Research article

Analysis of optical solitons solutions of two nonlinear models using analytical technique

  • Received: 11 May 2021 Accepted: 23 August 2021 Published: 15 September 2021
  • MSC : 35Q51, 35Q53

  • Looking for the exact solutions in the form of optical solitons of nonlinear partial differential equations has become very famous to analyze the core structures of physical phenomena. In this paper, we have constructed some various type of optical solitons solutions for the Kaup-Newell equation (KNE) and Biswas-Arshad equation (BAE) via the generalized Kudryashov method (GKM). The conquered solutions help to understand the dynamic behavior of different physical phenomena. These solutions are specific, novel, correct and may be beneficial for edifying precise nonlinear physical phenomena in nonlinear dynamical schemes. Graphical recreations for some of the acquired solutions are offered.

    Citation: Naeem Ullah, Muhammad Imran Asjad, Azhar Iqbal, Hamood Ur Rehman, Ahmad Hassan, Tuan Nguyen Gia. Analysis of optical solitons solutions of two nonlinear models using analytical technique[J]. AIMS Mathematics, 2021, 6(12): 13258-13271. doi: 10.3934/math.2021767

    Related Papers:

  • Looking for the exact solutions in the form of optical solitons of nonlinear partial differential equations has become very famous to analyze the core structures of physical phenomena. In this paper, we have constructed some various type of optical solitons solutions for the Kaup-Newell equation (KNE) and Biswas-Arshad equation (BAE) via the generalized Kudryashov method (GKM). The conquered solutions help to understand the dynamic behavior of different physical phenomena. These solutions are specific, novel, correct and may be beneficial for edifying precise nonlinear physical phenomena in nonlinear dynamical schemes. Graphical recreations for some of the acquired solutions are offered.



    加载中


    [1] S. Zhang, T. C. Xia, A generalized new auxiliary equation method and its applications to nonlinear partial differential equations, Phys. Lett. A, 363 (2007), 356–360. doi: 10.1016/j.physleta.2006.11.035
    [2] Sirendaoreji, S. Jiong, Auxiliary equation method for solving nonlinear partial differential equations, Phys. Lett. A, 309 (2003), 387–396. doi: 10.1016/S0375-9601(03)00196-8
    [3] M. L. Wang, Y. B. Zhou, Z. B. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A, 216 (1996), 67–75. doi: 10.1016/0375-9601(96)00283-6
    [4] M. L. Wang, Exact solutions for a compound KdV-Burgers equation, Phys. Lett. A, 213 (1996), 279–287. doi: 10.1016/0375-9601(96)00103-X
    [5] X. H. Wu, J. H. He, EXP-function method and its application to nonlinear equations, Chaos Solitons Fract., 38 (2008), 903–910. doi: 10.1016/j.chaos.2007.01.024
    [6] X. H. Wu, J. H. He, Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method, Comput. Math. Appl., 54 (2007), 966–986. doi: 10.1016/j.camwa.2006.12.041
    [7] H. A. Abdusalam, On an improved complex tanh-function method, Int. J. Nonlin. Sci. Num., 6 (2005), 99–106.
    [8] H. C. Hu, X. Y. Tang, S. Y. Lou, Q. P. Liu, Variable separation solutions obtained from Darboux transformations for the asymmetric Nizhnik-Novikov-Veselov system. Chaos Solitons Fract., 22 (2004), 327–334.
    [9] S. B. Leble, N. V. Ustinov, Darboux transforms, deep reductions and solitons, J. Phys. A: Math. Gen, 26 (1993), 5007–5016. doi: 10.1088/0305-4470/26/19/029
    [10] J. Lee, R. Sakthivel, New exact travelling wave solutions of bidirectional wave equations, Pramana-J. Phys., 76 (2011), 819–829. doi: 10.1007/s12043-011-0105-4
    [11] A. Bekir, O. Unsal, Analytic treatment of nonlinear evolution equations using first integral method, Pramana-J. phys., 79 (2012), 3–17. doi: 10.1007/s12043-012-0282-9
    [12] S. Abbasbandy, A. Shirzadi, The first integral method for modified Benjamin-Bona-Mahony equation, Commun. Nonlinear Sci., 15 (2010), 1759–1764. doi: 10.1016/j.cnsns.2009.08.003
    [13] E. J. Parkes, B. R. Duffy, P. C. Abbott, The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations, Phys. Lett. A, 295 (2002), 280–286. doi: 10.1016/S0375-9601(02)00180-9
    [14] S. K. Liu, Z. T. Fu, S. D. Liu, Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 289 (2001), 69–74. doi: 10.1016/S0375-9601(01)00580-1
    [15] A. J. M. Jawad, M. D. Petkovic, A. Biswas, Modified simple equation method for nonlinear evolution equations, Appl. Math. Comput., 217 (2010), 869–877.
    [16] K. Khan, M. A. Akbar, Exact and solitary wave solutions for the Tzitzeica-Dodd-Bullough and the modified KdV-Zakharov-Kuznetsov equations using the modified simple equation method, Ain Shams Eng. J., 4 (2013), 903–909. doi: 10.1016/j.asej.2013.01.010
    [17] K. Khan, M. A. Akbar, Exact solutions of the (2+1)-dimensional cubic Klein-Gordon equation and the (3+1)-dimensional Zakharov-Kuznetsov equation Using the modified simple equation method, J. Assoc. Arab Uni. Basic Appl. Sci., 15 (2014), 74–81.
    [18] K. Khan, M. A. Akbar, Application of exp(-$ \varphi $($\xi$))-expansion method to find the exact solutions of modified Benjamin-Bona- Mahony equation, World Appl. Sci. J., 24 (2013), 1373–1377.
    [19] M. L. Wang, X. Z. Li, J. L. Zhang, The $ \frac{G'}{G} $-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008), 417–423. doi: 10.1016/j.physleta.2007.07.051
    [20] H. Kim, R. Sakthivel, New exact travelling wave solutions of some nonlinear higher dimensional physical models, Rep. Math. Phys., 70 (2012), 39–50. doi: 10.1016/S0034-4877(13)60012-9
    [21] K. Khan, M. A. Akbar, Traveling wave solutions of nonlinear evolution equations via the enhanced $(G'/G)$-expansion method, J. Egypt. Math. Soc., 22 (2014), 220–226. doi: 10.1016/j.joems.2013.07.009
    [22] M. E. Islam, K. Khan, M. A. Akbar, R. Islam, Traveling wave solutions of nonlinear evolution equations via enhanced $(G'/G)$- expansion method, GANIT J. Bangladesh Math. Soc., 33, (2013), 83–92.
    [23] H. Naher, F. A. Abdullah, New generalized and improved $(G'/G)$-expansion method for nonlinear evolution equations in mathematical physics, J. Egypt. Math. Soc., 22 (2014), 390–395. doi: 10.1016/j.joems.2013.11.008
    [24] H. Naher, F. A. Abdullah, A. Bekir, Abundant traveling wave solutions of the compound KdV-Burgers equation via the improved $(G'/G)$-expansion method, AIP Adv., 2 (2012), 042163. doi: 10.1063/1.4769751
    [25] H. Naher, F. A. Abdullah, Some new traveling solutions of the nonlinear reaction diffusion equation by using the improved $(G'/G)$-expansion method, Math. Probl. Eng., 2012 (2012), 871724.
    [26] H. Naher, F. A. Abdullah, M. A. Akbar, Generalized and improved $(G'/G)$-expansion method for (3+ 1)-dimensional modified KdV-Zakharov-Kuznetsev equation, PloS One, 8 (2013), e64618. doi: 10.1371/journal.pone.0064618
    [27] Y. Molliq R, M. S. M. Noorani, I. Hashim, Variational iteration method for fractional heat-and wave-like equations, Nonlinear Anal-Real., 10 (2009), 1854–1869. doi: 10.1016/j.nonrwa.2008.02.026
    [28] S. T. Mohiud-Din, M. A. Noor, Homotopy perturbation method for solving fourth-order boundary value problems, Math. Probl. Eng., 2007 (2007), 098602.
    [29] S. T. Mohyud-Din, M. A. Noor, Homotopy perturbation method for solving partial differential equations, Z. Naturforsch, 64a (2009), 157–170.
    [30] S. T. Mohyud-Din, A. Yildrim, S. Sariaydin, Approximate series solutions of the viscous Cahn-Hilliard equation via the homotopy perturbation method, World Appl. Sci. J., 11 (2010), 813–818.
    [31] C. Changbum, R. Sakthivel, Homotopy perturbation technique for solving two-point boundary value problems-comparison with other methods, Comput. Phys. Commun., 181 (2010), 1021–1024. doi: 10.1016/j.cpc.2010.02.007
    [32] R. Sakthivel, C. Changbum, L. Jonu, New travelling wave solutions of Burgers equation with finite transport memory, Z. Naturforsch, 65 (2010), 633–640. doi: 10.1515/zna-2010-8-903
    [33] Y. M. Zhao, F-expansion method and its application for finding new exact solutions to the Kudryashov-Sinelshchikov equation, J. Appl. Math., 2013 (2013), 895760.
    [34] H. W. Hua, A generalized extended F-expansion method and its application in (2+1)-dimensional dispersive long wave equation, Commun. Theor. Phys., 46 (2006), 580. doi: 10.1088/0253-6102/46/4/002
    [35] M. S. Islam, k. Khan, M. A. Akbar, A. Mastroberardino, A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations, R. Soc. Open Sci., 1, (2014), 140038.
    [36] W. J. Liu, Y. N. Zhu, M. L. Liu, B. Wen, S. B. Fang, H. Teng, et al., Optical properties and applications for MoS$_2$-Sb$_2$Te$_3$-MoS$_2$ heterostructure materials, Photonics Res., 6 (2018), 220–227. doi: 10.1364/PRJ.6.000220
    [37] W. J. Liu, L. H. Pang, H. N. Han, M. L. Liu, M. Lei, S. B. Fang, et al., Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers, Opt. Express, 25 (2017), 2950–2959. doi: 10.1364/OE.25.002950
    [38] N. Raza, S. Arshed, A. Javid, Optical solitons and stability analysis for the generalized second-order nonlinear Schrodinger equation in an optical fiber, Int. J. Nonlin. Sci. Num., 21 (2020), 855–863. doi: 10.1515/ijnsns-2019-0287
    [39] W. J. Liu, W. T. Yu, C. Y. Yang, M. L. Liu, Y. J. Zhang, M. Lei, Analytic solutions for the generalized complex Ginzburg-Landau equation in fiber lasers, Nonlinear Dyn., 89 (2017), 2933–2939. doi: 10.1007/s11071-017-3636-5
    [40] X. Y. Fan, T. Q. Qu, S. C. Huang, X. X. Chen, M. H. Cao, Q. Zhou, et al., Analytic study on the influences of higher-order effects on optical solitons in fiber laser, Optik, 186 (2019), 326–331. doi: 10.1016/j.ijleo.2019.04.102
    [41] Y. Khan, Fractal modification of complex Ginzburg-Landau model arising in the oscillating phenomena, Results Phys., 18 (2020), 103324. doi: 10.1016/j.rinp.2020.103324
    [42] M. Arshad, A. R. Seadawy, D. C. Lu, Exact bright-dark solitary wave solutions of the higher-order cubic-quintic nonlinear Schrodinger equation and its stability, Optik, 138 (2017), 40–49. doi: 10.1016/j.ijleo.2017.03.005
    [43] A. R. Seadawy, M. Arshad, D. C. Lu, Modulation stability analysis and solitary wave solutions of nonlinear higher-order Schrodinger dynamical equation with second-order spatiotemporal dispersion, Indian. J. Phys., 93 (2019), 1041–1049. doi: 10.1007/s12648-018-01361-y
    [44] K. Porsezian, A. K. Shafeeque Ali, A. I. Maimistov, Modulation instability in two-dimensional waveguide arrays with alternating signs of refractive index, J. Opt. Soc. Am. B, 35 (2018), 2057–2064. doi: 10.1364/JOSAB.35.002057
    [45] A. Hasegawa, F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers, Appl. Phys. Lett., 23 (1973), 142. doi: 10.1063/1.1654836
    [46] A. Ankiewicz, D. J. Kedziora, A. Chowdury, U. Bandelow, N. Akhmediev, Infinite hierarchy of nonlinear Schrodinger equations and their solutions, Phys. Rev. E, 93 (2016), 012206. doi: 10.1103/PhysRevE.93.012206
    [47] A. Ankiewicz, N. Akhmediev, Higher-order integrable evolution equation and its soliton solutions, Phys. Lett. A, 378 (2014), 358–361. doi: 10.1016/j.physleta.2013.11.031
    [48] M. A. Banaja, S. A. Alkhateeb, A. A. Alshaery, E. M. Hilal, A. H. Bhrawy, L. Moraru, et al., Optical solitons in dual-core couplers, Wulfenia J., 21 (2014), 366–380.
    [49] A. H. Bhrawy, A. A. Alshaery, E. M. Hilal, M. Savescu, D. Milovic, K. R. Khang, et al., Optical solitons in birefringent fibers with spatio-temporal dispersion, Optik, 125 (2014), 4935–4944. doi: 10.1016/j.ijleo.2014.04.025
    [50] T. A. Sulaiman, T. Akturk, H. Bulut, H. M. Baskonus, Investigation of various soliton solutions to the Heisenberg ferromagnetic spin chain equation, J. Electromagnet Wave., 32 (2017), 1093–1105.
    [51] M. A. Banaja, A. A. Al Qarni, H. O. Bakodah, Q. Zhou, S. P. Moshokoa, A. Biswas, The investigate of optical solitons in cascaded system by improved adomian decomposition scheme, Optik, 130 (2017), 1107–1114. doi: 10.1016/j.ijleo.2016.11.125
    [52] A. R. Seadawy, D. C. Lu, Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrodinger equation and its stability, Results Phys., 7 (2017), 43–48. doi: 10.1016/j.rinp.2016.11.038
    [53] A. Biswas, S. Arshed, Optical solitons in presence of higher order dispersions and absence of self-phase modulation, Optik, 174 (2018), 452–459. doi: 10.1016/j.ijleo.2018.08.037
    [54] M. Kaplan, A. Bekir, A. Akbulut, A generalized Kudryashov method to some nonlinear evolution equations in mathematical physics, Nonlinear Dyn., 85 (2016), 2843–2850. doi: 10.1007/s11071-016-2867-1
    [55] A. Biswas, M. Ekici, A. Sonmezoglu, R. T. Alqahtanib, Sub-pico-second chirped optical solitons in mono-mode fibers with Kaup-Newell equation by extended trial function method, Optik, 168 (2018), 208–216. doi: 10.1016/j.ijleo.2018.04.069
    [56] H. Ur Rehman, N. Ullah, M. A. Imran, Optical solitons of Biswas-Arshed equation in birefringent fibers using extended direct algebraic method, Optik, 226 (2021), 165378. doi: 10.1016/j.ijleo.2020.165378
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1902) PDF downloads(92) Cited by(6)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog