.1007/s00500-020-05512-4 doi: 10.1007/s00500-020-05512-4
    [3] O. Barukab, S. Abdullah, S. Ashraf, M. Arif, S. A. Khan, A new approach to fuzzy TOPSIS method based on entropy measure under spherical fuzzy information, Entropy, 21 (2019), 1231. https://doi.org/10.3390/e21121231 doi: 10.3390/e21121231
    [4] Y. Chen, K. W. Li, S. F. Liu, An OWA-TOPSIS method for multiple criteria decision analysis, Expert Syst. Appl., 38 (2011), 5205–5211. https://doi.org/10.1016/j.eswa.2010.10.039 doi: 10.1016/j.eswa.2010.10.039
    [5] B. C. Cuong, V. Kreinovich, Picture fuzzy sets - a new concept for computational intelligence problems, In 2013 third world congress on information and communication technologies (WICT 2013), IEEE, Vietnam, 2013. https://doi.org/10.1109/WICT.2013.7113099
    [6] J. Dombi, A general class of fuzzy operators, the DeMorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators, Fuzzy Set. Syst., 8 (1982), 149–163. https://doi.org/10.1016/0165-0114(82)90005-7 doi: 10.1016/0165-0114(82)90005-7
    [7] K. Guo, Q. Song, On the entropy for Atanassov's intuitionistic fuzzy sets: An interpretation from the perspective of amount of knowledge, Appl. Soft Comput., 24 (2014), 328–340. https://doi.org/10.1016/j.asoc.2014.07.006 doi: 10.1016/j.asoc.2014.07.006
    [8] H. Garg, A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making, Int. J. Intell. Syst., 31 (2016), 886–920. https://doi.org/10.1002/int.21809 doi: 10.1002/int.21809
    [9] H. Garg, Some picture fuzzy aggregation operators and their applications to multicriteria decision-making, Arab. J. Sci. Eng., 42 (2017), 5275–5290. https://doi.org/10.1007/S13369-017-2625-9 doi: 10.1007/S13369-017-2625-9
    [10] A. Hussain, A. Alsanad, Novel Dombi aggregation operators in spherical cubic fuzzy information with applications in multiple attribute decision-making, Math. Probl. Eng., 2021 (2021). https://doi.org/10.1155/2021/9921553 doi: 10.1155/2021/9921553
    [11] C. Jana, T. Senapati, M. Pal, R. R. Yager, Picture fuzzy Dombi aggregation operators: Application to MADM process, Appl. Soft Comput., 74 (2019), 99–109. https://doi.org/10.1016/j.asoc.2018.10.021 doi: 10.1016/j.asoc.2018.10.021
    [12] A. A. Khan, S. Ashraf, S. Abdullah, M. Qiyas, J. Luo, S. U. Khan, Pythagorean fuzzy Dombi aggregation operators and their application in decision support system, Symmetry, 11 (2019), 383. https://doi.org/10.3390/sym11030383 doi: 10.3390/sym11030383
    [13] P. Liu, J. Liu, S. M. Chen, Some intuitionistic fuzzy Dombi Bonferroni mean operators and their application to multi-attribute group decision making, J. Oper. Res. Soc., 2017, 1–26. https://doi.org/10.1057/s41274-017-0190-y doi: 10.1057/s41274-017-0190-y
    [14] M. Mohanasundari, K. Mohana, Quadripartitioned single valued neutrosophic Dombi weighted aggregation operators for multiple attribute decision making, Neutrosophic Sets Syst., 32 (2020), 9. https://doi.org/10.3390/sym9060082 doi: 10.3390/sym9060082
    [15] M. Naeem, M. A. Khan, S. Abdullah, M. Qiyas, S. Khan, Extended TOPSIS method based on the entropy measure and probabilistic hesitant fuzzy information and their application in decision support system, J. Intell. Fuzzy Syst., 40 (2022), 11479–11490. https://doi.org/10.3233/JIFS-202700 doi: 10.3233/JIFS-202700
    [16] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Soliton. Fract., 22 (2004), 1039–1046.
    [17] M. Qiyas, S. Abdullah, S. Ashraf, L. Abdullah, Linguistic picture fuzzy Dombi aggregation operators and their application in multiple attribute group decision making problem, Mathematics, 7 (2019), 764. https://doi.org/10.3390/math7080764 doi: 10.3390/math7080764
    [18] M. Qiyas, S. Abdullah, Sine trigonometric spherical fuzzy aggregation operators and their application in decision support system, TOPSIS, VIKOR, Korean J. Math., 29 (2021), 137–167. https://doi.org/10.11568/kjm.2021.29.1.137 doi: 10.11568/kjm.2021.29.1.137
    [19] M. Qiyas, S. Abdullah, Y. D. Al-Otaibi, M. Aslam, Generalized interval-valued picture fuzzy linguistic induced hybrid operator and TOPSIS method for linguistic group decision-making, Soft Comput., 25 (2021), 5037–5054. https://doi.org/10.1007/s00500-020-05508-0 doi: 10.1007/s00500-020-05508-0
    [20] M. Qiyas, M. Naeem, S. Khan, S. Abdullah, T. Botmart, T. Shah, Decision support system based on CoCoSo method with the picture fuzzy information, J. Math., 2022 (2022). https://doi.org/10.1155/2022/1476233 doi: 10.1155/2022/1476233
    [21] M. Shakeel, S. Abdullah, F. Amin, A. Fahmi, Power average operators of trapezoidal cubic fuzzy numbers and application to multi-attribute group decision making, J. Intell. Syst., 29 (2019). https://doi.org/10.1515/jisys-2018-0122 doi: 10.1515/jisys-2018-0122
    [22] Z. Yue, An extended TOPSIS for determining weights of decision makers with interval numbers, Knowl.-Based Syst., 24 (2011), 146–153. https://doi.org/10.1016/j.knosys.2010.07.014 doi: 10.1016/j.knosys.2010.07.014
    [23] J. Ye, J. Song, S. Du, R. Yong, Weighted aggregation operators of fuzzy credibility numbers and their decision-making approach for slope design schemes, Comput. Appl. Math., 40 (2021). https://doi.org/10.2174/2665997201999200717165743 doi: 10.2174/2665997201999200717165743
    [24] M. Yahy, S. Abdullah, M. Qiyas, Analysis of medical diagnosis based on fuzzy credibility Dombi Bonferroni mean operator, J. Amb. Intell. Hum. Comp., 2022. https://doi.org/10.1007/s12652-022-04203-2 doi: 10.1007/s12652-022-04203-2
    [25] L. A. Zadeh, Information and control, Fuzzy Set., 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [26] L. A. Zadeh, G. J. Klir, B. Yuan, Fuzzy sets, fuzzy logic, and fuzzy systems: Selected papers, World Scientific, 6 (1996).
    [27] H. J. Zimmermann, Fuzzy set theory, WIREs Comput. Stat., 2 (2010), 317–332. https://doi.org/10.1002/wics.82 doi: 10.1002/wics.82
    [28] S. Zeng, M. Qiyas, M. Arif, T. Mahmood, Extended version of linguistic picture fuzzy TOPSIS method and its applications in enterprise resource planning systems, Math. Probl. Eng., 2019 (2019). https://doi.org/10.1155/2019/8594938 doi: 10.1155/2019/8594938
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1651) PDF downloads(89) Cited by(3)

Article outline

Figures and Tables

Figures(1)  /  Tables(31)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog