Research article

Error estimates of mixed finite elements combined with Crank-Nicolson scheme for parabolic control problems

  • Received: 06 February 2023 Revised: 14 March 2023 Accepted: 20 March 2023 Published: 27 March 2023
  • MSC : 49J20, 65N22, 65N30

  • In this paper, a mixed finite element method combined with Crank-Nicolson scheme approximation of parabolic optimal control problems with control constraint is investigated. For the state and co-state, the order $ m = 1 $ Raviart-Thomas mixed finite element spaces and Crank-Nicolson scheme are used for space and time discretization, respectively. The variational discretization technique is used for the control variable. We derive optimal priori error estimates for the control, state and co-state. Some numerical examples are presented to demonstrate the theoretical results.

    Citation: Yuelong Tang. Error estimates of mixed finite elements combined with Crank-Nicolson scheme for parabolic control problems[J]. AIMS Mathematics, 2023, 8(5): 12506-12519. doi: 10.3934/math.2023628

    Related Papers:

  • In this paper, a mixed finite element method combined with Crank-Nicolson scheme approximation of parabolic optimal control problems with control constraint is investigated. For the state and co-state, the order $ m = 1 $ Raviart-Thomas mixed finite element spaces and Crank-Nicolson scheme are used for space and time discretization, respectively. The variational discretization technique is used for the control variable. We derive optimal priori error estimates for the control, state and co-state. Some numerical examples are presented to demonstrate the theoretical results.



    加载中


    [1] P. Raviart, J. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspecs of Finite Element Method, Lecture Notes in Mathematics, Springer, Berlin, 1977. https://doi.org/10.1007/BFb0064470
    [2] J. Douglas, J. Roberts, Global estimates for mixed finite element methods for second order elliptic equations, Math. Comp., 44 (1985), 39–52. Available from: https://www.ams.org/journals/mcom/1985-44-169/S0025-5718-1985-0771029-9/.
    [3] J. Lions, Optimal control of systems governed by partial differential equations, Springer-Verlag, Berlin, 1971.
    [4] F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, Springer-Verlag, Berlin, 1999.
    [5] W. Liu, N. Yan, Adaptive finite element methods for optimal control governed by PDEs, Science Press, Beijing, 2008.
    [6] Y. Chen, Z. Lu, High efficient and accuracy numercial methods for optimal control problems, Science Press, Beijing, 2015.
    [7] F. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), 28–47. https://doi.org/10.1016/0022-247X(73)90022-X doi: 10.1016/0022-247X(73)90022-X
    [8] T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO Anal. Numer., 13 (1979), 313–328. Available from: http://www.numdam.org/item/M2AN_1979__13_4_313_0.pdf.
    [9] N. Arada, E. Casas, F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 23 (2002), 201–229. https://doi.org/10.1023/A:1020576801966 doi: 10.1023/A:1020576801966
    [10] C. Meyer, A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim., 43 (2004), 970–985. https://doi.org/10.1137/S0363012903431608 doi: 10.1137/S0363012903431608
    [11] D. Yang, Y. Chang, W. Liu, A priori error estimate and superconvergence analysis for an opitmal control problem of bilinear type, J. Comput. Math., 26 (2008), 471–487. https://www.jstor.org/stable/43693457
    [12] Y. Chen, Z. Lu, Y. Huang, Superconvergence of triangular Raviart-Thomas mixed finite element methods for bilinear constrained optimal control problem, Comput. Math. Appl., 66 (2013), 1498–1513. https://doi.org/10.1016/j.camwa.2013.08.019 doi: 10.1016/j.camwa.2013.08.019
    [13] W. Liu, N. Yan, A posteriori error estimates for control problems governed by nonlinear elliptic equations, Appl. Numer. Math., 47 (2003), 173–187. https://doi.org/10.1016/S0168-9274(03)00054-0 doi: 10.1016/S0168-9274(03)00054-0
    [14] R. Li, W. Liu, N. Yan, A posteriori error estimates of recovery type for distributed convex optimal control problems, J. Sci. Comput., 33 (2007), 155–182. https://doi.org/10.1007/s10915-007-9147-7 doi: 10.1007/s10915-007-9147-7
    [15] H. Leng, Y. Chen, Y. Huang, Equivalent a posteriori error estimates for elliptic optimal control problems with $L1$-control cost, Comput. Math. Appl., 77 (2019), 342–356. https://doi.org/10.1016/j.camwa.2018.09.038 doi: 10.1016/j.camwa.2018.09.038
    [16] R. Li, W. Liu, H. Ma, T. Tang, Adaptive finite element approximation of elliptic control problems, SIAM J. Control Optim., 41 (2002), 1321–1349. https://doi.org/10.1137/S0363012901389342 doi: 10.1137/S0363012901389342
    [17] H. Leng, Y. Chen, Convergence and quasi-optimality of an adaptive finite element method for optimal control problems with integral control constraint, Adv. Comput. Math., 44 (2018), 367–394. https://doi.org/10.1007/s10444-017-9546-8 doi: 10.1007/s10444-017-9546-8
    [18] M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl., 30 (2005), 45–63. https://doi.org/10.1007/s10589-005-4559-5 doi: 10.1007/s10589-005-4559-5
    [19] M. Hinze, N. Yan, Z. Zhou, Variational discretization for optimal control governed by convection dominated diffusion equations, J. Comput. Math., 27 (2009), 237–253. Available from: https://www.jstor.org/stable/43693504.
    [20] Y. Chen, T. Hou, N. Yi, Variational discretization for optimal control problems governed by parabolic equations, J. Syst. Sci. Complex., 26 (2013), 902–924. https://doi.org/10.1007/s11424-013-1166-x doi: 10.1007/s11424-013-1166-x
    [21] J. Liu, Z. Zhou, Finite element approximation of time fractional optimal control problem with integral state constraint, AIMS Math., 6 (2021), 979–997. Available from: https://www.aimspress.com/fileOther/PDF/Math/math-06-01-059.pdf.
    [22] D. Meidner, B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems Part II: problems with control constraints, SIAM J. Control Optim., 47 (2008), 1301–1329. https://doi.org/10.1137/070694028 doi: 10.1137/070694028
    [23] W. Gong, M. Hinze, Z. Zhou, Space-time finite element approximation of parabolic optimal control problems, J. Numer. Math., 20 (2012), 111–145. https://doi.org/10.1515/jnum-2012-0005 doi: 10.1515/jnum-2012-0005
    [24] H. Rui, M. Tabata, A second order characteristic finite element scheme for convection-diffusion problems, Numer. Math., 92 (2002), 161–177. https://doi.org/10.1007/s002110100364 doi: 10.1007/s002110100364
    [25] H. Fu, H. Rui, A priori error estimates for optimal control problems governed by transient advection-diffusion equations, J. Sci. Comput., 38 (2009), 290–315. https://doi.org/10.1007/s10915-008-9224-6 doi: 10.1007/s10915-008-9224-6
    [26] Y. Chen, Z. Lu, Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problem, Comput. Meth. Appl. Mech. Eng., 199 (2010), 1415–1423. https://doi.org/10.1016/j.cma.2009.11.009 doi: 10.1016/j.cma.2009.11.009
    [27] T. Hou, C. Liu, H. Chen, Fully discrete $H^1$-Galerkin mixed finite element methods for parabolic optimal control problems, Numer. Theor. Meth. Appl., 12 (2019), 134–153. https://doi.org/10.4208/nmtma.2019.m1623 doi: 10.4208/nmtma.2019.m1623
    [28] H. Guo, H. Fu, J. Zhang, A splitting positive definite mixed finite element method for elliptic optimal control problem, Appl. Math. Comput., 219 (2013), 11178–11190. https://doi.org/10.1016/j.amc.2013.05.020 doi: 10.1016/j.amc.2013.05.020
    [29] H. Fu, H. Rui, J. Zhang, H. Guo, A priori error estimate of splitting positive definite mixed finite element method for parabolic optimal control problems, Numer. Math. Theor. Meth. Appl., 9 (2016), 215–238. https://doi.org/10.4208/nmtma.2016.m1409 doi: 10.4208/nmtma.2016.m1409
    [30] X. Luo, Y. Chen, Y. Huang, T. Hou, Some error estimates of finite volume element method for parabolic optimal control problems, Optim. Control Appl. Meth., 35 (2014), 145–165. https://doi.org/10.1002/oca.2059 doi: 10.1002/oca.2059
    [31] Q. Zhang, T. Hu, Finite volume elements for parabolic optimal control problems based on variational discretization, IAENG Inter. J. Appl. Math., 51 (2021), 13. Available from: https://www.iaeng.org/IJAM/issues_v51/issue_2/IJAM_51_2_13.pdf.
    [32] Y. Chen, N. Yi, W. Liu, A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46 (2008), 2254–2275. https://doi.org/10.1137/070679703 doi: 10.1137/070679703
    [33] J. Zhou, D. Yang, Legendre-Galerkin spectral methods for optimal control problems with integral constraint for state in one dimension, Comput. Optim. Appl., 61 (2015), 135–158. https://doi.org/10.1007/s10589-014-9700-x doi: 10.1007/s10589-014-9700-x
    [34] Y. Chen, X. Lin, Y. Huang, Error analysis of Galerkin spectral methods for nonlinear optimal control problems with integral control constraint, Commun. Math. Sci., 20 (2022), 1659–1683. https://dx.doi.org/10.4310/CMS.2022.v20.n6.a9 doi: 10.4310/CMS.2022.v20.n6.a9
    [35] Q. Wang, Z. Zhou, Adaptive virtual element method for optimal control problem governed by general elliptic equation, J. Sci. Comput., 88 (2021), 14. https://doi.org/10.1007/s10915-021-01528-6 doi: 10.1007/s10915-021-01528-6
    [36] Q. Wang, Z. Zhou, A priori and a posteriori error analysis for virtual element discretization of elliptic optimal control problem, Numer. Algorithms, 90 (2022), 989–1105. https://doi.org/10.1007/s11075-021-01219-1 doi: 10.1007/s11075-021-01219-1
    [37] X. Wang, Q. Wang, Z. Zhou, A priori error analysis of mixed virtual element methods for optimal control problems governed by Darcy equation, East Asian J. Appl. Math., 13 (2023), 140–161. https://doi.org/10.4208/eajam.070322.210722 doi: 10.4208/eajam.070322.210722
    [38] D. Meidner, B. Vexler, A priori error analysis of the Petrov-Galerkin Crank-Nicolson scheme for parabolic optimal control problems, SIAM J. Control Optim., 49 (2011), 2183–2211. https://doi.org/10.1137/100809611 doi: 10.1137/100809611
    [39] N. Daniels, M. Hinze, M. Vierling, Crank-Nicolson time stepping and variational discretization of control-constrained parabolic optimal control problems, SIAM J. Control Optim., 53 (2015), 1182–1198. https://doi.org/10.1137/14099680X doi: 10.1137/14099680X
    [40] T. Hou, H. Leng, Numerical analysis of a stabilized Crank-Nicolson/Adams-Bashforth finite difference scheme for Allen-Cahn equations, Appl. Math. Lett., 102 (2020), 106150. https://doi.org/10.1016/j.aml.2019.106150 doi: 10.1016/j.aml.2019.106150
    [41] C. Yang, T. Sun, Crank-Nicolson finite difference schemes for parabolic optimal Dirichlet boundary control problems, Math. Meth. Appl. Sci., 45 (2022), 7346–7363. https://doi.org/10.1002/mma.8244 doi: 10.1002/mma.8244
    [42] R. Li, W. Liu, The AFEPack handbook, 2006. Available from: http://dsec.pku.edu.cn/rli/software.php.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1110) PDF downloads(39) Cited by(1)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog