In this paper, we consider switched coupled system of nonlinear impulsive Langevin equations with mixed derivatives. Some sufficient conditions are constructed to observe the existence, uniqueness and generalized Ulam-Hyers-Rassias stability of our proposed model, with the help of generalized Diaz-Margolis's fixed point approach, over generalized complete metric space. We give an example which supports our main result.
Citation: Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada. Switched coupled system of nonlinear impulsive Langevin equations with mixed derivatives[J]. AIMS Mathematics, 2021, 6(12): 13092-13118. doi: 10.3934/math.2021757
[1] | Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288 |
[2] | Abdelatif Boutiara, Mohammed S. Abdo, Manar A. Alqudah, Thabet Abdeljawad . On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions. AIMS Mathematics, 2021, 6(6): 5518-5534. doi: 10.3934/math.2021327 |
[3] | Arjumand Seemab, Mujeeb ur Rehman, Jehad Alzabut, Yassine Adjabi, Mohammed S. Abdo . Langevin equation with nonlocal boundary conditions involving a ψ-Caputo fractional operators of different orders. AIMS Mathematics, 2021, 6(7): 6749-6780. doi: 10.3934/math.2021397 |
[4] | Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada . Qualitative analysis of nonlinear impulse langevin equation with helfer fractional order derivatives. AIMS Mathematics, 2022, 7(4): 6204-6217. doi: 10.3934/math.2022345 |
[5] | Qun Dai, Shidong Liu . Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method. AIMS Mathematics, 2022, 7(2): 2498-2511. doi: 10.3934/math.2022140 |
[6] | Shayma A. Murad, Zanyar A. Ameen . Existence and Ulam stability for fractional differential equations of mixed Caputo-Riemann derivatives. AIMS Mathematics, 2022, 7(4): 6404-6419. doi: 10.3934/math.2022357 |
[7] | Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438 |
[8] | Kaihong Zhao, Shuang Ma . Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Mathematics, 2022, 7(2): 3169-3185. doi: 10.3934/math.2022175 |
[9] | Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada . A coupled system of p-Laplacian implicit fractional differential equations depending on boundary conditions of integral type. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839 |
[10] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092 |
In this paper, we consider switched coupled system of nonlinear impulsive Langevin equations with mixed derivatives. Some sufficient conditions are constructed to observe the existence, uniqueness and generalized Ulam-Hyers-Rassias stability of our proposed model, with the help of generalized Diaz-Margolis's fixed point approach, over generalized complete metric space. We give an example which supports our main result.
At Wisconsin university, Ulam raised a question about the stability of functional equations in the year 1940. The question of Ulam was: Under what conditions does there exist an additive mapping near an approximately additive mapping [28]? In 1941, Hyers was the first mathematician who gave partial answer to Ulam's question [11], over Banach space. Afterwards, stability of such form is known as Ulam-Hyers stability. In 1978, Rassias [18], provided a remarkable generalization of the Ulam-Hyers stability of mappings by considering variables. For more information about the topic, we refer the reader to [21,25,26,29,39,40,42].
Fractional Langevin differential equations have been one of the important subject in physics, chemistry and electrical engineering. The Langevin equation (first formulated by Langevin in 1908) is found to be an effective tool to describe the evolution of physical phenomena in fluctuating environments. For instance, Brownian motion is well described by the Langevin equation when the random fluctuation force is assumed to be white noise. In case the random fluctuation force is not white noise, the motion of the particle is described by the generalized Langevin equation. For systems in complex media, ordinary Langevin equation does not provide the correct description of the dynamics. Various generalizations of Langevin equations have been proposed to describe dynamical processes in a fractal medium. One such generalization is the generalized Langevin equation which incorporates the fractal and memory properties with a dissipative memory kernel into the Langevin equation. Another possible extension requires the replacement of ordinary derivative by a fractional derivative in the Langevin equation to give the fractional Langevin equation. For more details, see [2,10,15,16,19,33,34,35].
Fractional order differential equations are the generalizations of the classical integer order differential equations. Fractional calculus has become a speedily developing area and its applications can be found in diverse fields ranging from physical sciences, porous media, electrochemistry, economics, electromagnetics, medicine and engineering to biological sciences. Progressively, fractional differential equations play a very important role in fields such as thermodynamics, statistical physics, nonlinear oscillation of earthquakes, viscoelasticity, defence, optics, control, signal processing, electrical circuits, astronomy etc. There are some outstanding articles which provide the main theoretical tools for the qualitative analysis of this research field, and at the same time, shows the interconnection as well as the distinction between integral models, classical and fractional differential equations, see [1,12,17,20,23,27,32].
Impulsive fractional differential equations are used to describe both physical, social sciences and many dynamical systems such as evolution processes pharmacotherpy. There are two types of impulsive fractional differential equations the first one is instantaneous impulsive fractional differential equations while the other one is non-instantaneous impulsive fractional differential equations. In last few decades, the theory of impulsive fractional differential equations are well utilized in medicine, mechanical engineering, ecology, biology and astronomy etc. see [3,8,13,24,30,36,38,41].
Recently, many mathematicians received a considerable attention to the existence, uniqueness and different types of Hyres-Ulam stability of the solutions of nonlinear implicit fractional differential equations with Caputo fractional derivative, see [5,7,22,26].
Wang et al. [31], studied generalized Ulam-Hyers-Rassias stability of the following fractional differential equation:
{cDν0,wz(w)=f(w,z(w)),w∈(wk,sk],k=0,1,…,m,0<ν<1,z(w)=gk(w,z(w)),w∈(sk−1,wk],k=1,2,…,m. |
Zada et al. [37], studied existence and uniqueness of solutions by using Diaz Margolis's fixed point theorem and presented different types of Ulam-Hyers stability for a class of nonlinear implicit fractional differential equation with non-instantaneous integral impulses and nonlinear integral boundary conditions:
{cDν0,wz(w)=f(w,z(w),cDν0,wz(w)), w∈(wk,sk], k=0,1,…,m, 0<ν<1, w∈(0,1],z(w)=Iνsk−1,wk(ξk(w,z(w))), w∈(sk−1,wk],k=1,2,…,m,z(0)=1Γν∫T0(T−s)ν−1η(s,z(s))ds. |
In recent years, many researchers paid much attention to the coupled system of fractional differential equations due to its applications in different fields [3,6,32].
Ali et al. [4], studied the existence, uniqueness of solutions by using using the classical fixed point theorems such as Banach contraction principle and Leray-Schauder of cone type and presented various kinds of Ulam stability including Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability of the solutions to a nonlinear coupled systems of implicit fractional differential equations involving Caputo derivative of the form:
{cDνu(w)−f(w,v(w),cDνu(w))=0,ν∈(2,3], w∈J, cDμv(w)−f(w,u(w),cDνv(w))=0,μ∈(2,3], w∈J, ˊu(w)|w=0=ˊˊu(w)|w=0,u(w)|w=1=λu(η), λ,η∈(0,1),ˊv(w)|w=0=ˊˊv(w)|w=0,v(w)|w=1=λv(η), λ,η∈(0,1) |
In this paper, we study switched coupled system of nonlinear impulsive Langevin equations with mixed derivatives of the form:
{{cDν0,w(D+λ1)u(w)=f1(w,v(w),u(w)),w∈(wk,sk],k=0,1,…,m,u(w)=gk(w,u(w)),w∈(sk−1,wk],k=1,2,…,m,u(0)=u0,u(T)=∫η101Γp1(η1−s)p1−1u(s)ds,0<η1<T,{cDμ0,w(D+λ2)v(w)=f2(w,u(w),v(w)),w∈(wk,sk],k=0,1,…,m,v(w)=gk(w,v(w)),w∈(sk−1,wk],k=1,2,…,m,v(0)=v0,v(T)=∫η201Γp2(η2−s)p2−1v(s)ds,0<η2<T, | (1.1) |
where cDν0,w and cDμ0,w represents classical Caputo derivative [12], of order ν and μ respectively with the lower bound zero, 0=w0<s0<w1<s1<⋯<wm<sm=T, T is the pre–fixed number and λ1,λ2∈R∖{0}, 0<ν<1, p1,p2>0, u0,v0 are constants, f1,f2:[0,T]×R×R→R is continuous and gk:[sk−1,wk]×R→R is continuous for all k=1,2,…,m.
In the second section of this paper, we create a uniform framework to originate appropriate formula of solutions for our proposed model. In section 3, we implement the concept of generalized Ulam-Hyers-Rassias stability of Eq (1.1). Finally, we give an example which supports our main result.
Let J=[0,T] and C(J,R) be the space of all continuous functions from J to R, and the piecewise continuous function space PC(J,R)={z:J→R:z∈C((wk,wk−1],R),k=0,…,m and there exist z(w−k) and z(w+k), k=1,2,…,m with z(w−k)=z(wk)}.
In the current section, we create a uniform framework to originate appropriate formula for the solution of impulsive fractional differential equation of the form:
{cDν0,w(D+λ1)u(w)=f1(w),w∈(wk,sk],k=0,1,…,m, u(w)=gk(w),w∈(sk−1,wk],k=1,2,…,m,u(0)=u0,u(T)=∫η101Γp1(η1−s)p1−1u(s)ds,0<η1<T, | (2.1) |
We recall some definitions of fractional calculus from [12] as follows:
Definition 2.1. The fractional integral of order ν from 0 to w for the function f is defined by
Iν0,wf(w)=1Γ(ν)∫w0f(s)(w−s)ν−1ds,w>0, ν>0, |
where Γ(⋅) is the Gamma function.
Definition 2.2. The Riemman-Liouville fractional derivative of fractional order ν from 0 to w for a function f can be written as
LDν0,wf(w)=1Γ(n−ν)dndtn∫w0f(s)(w−s)ν+1−nds,w>0, n−1<ν<n, |
where Γ(⋅) is the Gamma function.
Definition 2.3. The Caputo derivative of fractional order ν from 0 to w for a function f can be defined as
cDν0,wf(w)=1Γ(n−ν)∫w0(w−s)n−ν−1f(n)(s)ds, where n=[ν]+1. |
Definition 2.4. The general form of classical Caputo derivative of order ν of a function f can be given as
cDν0,w=LDν0,w(f(w)−n−1∑k=0wkk!f(k)(0)),w>0, n−1<ν<n. |
Remark 2.5. (i) If f(⋅)∈Cm([0,∞),R), then
LDν0,wf(w)=1Γ(m−ν)∫w0f(m)(s)(w−s)ν+1−mds=Im−ν0,wf(m)(w),w>0, m−1<ν<m. |
(ii) In Definition 2.4, the integrable function f can be discontinuous function. This fact can support us to consider impulsive fractional problems in the sequel.
Definition 2.6. The Hilfer fractional derivative of order 0<α<1 and 0≤γ≤1 of function f(x) is
Dα,γf(x)=(Iγ(1−α)D(I(1−γ)(1−α)(f))(x). |
The Hilfer fractional derivative is used as an interpolator between the Riemman-Liouville and Caputo derivative.
Remark 2.7. (a) Operator Dα,γ also can be written as
Dα,γf(x)=(Iγ(1−α)D(I(1−γ)(1−α)f)(x))=Iγ(1−α)Dηf(x),η=α+γ−αγ. |
(b) If γ=0, then Dα,γ=Dα,0 is called the Riemman-Liouville fractional derivative.
(c) If γ=1, then Dα,γ=I1−αD is called the Caputo fractional derivative.
Lemma 2.8. [12] The fractional differential equation cDαf(x)=0 with α>0, involving Caputo differential operator cDα have a solution in the following form:
f(x)=c0+c1x+c2x2+⋯+cm−1xm−1, |
where ck∈R, k=0,1,…,m−1 and m=[α]+1.
Lemma 2.9. [17] Let α>0 and γ>0, f∈L1([a,b]).
Then IαIγf(x)=Iα+γf(x),cDα0,x(cDγ0,xf(x))=cDα+γ0,xf(x) and IαDα0,xf(x)=f(x),x∈[a,b]. |
Lemma 2.10. [24] The function u∈PC(J,R) is a solution of (2.1) if and only if
u(w)={{∫w0e−λ1(w−s)Iνf1(s)ds+A11Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνf1(s)ds−A11∫T0e−λ1(T−s)Iνf1(s)ds+(A11(ηp11E(1,p1+1)(aw)−eλ1T)+eλ1T)u0,w∈(0,s0],{gk(w),w∈(sk−1,wk],k=1,2,…,m,{∫w0e−λ1(w−s)Iνf1(s)ds+Mk1Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνf1(s)ds−Mk1∫T0e−λ1(T−s)Iνf1(s)ds+Nk1∫wk0e−λ1(wk−s)Iνf1(s)ds+Nk1gk(wk),w∈(wk,sk],k=0,1,…,m, |
where
A11=λΓ(p1+1)(1−e−λT)Γ(p1+1)−η1p1+Γ(p1+1)η1p1E(1,p1+1)(aw),Bk1=λΓ(p1+1)(η1p1E(1,p1+1)(aw)−e−λT)δk1,Ak1=δk1λΓ(p1+1)−Γ(p1+1)(1−eλwk)(λΓ(p1+1)(η1p1E(1,p1+1)(aw)−e−λT))δk1((1−e−λT)Γ(p1+1)−η1p1+Γ(p1+1)η1p1E(1,p1+1)(aw)),Mk1=Ak1(1−e−λw)λ−Γ(p1+1)e−λw(1−e−λwk)δk1,Nk1=Bk1(1−e−λw)λ−(1−e−λT)Γ(p1+1)−η1p1+Γ(p1+1)η1p1E(1,p1+1)(aw)δk1eλw,δk1=2Γ(p1+1)(e−λwk−e−λ(wk+T)+η1p1E(1,p1+1)(aw)e−λwk)−η1p1e−λwk−Γ(p1+1)E(1,p1+1)(aw). |
In view of Lemma 2.10 the solution form of proposed system (1.1) is given by
{u(w)={∫w0e−λ1(w−s)Iνf1(s,v(s),u(s))ds+A11Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνf1(s,v(s),u(s))ds−A11∫T0e−λ1(T−s)Iνf1(s,v(s),u(s))ds+(A11(ηp11E(1,p1+1)(aw)−eλ1T)+eλ1T)u0, w∈(0,s0],gk(w,u(w)),w∈(sk−1,wk],k=1,2,…,m,∫w0e−λ1(w−s)Iνf1(s,v(s),u(s))ds+Mk1Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνf1(s,v(s),u(s))ds−Mk1∫T0e−λ1(T−s)Iνf1(s,v(s),u(s))ds+Nk1∫wk0e−λ1(wk−s)Iνf1(s,v(s),u(s))ds+Nk1gk(wk,u(wk)),w∈(wk,sk],k=0,1,…,m,v(w)={∫w0e−λ2(w−s)Iμf2(s,u(s),v(s))ds+A22Γ(p2+1)∫η20(η2−s)p2e−λ2(η2−s)Iμf2(s,u(s),v(s))ds−A22∫T0e−λ2(T−s)Iμf2(s,u(s),v(s))ds+(A22(ηp22E(1,p2+1)(aw)−eλ2T)+eλ2T)v0, w∈(0,s0],gk(w,v(w)),w∈(sk−1,wk],k=1,2,…,m,∫w0e−λ2(w−s)Iμf2(s,u(s),v(s))ds+Mk2Γ(p2+1)∫η20(η2−s)p2e−λ2(η2−s)Iμf2(s,u(s),v(s))ds−Mk2∫T0e−λ2(T−s)Iμf2(s,u(s),v(s))ds+Nk2∫wk0e−λ2(wk−s)Iμf2(s,u(s),v(s))ds+Nk2gk(wk,v(wk)),w∈(wk,sk],k=0,1,…,m, | (2.2) |
By the ideas of stability in [25,29], we can generate a generalized Ulam-Hyers-Rassias stability concept for Eq (1.1).
{|cDν0,w(D+λ1)u(w)−f1(w,v(w),u(w))|≤φu(w),w∈(wk,sk],k=0,1,…,m, 0<ν<1,|u(w)−Nk1gk(w,u(w))|≤ψ,w∈(sk−1,wk], k=1,2,…,m.|cDμ0,w(D+λ2)v(w)−f2(w,u(w),v(w))|≤φv(w),w∈(wk,sk],k=0,1,…,m, 0<μ<1,|v(w)−Nk2gk(w,v(w))|≤ψ,w∈(sk−1,wk], k=1,2,…,m. | (3.1) |
Definition 3.1. Equation (1.1) is generalized Ulam-Hyers-Rassias stable with respect to (φu,φv,ψ) if there exists Cu,Cv>0 such that for each solution (u,v)∈PC(J,R)×PC(J,R) of inequality (3.1) there is a solution (u0,v0)∈PC(J,R)×PC(J,R) of Eq (1.1) with
|(u,v)(w)−(u0,v0)(w)|≤Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψ,w∈J. |
Remark 3.2. A function u,v∈PC(J,R) is a solution of the inequality (3.1) if and only if there is G∈PC(J,R) and a sequence Gk, k=1,2,…,m (which depends on z) such that
(i) |G(w)|≤φ(w), w∈J and |Gk|≤ψ,k=1,2,…,m,
(ii) cDν0,w(D+λ1)u(w)=f1(w,v(w),u(w))+G(w), w∈(wk,sk],k=0,1,…,m,
(iii) cDμ0,w(D+λ2)v(w)=f2(w,u(w),v(w))+G(w), w∈(wk,sk],k=0,1,…,m,
(iv) u(w)=Nk1gk(w,u(w))+Gk, w∈(sk−1,wk],k=1,2, …,m.
Remark 3.3. (1) If u∈PC(J,R) is a solution of the inequality (3.1) then u is a solution of the following integral inequality,
{{|u(w)−∫w0e−λ1(w−s)Iνf1(w,v(w),u(w))ds−A11Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνf1(s,v(s),u(s))ds+A11∫T0e−λ1(T−s)Iνf1(s,v(s),u(s))ds−(A11(η1pE(1,p1+1)(aw)−eλ1T)+eλ1T)u0|,≤∫w0e−λ1(w−s)Iνφu(s)ds−A11Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνφu(s)ds+A11∫T0e−λ1(T−s)Iνφu(s)ds,w∈(0,s0];{|u(w)−Nk1gk(w,u(w))|≤ψ,w∈(sk−1,wk],k=1,2,…,m;{|u(w)−∫w0e−λ1(w−s)Iνf1(s,v(s),u(s))ds−Mk1Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνf1(s,v(s),u(s))ds+Mk1∫T0e−λ1(T−s)Iνf1(s,v(s),u(s))ds−Nk1∫wk0e−λ1(wk−s)Iνf1(s,v(s),u(s))ds−Nk1gk(wk,u(wk))|≤∫w0e−λ1(w−s)Iνφu(s)ds+Mk1Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνφu(s)ds+Mk1∫T0e−λ1(T−s)Iνφu(s)ds+Nk1∫wk0e−λ1(wk−s)Iνφu(s)ds+ψ, w∈(wk,sk], k=0,1,…,m. | (3.2) |
In fact by Remark 3.2, we get
{cDν0,w(D+λ1)u(w)=f1(w,v(w),u(w))+G(w),w∈(wk,sk], k=0,1,…,m,0<ν<1,u(w)=Nk1gk(w,u(w))+Gk,w∈(sk−1,wk],k=1,2,…,m. | (3.3) |
Clearly, the solution of Eq (3.5) is given by
u(w)={{∫w0e−λ1(w−s)Iν(f1(s,v(s),u(s))+G(s))ds+A11Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iν(f1(s,v(s),u(s))+G(s))ds−A11∫T0e−λ1(T−s)Iν(f1(s,v(s),u(s))+G(s))ds+(A11(η1p1E(1,p1+1)(aw)−eλ1T)+eλ1T)u0,w∈(0,s0];{Nk1gk(w,u(w)),w∈(sk−1,wk],k=1,2,…,m;{∫w0e−λ1(w−s)Iν(f1(s,v(s),u(s))+G(s))ds+Mk1Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iν(f1(s,v(s),u(s))+G(s))ds−Mk1∫T0e−λ1(T−s)Iν(f1(s,v(s),u(s))+G(s))ds+Nk1∫wk0e−λ1(wk−s)Iν(f1(s,v(s),u(s))+G(s))ds+Nk1gk(wk,u(wk))+Gk,w∈(wk,sk],k=0,1,…,m. |
For w∈(wk,sk],k=0,1,…,m, we get
|u(w)−∫w0e−λ1(w−s)Iνf1(s,v(s),u(s))ds−Mk1Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνf1(s,v(s),u(s))ds+Mk1∫T0e−λ1(T−s)Iνf1(s,v(s),u(s))ds−Nk1∫wk0e−λ1(wk−s)Iνf1(s,v(s),u(s))ds−Nk1gk(wk,u(wk))|≤|∫w0e−λ1(w−s)IνG(s)ds|+|Mk1Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)IνG(s)ds|+|Mk1∫T0e−λ1(T−s)IνG(s)ds|+|Nk1∫wk0e−λ1(wk−s)IνG(s)ds|+|Gk|≤∫w0e−λ1(w−s)Iνφu(s)ds+Mk1Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνφu(s)ds+Mk1∫T0e−λ1(T−s)Iνφ(s)ds+Nk1∫wk0e−λ1(wk−s)Iνφu(s)ds+ψ. |
Proceeding the above, we derive that
|u(w)−Nk1gk(w,u(w))|≤|Gk|≤ψ,w∈(sk−1,wk],k=1,2,…,m, |
and
|u(w)−∫w0e−λ1(w−s)Iνf1(s,v(s),u(s))ds−A11Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνf1(s,v(s),u(s))ds+A11∫T0e−λ1(T−s)Iνf1(s,v(s),u(s))ds−(A11(η1p1E(1,p1+1)(aw)−eλ1T)+eλ1T)u0| |
≤|∫w0e−λ1(w−s)IνG(s)ds|+|A11Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)IνG(s)ds|+|A11∫T0e−λ1(T−s)IνG(s)ds|≤∫w0e−λ1(w−s)Iνφu(s)ds+A11Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνφu(s)ds+A11∫T0e−λ1(T−s)Iνφu(s)ds, w∈(0,s0]. |
Similarly
(2) If v∈PC(J,R) is a solution of the inequality (3.1) then v is a solution of the following integral inequality,
{{|v(w)−∫w0e−λ2(w−s)Iμf2(s,u(s),v(s)ds−A22Γ(p2+1)∫η20(η2−s)p2e−λ2(η2−s)Iμf2(s,u(s),v(s)ds+A22∫T0e−λ2(T−s)Iμf2(s,u(s),v(s)ds−(A22(η2p2E(1,p2+1)(aw)−eλ2T)+eλ2T)v0|,≤∫w0e−λ2(w−s)Iμφv(s)ds−A22Γ(p2+1)∫η20(η2−s)p2e−λ2(η2−s)Iμφv(s)ds+A22∫T0e−λ2(T−s)Iμφv(s)ds,w∈(0,s0];{|v(w)−Nk2gk(w,v(w))|≤ψ,w∈(sk−1,wk],k=1,2,…,m;{|v(w)−∫w0e−λ2(w−s)Iμf2(s,u(s),v(s)ds−Mk2Γ(p2+1)∫η20(η2−s)p2e−λ2(η2−s)Iμf2(s,u(s),v(s)ds+Mk2∫T0e−λ2(T−s)Iμf2(s,u(s),v(s)ds−Nk2∫wk0e−λ2(wk−s)Iμf2(s,u(s),v(s)ds−Nk2gk(wk,v(wk))|≤∫w0e−λ2(w−s)Iμφv(s)ds+Mk2Γ(p2+1)∫η20(η2−s)p2e−λ2(η2−s)Iμφv(s)ds+Mk2∫T0e−λ2(T−s)Iμφv(s)ds+Nk2∫wk0e−λ2(wk−s)Iμφv(s)ds+ψ, w∈(wk,sk], k=0,1,…,m. | (3.4) |
In fact by Remark 3.2, we get
{cDμ0,w(D+λ2)v(w)=f2(w,u(w),v(w))+G(w),w∈(wk,sk], k=0,1,…,m,0<μ<1,v(w)=Nk2gk(w,v(w))+Gk,w∈(sk−1,wk],k=1,2,…,m. | (3.5) |
Clearly, the solution of Eq (3.5) is given by
v(w)={{∫w0e−λ2(w−s)Iμ(f2(s,u(s),v(s)+G(s))ds+A22Γ(p2+1)∫η20(η2−s)p2e−λ2(η2−s)Iμ(f2(s,u(s),v(s)+G(s))ds−A22∫T0e−λ2(T−s)Iμ(f2(s,u(s),v(s)+G(s))ds+(A22(η2p2E(1,p2+1)(aw)−eλ2T)+eλ2T)u0,w∈(0,s0];{Nk2gk(w,v(w)),w∈(sk−1,wk],k=1,2,…,m;{∫w0e−λ2(w−s)Iμ(f2(s,u(s),v(s)+G(s))ds+Mk2Γ(p2+1)∫η20(η2−s)p2e−λ2(η2−s)Iμ(f2(s,u(s),v(s)+G(s))ds−Mk2∫T0e−λ2(T−s)Iμ(f2(s,u(s),v(s)+G(s))ds+Nk2∫wk0e−λ2(wk−s)Iμ(f2(s,u(s),v(s)+G(s))ds+Nk2gk(wk,v(wk))+Gk,w∈(wk,sk],k=0,1,…,m. |
For w∈(wk,sk],k=0,1,…,m, we get
|v(w)−∫w0e−λ2(w−s)Iμf2(s,u(s),v(s)ds−Mk2Γ(p2+1)∫η20(η2−s)p2e−λ2(η2−s)Iμf2(s,u(s),v(s)ds+Mk2∫T0e−λ2(T−s)Iμf2(s,u(s),v(s)ds−Nk2∫wk0e−λ2(wk−s)Iμf2(s,u(s),v(s)ds−Nk2gk(wk,v(wk))|≤|∫w0e−λ2(w−s)IμG(s)ds|+|Mk2Γ(p2+1)∫η20(η2−s)p2e−λ2(η2−s)IμG(s)ds|+|Mk2∫T0e−λ2(T−s)IμG(s)ds|+|Nk2∫wk0e−λ2(wk−s)IμG(s)ds|+|Gk|≤∫w0e−λ2(w−s)Iμφv(s)ds+Mk2Γ(p2+1)∫η20(η2−s)p2e−λ2(η2−s)Iμφv(s)ds+Mk2∫T0e−λ2(T−s)Iμφv(s)ds+Nk2∫wk0e−λ2(wk−s)Iμφv(s)ds+ψ. |
Proceeding the above, we derive that
|v(w)−Nk2gk(w,v(w))|≤|Gk|≤ψ,w∈(sk−1,wk],k=1,2,…,m, |
and
|v(w)−∫w0e−λ2(w−s)Iμf2(s,u(s),v(s))ds−A22Γ(p2+1)∫η20(η2−s)p2e−λ2(η2−s)Iμf2(s,u(s),v(s))ds+A22∫T0e−λ2(T−s)Iμf2(s,u(s),v(s))ds−(A22(η2p2E(1,p2+1)(aw)−eλ2T)+eλ2T)v0| |
≤|∫w0e−λ2(w−s)IμG(s)ds|+|A22Γ(p2+1)∫η20(η2−s)p2e−λ2(η2−s)IμG(s)ds|+|A22∫T0e−λ2(T−s)IμG(s)ds|≤∫w0e−λ2(w−s)Iμφv(s)ds+A22Γ(p2+1)∫η20(η2−s)p2e−λ2(η2−s)Iμφv(s)ds+A22∫T0e−λ2(T−s)Iμφv(s)ds, w∈(0,s0]. |
In order to apply a fixed point theorem of the alternative, for contractions on a generalized complete metric space to achieve our main result, we want to collect the following realities.
Definition 4.1. For a non empty set V, a function d:V×V→[0,∞] is called a generalized metric on V if and only if d satisfies:
⋄ d(υ1,υ2)=0 if and only if υ1=υ2;
⋄ d(υ1,υ2)=d(υ2,υ1) for all υ1,υ2∈V;
⋄ d(υ1,υ3)≤d(υ1,υ2)+d(υ2,υ3) for all υ1,υ2,υ3∈V.
Lemma 4.2. (see [9] (Generalized Diaz-Margolis's fixed point theorem)). Let (V,d) be a generalized complete metric space. Assume that T:V→V is a strictly contractive operator with the Lipschitz constant L<1. If there exists a k≥0 such that d(Tk+1v,Tkv)<∞ for some v in V, then the followings statements are true:
(B1) The sequence {Tnv} converges to a fixed point v∗ of T;
(B2) The unique fixed point of T is v∗∈V∗={u∈Vsuch thatd(Tkv,u)<∞};
(B3) u∈V∗, then d(u,v∗)≤11−Ld(Tu,u).
We introduced some assumptions as follows:
(H1) f∈C(J×R,R).
(H2) ● There exists positive constants 0<Lfu1<1 and 0<Lfu2<1, such that |f1(w,u,m)−f1(w,v,n)|≤Lfu1|u−v|+Lfu2|m−n|, for each w∈J and all u,v,m,n∈R.
● There exists positive constants 0<Lfv1<1 and 0<Lfv2<1, such that |f2(w,u,m)−f2(w,v,n)|≤Lfv1|u−v|+Lfv2|m−n|, for each w∈J and all u,v,m,n∈R.
(H3) ● gk∈C((sk−1,wk]×R,R) and there are positive constant Lgk1, k=1,2,…,m such that |gk(w,v)−gk(w,v)|≤Lgk1|u−v|, for each w∈(sk−1,wk], and all u,v∈R.
● gk∈C((sk−1,wk]×R,R) and there are positive constant Lgk2, k=1,2,…,m such that |gk(w,v)−gk(w,v)|≤Lgk2|u−v|, for each w∈(sk−1,wk], and all u,v∈R.
(H4) ● Let φu∈C(J,R+) be a nondecreasing function, there exists cφ>0 such that
∫w0Iν(φ(s))ds≤Cφφu(w)for each w∈J. |
● Let φv∈C(J,R+) be a nondecreasing function, there exists cφ>0 such that
∫w0Iν(φ(s))ds≤Cφφv(w)for eachw∈J. |
Theorem 4.3. Suppose that (H1)–(H4) are satisfied and also a function u,v∈PC(J,R) satisfies (3.1). Then there exists unique solutions u0,v0 of Eq (1.1) such that
u0(w)={{∫w0e−λ1(w−s)Iνf1(s,v0(s),u0(s))ds+A11Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνf1(s,v0(s),u0(s))ds−A11∫T0e−λ1(T−s)Iνf1(s,v0(s),u0(s))ds+(A11(η1p1E(1,p1+1)(aw)−eλ1T)+eλ1T)u0,w∈(0,s0];{gk(w,u0(w)),w∈(sk−1,wk],k=1,2,…,m;{∫w0e−λ1(w−s)Iνf1(s,v0(s),u0(s))ds+Mk1Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνf1(s,v0(s),u0(s))ds−Mk1∫T0e−λ1(T−s)Iνf1(s,v0(s),u0(s))ds+Nk1∫wk0e−λ1(wk−s)Iνf1(s,v0(s),u0(s))ds+Nk1gk(wk,u0(wk)),w∈(wk,sk],k=0,1,…,m, | (4.1) |
similarly
v0(w)={{∫w0e−λ2(w−s)Iνf2(s,u0(s),v0(s))ds+A22Γ(p2+1)∫η20(η2−s)p2e−λ2(η2−s)Iνf2(s,u0(s),v0(s))ds−A22∫T0e−λ2(T−s)Iνf2(s,u0(s),v0(s))ds+(A22(η2p2E(1,p2+1)(aw)−eλ2T)+eλ2T)v0,w∈(0,s0];{gk(w,v0(w)),w∈(sk−1,wk],k=1,2,…,m;{∫w0e−λ2(w−s)Iνf2(s,u0(s),v0(s))ds+Mk2Γ(p2+1)∫η20(η2−s)p2e−λ2(η2−s)Iνf2(s,u0(s),v0(s))ds−Mk2∫T0e−λ2(T−s)Iνf2(s,u0(s),v0(s))ds+Nk2∫wk0e−λ2(wk−s)Iνf2(s,u0(s),v0(s))ds+Nk2gk(wk,v0(wk)),w∈(wk,sk],k=0,1,…,m, | (4.2) |
and
|(u,v)(w)−(u0,v0)(w)|≤{((1−e−λwλ)+MkΓ(p+1)ηp+1p+1(1−e−ληλ)+Mk(1−e−λTλ)+Nk(1−e−λwkλ))(CuLfu11−Lfu2+CvLfv11−Lfv2)}(Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψ1−Ł). | (4.3) |
for all w∈J, if 0<ν<1 and
Ł=max{Ł1,Ł2}<1, | (4.4) |
where
Ł1=max{((1−e−λwλ)+MkΓ(p+1)ηp+1p+1(1−e−ληλ)+Mk(1−e−λTλ)+Nk(1−e−λwkλ))(CuLfu11−Lfu2+CvLfv11−Lfv2)such thatk=1,2,…,m},Ł2=max{((1−e−λwλ)(wνΓ(ν+1))+MkΓ(p+1)ηp+1p+1(1−e−ληλ)(ηνΓ(ν+1))+Mk(1−e−λTλ)(TνΓ(ν+1))+Nk(1−e−λwkλ)(wνkΓ(ν+1)))(CuLfu11−Lfu2+CvLfv11−Lfv2),such thatk=0,1,…,m}. |
Proof. Consider the space of piecewise continuous functions
V={u,v:J→R such that u,v∈PC(J,R)}, |
endowed with the generalized metric on V, defined by
d((u,v)−(ˉu,ˉv))=inf{Cu+Cv∈[0,+∞]such that|(u,v)(w)−(ˉu,ˉv)(w)|≤Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψfor allw∈J}, | (4.5) |
where
Cu∈{C∈[0,∞] : |(u,v)(w)−(ˉu,ˉv)(w)|≤Cφ(φu(w)+φv(w)) ∀ w∈(wk,sk], k=0,1,…,m} |
and
Cv∈{C∈[0,∞] : |(u,v)(w)−(ˉu,ˉv)(w)|≤(Cu+Cv)ψ ∀ w∈(sk−1,wk], k=1,2,…,m}. |
It is easy to verify that (V,d) is a complete generalized metric space [14].
Define an operator Λ:V→V by
(Λu)(w)={{∫w0e−λ1(w−s)Iνf1(s,v(s),u(s))ds+A11Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνf1(s,v(s),u(s))ds−A11∫T0e−λ1(T−s)Iνf1(s,v(s),u(s))ds+(A11(η1p1E(1,p1+1)(aw)−eλ1T)+eλ1T)u0,w∈(0,s0];{gk(w,u(w)),w∈(sk−1,wk],k=1,2,…,m;{∫w0e−λ1(w−s)Iνf1(s,v(s),u(s))ds+Mk1Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνf1(s,v(s),u(s))ds−Mk1∫T0e−λ1(T−s)Iνf1(s,v(s),u(s))ds+Nk1∫wk0e−λ1(tk−s)Iνf1(s,v(s),u(s))ds+Nk1gk(wk,u(wk)),w∈(wk,sk],k=0,1,…,m, | (4.6) |
for all u belongs to V and w∈J. Obviously, according to (H1), Λ is well defined operator.
Next we shall verify that Λ is strictly contractive on V. Note that according to definition of (V,d), for any μ,υ∈V, it is possible to find C1,C2∈[0,∞] such that
{|u(w)−ˉu(w)|≤{Cuφu(w),w∈(wk,sk],k=0,…,m,Cuψ,w∈(sk−1,wk],k=1,…,m.|v(w)−ˉv(w)|≤{Cvφv(w),w∈(wk,sk],k=0,…,m,Cvψ,w∈(sk−1,wk],k=1,…,m. | (4.7) |
From the definition of Λ in Eq (4.6), (H2), (H3) and (4.7), we obtain that
Case 1: For w∈[0,s0],
|(Λu)(w)−(Λˉu)(w)|=|∫w0e−λ1(w−s)Iνu(s)ds+A11Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνu(s)ds−A11∫T0e−λ1(T−s)Iνu(s)ds+(A11(η1p1E(1,p1+1)(aw)−eλ1T)+eλ1T)u0−∫w0e−λ1(w−s)Iνˉu(s)ds−A11Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνˉu(s)ds+A11∫T0e−λ1(T−s)Iνˉu(s)ds−(A11(η1p1E(1,p1+1)(aw)−eλ1T)+eλ1T)u0| |
≤|∫w0e−λ1(w−s)Iνu(s)ds−∫w0e−λ1(w−s)Iνˉu(s)ds|+|A11Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνu(s)ds−A11Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνˉu(s)ds|+|A11∫T0e−λ1(T−s)Iνˉu(s)ds−A11∫T0e−λ1(T−s)Iνu(s)ds| |
|(Λu)(w)−(Λˉu)(w)|≤∫w0e−λ1(w−s)Iν|u(s)−ˉu(s)|ds+A11∫T0e−λ1(T−s)Iν|ˉu(s)−u(s)|ds+A11Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iν|u(s)−ˉu(s)|ds | (4.8) |
where, we use the following notations for convenience
u(w):=f1(w,v(w),u(w)) |
ˉu(w):=f1(w,v(w),ˉu(w)) |
|u(w)−ˉu(w)|=|f1(w,v(w),u(w))−f1(w,ˉv(w),ˉu(w))|≤Lfu1|v(w)−ˉv(w)|+Lfu2|u(w)−ˉu(w)|, |
which further gives
|u(w)−ˉu(w)|≤Lfu11−Lfu2|v(w)−ˉv(w)|, | (4.9) |
similarly
|v(w)−ˉv(w)|≤Lfv11−Lfv2|u(w)−ˉu(w)|. |
Put (4.9) in (4.8), we obtain
|(Λu)(w)−(Λˉu)(w)|≤Lfu11−Lfu2∫w0e−λ1(w−s)Iν|v(s)−ˉv(s)|ds+A11Lfu11−Lfu2∫T0e−λ1(T−s)Iν|v(s)−ˉv(s)|ds+A11Lfu1Γ(p1+1)1−Lfu2∫η10(η1−s)p1e−λ1(η1−s)Iν|v(s)−ˉv(s)|ds≤CvLfu11−Lfu2∫w0e−λ1(w−s)Iν|φv(s)|ds+CvA11Lfu11−Lfu2∫T0e−λ1(T−s)Iν|φv(s)|ds+CvA11Lfu1Γ(p1+1)1−Lfu2∫η10(η1−s)p1e−λ1(η1−s)Iν|φv(s)|ds≤CvLfu11−Lfu2(∫w0e−λ1(w−s)ds)(∫w0Iν|φv(s)|ds)+CvA11Lfu11−Lfu2(∫T0e−λ1(T−s)ds)(∫T0Iν|φv(s)|ds)+CvA11Lfu1Γ(p1+1)1−Lfu2(∫η10(η1−s)p1e−λ1(η1−s)ds)(∫η10Iν|φv(s)|ds) |
≤CvLfu11−Lfu2(1−e−λ1wλ1)Cφφv(w)+CvA11Lfu11−Lfu2(1−e−λ1Tλ1)Cφφv(w)+CvA11Lfu1(η1p1+1)Γ(p1+1)(1−Lfu2)(p1+1)(1−e−λ1η1λ1)Cφφv(w)≤((1−e−λ1wλ1)+A11(1−e−λ1Tλ1)+A11(η1p1+1)Γ(p1+1)(p1+1)(1−e−λ1η1λ1))×CvLfu1Cφφv(w)1−Lfu2 |
|(Λu)(w)−(Λˉu)(w)|≤((1−e−λ1wλ1)+A11(1−e−λ1Tλ1)+A11(η1p1+1)Γ(p1+1)(p1+1)(1−e−λ1η1λ1))×CvLfu1Cφφv(w)1−Lfu2. | (4.10) |
On the similar way, we can obtain
|(Λv)(w)−(Λˉv)(w)|≤((1−e−λ2wλ2)+A22(1−e−λ2Tλ2)+A22(η2p2+1)Γ(p2+1)(p2+1)(1−e−λ2η2λ2))×CuLfv2Cφφu(w)1−Lfv2. | (4.11) |
Therefore from (4.10) and (4.11), we get the following result
|Λ(u,v)−Λ(ˉu,ˉv)|≤({(1−e−λ1wλ1)+A11(1−e−λ1Tλ1)+A11Γ(p1+1)η1p1+1p1+1(1−e−λ1η1λ1)}Lfu11−Lfu2+{(1−e−λ2wλ2)+A22(1−e−λ2Tλ1)+A22Γ(p2+1)η2p2+1p2+1(1−e−λ2η2λ2)}×Lfv21−Lfv2)(CuCφφu(w)+CvCφφv(w)). |
Suppose that max{λ1,λ2}=λ, max{p1,p2}=p, max{A11,A22}=A and max{η1,η2}=η
|Λ(u,v)−Λ(ˉu,ˉv)|≤((1−e−λwλ)+A(1−e−λTλ)+AΓ(p+1)ηp+1p+1(1−e−ληλ))(Lfu11−Lfu2+Lfv11−Lfv2)(CuCφφu(w)+CvCφφv(w)). |
Case 2: For w∈(sk−1,wk], we have
|(Λu)(w)−(Λˉu)(w)|=|gk(w,u(w))−gk(w,ˉu)|≤Lgk1|u(w)−ˉu(w)|≤Lgk1Cuψ. | (4.12) |
On the similar way, we can obtain
|(Λv)(w)−(Λˉv)(w)|=|gk(w,v(w))−gk(w,ˉv)|≤Lgk2|v(w)−ˉv(w)|≤Lgk2Cvψ. | (4.13) |
Therefore from (4.12) and (4.13), we get the result given as
|Λ(u,v)−Λ(ˉu,ˉv)|≤Lgk1Cuψ+Lgk2Cvψ. |
Case 3: For w∈(wk,sk], and s∈(wk,sk],
|(Λu)(w)−(Λˉu)(w)|=|∫w0e−λ1(w−s)Iνu(s)ds+Mk1Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνu(s)ds−Mk1∫T0e−λ1(T−s)Iνu(s)ds+Nk1∫wk0e−λ1(wk−s)Iνu(s)ds+Nk1gk(wk,u(wk))−Nk1gk(wk,ˉu(wk))−∫w0e−λ1(w−s)Iνf(s,υ(s))ds−Mk1Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνˉu(s)ds+Mk1∫T0e−λ1(T−s)Iνˉu(s)ds−Nk1∫wk0e−λ1(wk−s)Iνˉu(s)ds| |
≤|∫w0e−λ1(w−s)Iνu(s)ds−∫w0e−λ1(w−s)Iνˉu(s)ds|+|Mk1Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνu(s)ds−Mk1Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνˉu(s)ds|+|Mk1∫T0e−λ1(T−s)Iνˉu(s)ds−Mk1∫T0e−λ1(T−s)Iνu(s)ds|+|Nk1∫wk0e−λ1(wk−s)Iνu(s)ds−Nk1∫wk0e−λ1(wk−s)Iνˉu(s)ds|+|Nk1gk(wk,u(wk))−Nk1gk(wk,ˉu(wk))|≤∫w0e−λ1(w−s)Iν|u(s)−ˉu(s)|ds+Mk1Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iν|u(s)−ˉu(s)|ds+Lgk1Cuψ+Mk1∫T0e−λ1(T−s)Iν|ˉu(s)−u(s)|ds+Nk1∫wk0e−λ1(wk−s)Iν|u(s)−ˉu(s)|ds≤Lfu11−Lfu2∫w0e−λ1(w−s)Iν|v(w)−ˉv(w)|ds+Mk1Lfu1Γ(p1+1)(1−Lfu2)∫η10(η1−s)p1e−λ1(η1−s)Iν|v(w)−ˉv(w)|ds+Lgk1Cuψ+Mk1Lfu11−Lfu2∫T0e−λ1(T−s)Iν|v(w)−ˉv(w)|ds+Nk1Lfu11−Lfu2∫wk0e−λ1(wk−s)Iν|v(w)−ˉv(w)|ds |
≤CvLfu11−Lfu2∫w0e−λ1(w−s)Iν|φv(s)|ds+CvMk1Lfu1Γ(p1+1)(1−Lfu2)∫η10(η1−s)p1e−λ1(η1−s)Iν|φv(s)|ds+Lgk1Cuψ+CvMk1Lfu11−Lfu2∫T0e−λ1(T−s)Iν|φv(s)|ds+CvNk1Lfu11−Lfu2∫wk0e−λ1(wk−s)Iν|φv(s)|ds≤CvLfu11−Lfu2(∫w0e−λ1(w−s)ds)(∫w0Iν|φv(s)|ds)+CvMk1Lfu1Γ(p1+1)(1−Lfu2)(∫η10(η1−s)p1e−λ1(η1−s)ds)(∫η10Iν|φv(s)|ds)+Lgk1Cuψ+CvMk1Lfu11−Lfu2(∫T0e−λ1(T−s)ds)(∫T0Iν|φv(s)|ds)+CvNk1Lfu11−Lfu2(∫wk0e−λ1(wk−s)ds)(∫wk0Iν|φv(s)|ds), |
that is,
|(Λu)(w)−(Λˉu)(w)|≤CvLfu11−Lfu2(1−e−λ1wλ1)Cφφv(w)+CvMk1Lfu1Γ(p1+1)(1−Lfu2)η1p1+1p1+1(1−e−λ1η1λ1)Cφφv(w)+CvMk1Lfu11−Lfu2(1−e−λ1Tλ1)Cφφv(w)+CvNk1Lfu11−Lfu2(1−e−λ1wkλ1)Cφφv(w)+Lgk1Cuψ |
|(Λu)(w)−(Λˉu)(w)|≤((1−e−λ1wλ1)+Mk1Γ(p1+1)η1p1+1p1+1(1−e−λ1η1λ1)+Mk1(1−e−λ1Tλ1)+Nk1(1−e−λ1wkλ1))CvLfu11−Lfu2Cφφv(w)+Lgk1Cuψ |
|(Λu)(w)−(Λˉu)(w)|≤((1−e−λ1wλ1)+Mk1Γ(p1+1)η1p1+1p1+1(1−e−λ1η1λ1)+Mk1(1−e−λ1Tλ1)+Nk1(1−e−λ1wkλ1))CvLfu11−Lfu2(Cφφv(w)+Lgk1Cuψ). | (4.14) |
On the similar way, we can obtain
|(Λv)(w)−(Λˉv)(w)|≤((1−e−λ2wλ2)+Mk2Γ(p2+1)η2p2+1p2+1(1−e−λ2η2λ2)+Mk2(1−e−λ2Tλ2)+Nk2(1−e−λ2wkλ2))CvLfv11−Lfv2(Cφφu(w)+Lgk2Cvψ). | (4.15) |
Therefore from (4.14) and (4.15), we get the result given as
|Λ(u,v)−Λ(ˉu,ˉv)|≤((1−e−λ1wλ1)+Mk1Γ(p1+1)η1p1+1p1+1(1−e−λ1η1λ1)+Mk1(1−e−λ1Tλ1)+Nk1(1−e−λ1wkλ1))CvLfu11−Lfu2(Cφφv(w)+Lgk1Cuψ)+((1−e−λ2wλ2)+Mk2Γ(p2+1)η2p2+1p2+1(1−e−λ2η2λ2)+Mk2(1−e−λ2Tλ2)+Nk2(1−e−λ2wkλ2))CvLfv11−Lfv2(Cφφu(w)+Lgk2Cvψ). |
Suppose that max{λ1,λ2}=λ, max{p1,p2}=p, max{MK1,MK2}=MK, max{NK1,NK2}=NK max{Lgk1,Lgk2}=Lgk and max{η1,η2}=η
|Λ(u,v)−Λ(ˉu,ˉv)|≤((1−e−λwλ)+MkΓ(p+1)ηp+1p+1(1−e−ληλ)+Mk(1−e−λTλ)+Nk(1−e−λwkλ))(CuLfu11−Lfu2+CvLfv11−Lfv2)×(Cφ(φu(w)+φv(w))+Lgk(Cu+Cv)ψ). |
Also, for w∈(wk,sk], and s∈(sk−1,wk],
|(Λu)(w)−(Λˉu)(w)|=|∫w0e−λ1(w−s)Iνu(s)ds+Mk1Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνu(s)ds−Mk1∫T0e−λ1(T−s)Iνu(s)ds+Nk1∫wk0e−λ1(wk−s)Iνu(s)ds+Nk1gk(wk,u(wk))−Nk1gk(wk,ˉu(wk))−∫w0e−λ1(w−s)Iνf(s,υ(s))ds−Mk1Γ(p1+1)∫η10(η1−s)p1e−λ1(η1−s)Iνˉu(s)ds+Mk1∫T0e−λ1(T−s)Iνˉu(s)ds−Nk1∫wk0e−λ1(wk−s)Iνˉu(s)ds| |
\begin{eqnarray*} &\leq&\Big|\int_0^we^{-{\lambda_1}(w-s)}I^\nu u(s)ds-\int_0^we^{-{\lambda_1}(w-s)}I^\nu \bar{u}(s)ds\Big|\\ &&+\Big|\frac{{M_{k_1}}}{\Gamma({p_1}+1)}\int_0^{\eta_1}({\eta_1}-s)^{p_1} e^{-{\lambda_1}({\eta_1}-s)}I^\nu u(s)ds-\frac{{M_{k_1}}}{\Gamma({p_1}+1)}\int_0^{\eta_1}({\eta_1}-s)^{p_1} e^{-{\lambda_1}({\eta_1}-s)}I^\nu \bar{u}(s)ds\Big|\\ &&+\Big|{M_{k_1}}\int_0^T e^{-{\lambda_1}(T-s)}I^\nu \bar{u}(s)ds-{M_{k_1}}\int_0^T e^{-{\lambda_1}(T-s)}I^\nu u(s)ds\Big|\\ &&+\Big|{N_{k_1}}\int_0^{w_k} e^{-{\lambda_1}(w_k-s)}I^\nu u(s)ds-{N_{k_1}}\int_0^{w_k} e^{-{\lambda_1}(w_k-s)}I^\nu \bar{u}(s)ds\Big|\\ &&+\Big|{N_{k_1}} g_k(w_k, u(w_k))-{N_{k_1}} g_k(w_k, \bar{u}(w_k))\Big|\\\\ &\leq&\int_0^we^{-{\lambda_1}(w-s)}I^\nu \big|u(s)-\bar{u}(s)\big|ds +\frac{{M_{k_1}}}{\Gamma({p_1}+1)}\int_0^{\eta_1}({\eta_1}-s)^{p_1} e^{-{\lambda_1}({\eta_1}-s)}I^\nu \big|u(s)- \bar{u}(s)\big|ds+L_{gk_1} C_u\psi\\ &&+{M_{k_1}}\int_0^T e^{-{\lambda_1}(T-s)}I^\nu \big|\bar{u}(s)-u(s)\big|ds +{N_{k_1}}\int_0^{w_k} e^{-{\lambda_1}(w_k-s)}I^\nu \big|u(s)-\bar{u}(s)\big|ds\\\\ &\leq&\frac{L_{f_{u_1}}}{1-L_{f_{u_2}}}\int_0^we^{-{\lambda_1}(w-s)}I^\nu |v(w)-\bar{v}(w)|ds +\frac{{M_{k_1}}{L_{f_{u_1}}}}{\Gamma({p_1}+1)({1-L_{f_{u_2}}})}\int_0^{\eta_1}({\eta_1}-s)^{p_1} e^{-{\lambda_1}({\eta_1}-s)}I^\nu |v(w)-\bar{v}(w)|ds\\ &&+\frac{{M_{k_1}} L_{f_{u_1}}}{1-L_{f_{u_2}}}\int_0^T e^{-{\lambda_1}(T-s)}I^\nu |v(w)-\bar{v}(w)|ds +\frac{{N_{k_1}} L_{f_{u_1}}}{1-L_{f_{u_2}}}\int_0^{w_k} e^{-{\lambda_1}(w_k-s)}I^\nu |v(w)-\bar{v}(w)|ds+L_{gk_1} C_u\psi\\\\ &\leq&\frac{C_v\psi L_{f_{u_1}}}{1-L_{f_{u_2}}}\int_0^we^{-{\lambda_1}(w-s)}I^\nu (1)ds +\frac{C_v\psi {M_{k_1}}{L_{f_{u_1}}}}{\Gamma({p_1}+1)({1-L_{f_{u_2}}})}\int_0^{\eta_1}({\eta_1}-s)^{p_1} e^{-{\lambda_1}({\eta_1}-s)}I^\nu (1)ds\\ &&+\frac{C_v\psi {M_{k_1}} L_{f_{u_1}}}{1-L_{f_{u_2}}}\int_0^T e^{-{\lambda_1}(T-s)}I^\nu (1)ds +\frac{C_v\psi {N_{k_1}} L_{f_{u_1}}}{1-L_{f_{u_2}}}\int_0^{w_k} e^{-{\lambda_1}(w_k-s)}I^\nu (1)ds+L_{gk_1} C_u\psi, \end{eqnarray*} |
that is
\begin{eqnarray} |({\Lambda} u)(w)-({\Lambda} \bar{u})(w)|&\leq&\bigg\{\bigg(\frac{1-e^{-{\lambda_1} w}}{{\lambda_1}}\bigg)\bigg(\frac{w^\nu}{\Gamma(\nu+1)}\bigg) +\frac{{M_{k_1}}}{\Gamma(p_1+1)}\frac{{\eta_1}^{p_1+1}}{p_1+1} \bigg(\frac{1-e^{-{\lambda_1} {\eta_1}}}{{\lambda_1}}\bigg)\bigg(\frac{\eta_1^\nu}{\Gamma(\nu+1)}\bigg)\\ &&+{M_{k_1}}\bigg(\frac{1-e^{-{\lambda_1} T}}{{\lambda_1}}\bigg)\bigg(\frac{T^\nu}{\Gamma(\nu+1)}\bigg) +{N_{k_1}} \bigg(\frac{1-e^{-{\lambda_1} w_k}}{{\lambda_1}}\bigg)\bigg(\frac{w_k^\nu}{\Gamma(\nu+1)}\bigg)\bigg\}\\ &&\times\frac{C_v L_{f_{u_1}}}{1-L_{f_{u_2}}}\bigg(C_\varphi \varphi_v(w)+L_{gk_1} C_u\psi\bigg). \end{eqnarray} | (4.16) |
On the similar way, we can obtain
\begin{eqnarray} |({\Lambda} v)(w)-({\Lambda} \bar{v})(w)|&\leq&\bigg\{\bigg(\frac{1-e^{-{\lambda_2} w}}{{\lambda_2}}\bigg)\bigg(\frac{w^\nu}{\Gamma(\nu+1)}\bigg) +\frac{{M_{k_2}}}{\Gamma(p_2+1)}\frac{{\eta_2}^{p_2+1}}{p_2+1} \bigg(\frac{1-e^{-{\lambda_2} {\eta_2}}}{{\lambda_2}}\bigg)\bigg(\frac{\eta_2^\nu}{\Gamma(\nu+1)}\bigg)\\ &&+{M_{k_2}}\bigg(\frac{1-e^{-{\lambda_2} T}}{{\lambda_2}}\bigg)\bigg(\frac{T^\nu}{\Gamma(\nu+1)}\bigg) +{N_{k_2}} \bigg(\frac{1-e^{-{\lambda_2} w_k}}{{\lambda_2}}\bigg)\bigg(\frac{w_k^\nu}{\Gamma(\nu+1)}\bigg)\bigg\}\\ &&\times\frac{C_u L_{f_{v_1}}}{1-L_{f_{v_2}}}\bigg(C_\varphi \varphi_u(w)+L_{gk_2} C_v\psi\bigg). \end{eqnarray} | (4.17) |
Therefore from (4.16) and (4.17), we get the following result
\begin{eqnarray*} |{\Lambda}(u, v)-{\Lambda} (\bar{u}, \bar{v})| &\leq&\bigg\{\bigg(\frac{1-e^{-{\lambda_1} w}}{{\lambda_1}}\bigg)\bigg(\frac{w^\nu}{\Gamma(\nu+1)}\bigg) +\frac{{M_{k_1}}}{\Gamma(p_1+1)}\frac{{\eta_1}^{p_1+1}}{p_1+1} \bigg(\frac{1-e^{-{\lambda_1} {\eta_1}}}{{\lambda_1}}\bigg)\bigg(\frac{\eta_1^\nu}{\Gamma(\nu+1)}\bigg)\\ \nonumber&&+{M_{k_1}}\bigg(\frac{1-e^{-{\lambda_1} T}}{{\lambda_1}}\bigg)\bigg(\frac{T^\nu}{\Gamma(\nu+1)}\bigg) +{N_{k_1}} \bigg(\frac{1-e^{-{\lambda_1} w_k}}{{\lambda_1}}\bigg)\bigg(\frac{w_k^\nu}{\Gamma(\nu+1)}\bigg)\bigg\}\\ &&\times\frac{C_v L_{f_{u_1}}}{1-L_{f_{u_2}}}\bigg(C_\varphi \varphi_v(w)+L_{gk_1} C_u\psi\bigg)\\ && +\bigg\{\bigg(\frac{1-e^{-{\lambda_2} w}}{{\lambda_2}}\bigg)\bigg(\frac{w^\nu}{\Gamma(\nu+1)}\bigg) +\frac{{M_{k_2}}}{\Gamma(p_2+1)}\frac{{\eta_2}^{p_2+1}}{p_2+1} \bigg(\frac{1-e^{-{\lambda_2} {\eta_2}}}{{\lambda_2}}\bigg)\bigg(\frac{\eta_2^\nu}{\Gamma(\nu+1)}\bigg)\\ \nonumber&&+{M_{k_2}}\bigg(\frac{1-e^{-{\lambda_2} T}}{{\lambda_2}}\bigg)\bigg(\frac{T^\nu}{\Gamma(\nu+1)}\bigg) +{N_{k_2}} \bigg(\frac{1-e^{-{\lambda_2} w_k}}{{\lambda_2}}\bigg)\bigg(\frac{w_k^\nu}{\Gamma(\nu+1)}\bigg)\bigg\}\\ &&\times\frac{C_u L_{f_{v_1}}}{1-L_{f_{v_2}}}\bigg(C_\varphi \varphi_u(w)+L_{gk_2} C_v\psi\bigg). \end{eqnarray*} |
Suppose that \max\{\lambda_1, \lambda_2\} = \lambda, \max\{p_1, p_2\} = p, \max\{M_{K_1}, M_{K_2}\} = M_{K}, \max\{N_{K_1}, N_{K_2}\} = N_{K} \max\{L_{gk_1}, L_{gk_2}\} = L_{gk} and \max\{\eta_1, \eta_2\} = \eta
\begin{eqnarray*} |{\Lambda}(u, v)-{\Lambda} (\bar{u}, \bar{v})| &\leq&\Bigg(\bigg(\frac{1-e^{-{\lambda} w}}{{\lambda}}\bigg)\bigg(\frac{w^\nu}{\Gamma(\nu+1)}\bigg) +\frac{{M_{k}}}{\Gamma(p+1)}\frac{{\eta}^{p+1}}{p+1} \bigg(\frac{1-e^{-{\lambda} {\eta}}}{{\lambda}}\bigg)\bigg(\frac{\eta^\nu}{\Gamma(\nu+1)}\bigg)\\ &&+{M_{k}}\bigg(\frac{1-e^{-{\lambda} T}}{{\lambda}}\bigg)\bigg(\frac{T^\nu}{\Gamma(\nu+1)}\bigg)+ {N_{k}}\bigg(\frac{1-e^{-{\lambda} w_k}}{{\lambda}}\bigg)\bigg(\frac{w_k^\nu}{\Gamma(\nu+1)}\bigg)\Bigg)\\ &&\times\bigg(\frac{C_u L_{f_{u_1}}}{1-L_{f_{u_2}}}+\frac{C_v L_{f_{v_1}}}{1-L_{f_{v_2}}}\bigg) \bigg(C_\varphi \big(\varphi_u(w)+\varphi_v(w)\big)+L_{gk} (C_u+C_v)\psi\bigg). \end{eqnarray*} |
From above, we have
\begin{eqnarray*} |\big({\Lambda}(u, v)\big)(w)-\big({\Lambda} (\bar{u}, \bar{v})\big)(w)|\leq Ł\bigg(C_\varphi \big(\varphi_u(w)+\varphi_v(w)\big)+L_{gk} (C_u+C_v)\psi\bigg), \quad w\in [0, \tau], \end{eqnarray*} |
that is,
\begin{eqnarray*} d\big({\Lambda}(u, v), {\Lambda} (\bar{u}, \bar{v})\big)\leq Ł\big(C_\varphi \big(\varphi_u(w)+\varphi_v(w)\big)+L_{gk} (C_u+C_v)\psi\big). \end{eqnarray*} |
Hence, we conclude that
\begin{eqnarray*} d(\Lambda (u, v), \Lambda (\bar{u}, \bar{v}))\leq {Ł}d\big((u, v)-(\bar{u}, \bar{v})\big), \end{eqnarray*} |
for any (u, v), (\bar{u}, \bar{v})\in V , since the condition (4.4) is strictly contraction property is shown.
Now we take (u_0, v_0)\in V . From the piecewise continuous property of (u_0, v_0) and \Lambda (u_0, v_0), it follows that there exists a constant 0 < G_1 < \infty, such that
\begin{eqnarray*} &&|(\Lambda (u_0, v_0))(w)-(u_0, v_0)(w)|\\ &\leq&\big|\int_0^we^{-\lambda(w-s)}I^\nu f(s, (u_0, v_0)(s))ds+\frac{A_{11}}{\Gamma(p+1)}\int_0^\eta(\eta-s)^p e^{-\lambda(\eta-s)}I^\nu f(s, (u_0, v_0)(s))ds\\ &&-A_{11}\int_0^T e^{-\lambda(T-s)}I^\nu f(s, (u_0, v_0)(s))ds +\bigg(A_{11}\big(\eta^p E_{(1, p+1)}(aw)-e^{\lambda T}\big)+e^{\lambda T}\bigg)z_0-(u_0, v_0)(w)\big|, \\ &\leq& G_1 \varphi(w)\leq G_1\big(C_\varphi \big(\varphi_u(w)+\varphi_v(w)\big)+L_{gk} (C_u+C_v)\psi\big), \qquad w\in(0, s_0]. \end{eqnarray*} |
There exists a constant 0 < G_2 < \infty, such that
\begin{eqnarray*} |(\Lambda (u_0, v_0))(w)-(u_0, v_0)(w)|& = &|g_k(w, (u_0, v_0)(w))-(u_0, v_0)(w)|\\ &\leq& G_2\psi\leq G_2\big(C_\varphi \big(\varphi_u(w)+\varphi_v(w)\big)+L_{gk} (C_u+C_v)\psi\big), \end{eqnarray*} |
where w\in (s_{k-1}, w_k], \ k = 1, 2, \dots, m.
Also we can find a constant 0 < G_3 < \infty, such that
\begin{eqnarray*} &&|(\Lambda (u_0, v_0))(w)-(u_0, v_0)(w)|\\ &\leq&\big|\int_0^we^{-\lambda(w-s)}I^\nu f(s, (u_0, v_0)(s))ds+\frac{M_k}{\Gamma(p+1)}\int_0^\eta(\eta-s)^p e^{-\lambda(\eta-s)}I^\nu f(s, (u_0, v_0)(s))ds\\ &&-M_k\int_0^T e^{-\lambda(T-s)}I^\nu f(s, (u_0, v_0)(s))ds +N_k\int_0^{w_k} e^{-\lambda(w_k-s)}I^\nu f(s, (u_0, v_0)(s))ds\\ &&+N_k g_k(w_k, (u_0, v_0)(w_k))-(u_0, v_0)(w)\big|, \\ &\leq& G_3\varphi(w)\leq G_3\big(C_\varphi \big(\varphi_u(w)+\varphi_v(w)\big)+L_{gk} (C_u+C_v)\psi\big), \quad w\in(w_k, s_k], \quad k = 1, 2, \dots, m. \end{eqnarray*} |
Since f, \ (u_k, v_k) and (u_0, v_0) are bounded on J and \big(C_\varphi \big(\varphi_u(w)+\varphi_v(w)\big)+L_{gk} (C_u+C_v)\psi\big) > 0. Thus (4.5) implies that d(\Lambda (u_0, v_0), (u_0, v_0)) < \infty.
By using Banach fixed point theorem, there exists a continuous function u_0, v_0:J\rightarrow \mathbb{R} such that \Lambda^n(u_0, v_0)\rightarrow (u_0, v_0) in (V, d) as n\rightarrow \infty and \Lambda (u_0, v_0) = (u_0, v_0), that is, u_0, \ v_0 satisfies Eqs (4.1) and (4.2) for every w\in J.
Now we show that \{u, v\in V \text{ such that } d((u_0, v_0), (u_0, v_0)) < \infty\} = V. For any u, v\in V, since u, v and u_0, v_0 are bounded on J and \min_{w\in J}\big(C_\varphi \big(\varphi_u(w)+\varphi_v(w)\big)+L_{gk} (C_u+C_v)\psi\big) > 0, there exists a constant 0 < C_{(u, v)} < \infty such that |(u_0, v_0)(w)-(u, v)(w)|\leq C_{(u, v)}\big(C_\varphi \big(\varphi_u(w)+\varphi_v(w)\big)+L_{gk} (C_u+C_v)\psi\big), for any w\in J. Hence, we have d((u_0, v_0), (u, v)) < \infty for all u, v\in V, that is \{(u, v)\in V~~ \text{ such that } ~~d((u_0, v_0), (u, v)) < \infty\} = V . Thus, we determine that u, v are the unique continuous functions with the Eqs (4.1), and (4.2) respectively. From (3.2), (3.4) and (H_4), we can write
\begin{eqnarray*} d((u, v), \Lambda (u_0, v_0))&\leq& \Bigg(\bigg(\frac{1-e^{-{\lambda} w}}{{\lambda}}\bigg) +\frac{{M_{k}}}{\Gamma(p+1)}\frac{{\eta}^{p+1}}{p+1} \bigg(\frac{1-e^{-{\lambda} {\eta}}}{{\lambda}}\bigg)+ {M_{k}}\bigg(\frac{1-e^{-{\lambda} T}}{{\lambda}}\bigg)\\ &&+ {N_{k}}\bigg(\frac{1-e^{-{\lambda} w_k}}{{\lambda}}\bigg)\Bigg)\bigg(\frac{C_u L_{f_{u_1}}}{1-L_{f_{u_2}}}+\frac{C_v L_{f_{v_1}}}{1-L_{f_{v_2}}}\bigg). \end{eqnarray*} |
Summarizing we have
\begin{eqnarray*} d((u_0, v_0), (u, v))&\leq& \frac{d(\Lambda (u, v), (u, v))}{1-Ł}\\ &\leq&\Bigg\{\Bigg(\bigg(\frac{1-e^{-{\lambda} w}}{{\lambda}}\bigg) +\frac{{M_{k}}}{\Gamma(p+1)}\frac{{\eta}^{p+1}}{p+1} \bigg(\frac{1-e^{-{\lambda} {\eta}}}{{\lambda}}\bigg)+ {M_{k}}\bigg(\frac{1-e^{-{\lambda} T}}{{\lambda}}\bigg)\\ &&+ {N_{k}}\bigg(\frac{1-e^{-{\lambda} w_k}}{{\lambda}}\bigg)\Bigg)\bigg(\frac{C_u L_{f_{u_1}}}{1-L_{f_{u_2}}}+\frac{C_v L_{f_{v_1}}}{1-L_{f_{v_2}}}\bigg)\Bigg\}\bigg(\frac{1}{1-Ł}\bigg). \end{eqnarray*} |
This shows that (4.19) is true for w\in J .
Finally we give an example to illustrate our main result.
Example 4.4.
\begin{equation} \left\{\begin{split}& \left\{\begin{split}&{^c}\mathcal{D}_{0, w}^{\frac{1}{2}}\big(\mathcal{D}+2\big)u(w) = \frac{|u(w)|}{8+e^w+w^2}, \qquad w\in(0, 1]\cup(2, 3], \\& u(w) = \frac{u(w)}{(3+w^2)(1+|u(w)|)}, \qquad w\in(1, 2], \\& u(0) = \frac{\sqrt2}{3}, \qquad u(1) = \frac{5}{6}\int_0^\frac{1}{4}\frac{(\frac{1}{4}-s)}{\Gamma\frac{4}{3}}ds\qquad 0 < \eta < 1\end{split}\right.\\& \left\{\begin{split}&{^c}\mathcal{D}_{0, w}^{\frac{1}{2}}\big(\mathcal{D}+2\big)v(w) = \frac{|v(w)|}{8+e^w+w^2}, \qquad w\in(0, 1]\cup(2, 3], \\& v(w) = \frac{v(w)}{(3+w^2)(1+|v(w)|)}, \qquad w\in(1, 2], \\& v(0) = \frac{\sqrt2}{3}, \qquad v(1) = \frac{5}{6}\int_0^\frac{1}{4}\frac{(\frac{1}{4}-s)}{\Gamma\frac{4}{3}}ds\qquad 0 < \eta < 1\end{split}\right. \end{split}\right. \end{equation} | (4.18) |
and
\begin{equation*} \left\{\begin{split}& \left\{\begin{split}&\Bigg|{^c}\mathcal{D}_{0, w}^{\frac{1}{2}}\big(\mathcal{D}+2\big)u(w)-\frac{|u(w)|}{8+e^w+w^2}\Bigg|\leq e^w, \qquad w\in(0, 1]\cup(2, 3], \\& \bigg|u(w)-\frac{u(w)}{(3+w^2)(1+|u(w)|)}\bigg|\leq 1, \qquad w\in(1, 2]. \end{split}\right.\\& \left\{\begin{split}&\Bigg|{^c}\mathcal{D}_{0, w}^{\frac{1}{2}}\big(\mathcal{D}+2\big)v(w)-\frac{|v(w)|}{8+e^w+w^2}\Bigg|\leq e^w, \qquad w\in(0, 1]\cup(2, 3], \\& \bigg|v(w)-\frac{v(w)}{(3+w^2)(1+|v(w)|)}\bigg|\leq 1, \qquad w\in(1, 2].\end{split}\right. \end{split}\right. \end{equation*} |
Let J = [0, 3] , \mu = \nu = \frac{1}{2} , p_1 = p_2 = p = \frac{4}{3} , \eta_1 = \eta_2 = \eta = \frac{1}{4} and 0 = w_0 < s_0 = 1 < w_1 = 2 < s_1 = \tau = T = 3. Denote f_1(w, u(w)) = f_2(w, v(w)) = \frac{|z(w)|}{8+e^w+w^2} with L_{f_{u_1}} = L_{f_{u_2}} = = L_{f_{v_1}} = L_{f_{v_2}} = \frac{1}{4} for w\in (0, 1]\cup(2, 3] and g_k(w, u(w)) = \frac{u(w)}{(3+w^2)(1+|u(w)|)} , g_k(w, v(w)) = \frac{v(w)}{(3+w^2)(1+|v(w)|)} with L_{g_k} = 1 for w\in(1, 2]. Putting Ł_{f} = \frac{1}{4}, \varphi_u(w) = \varphi_v(w) = e^w and C_\varphi = C_u = C_v = 1, we have \int_0^w I^{\frac{1}{2}}e^sds\leq e^w and L_1\approx 0.1012 , L_2\approx 0.9501 , so L\approx0.9501 < 1.
By Theorem 4.3, there exists a unique solution (u, v):[0, 3]\rightarrow \mathbb{R} such that
\begin{equation*} \left\{\begin{split}& u_0(w) = \left\{\begin{split}& \int_0^we^{-\lambda(w-s)}I^\nu \frac{|u_0(w)|}{8+e^w+w^2}ds+\frac{A_{11}}{\Gamma(p_1+1)}\int_0^{\eta_1}(\eta_1-s)^{p_1} e^{-\lambda_1(\eta_1-s)}I^\nu \frac{|u_0(w)|}{8+e^w+w^2}ds\\& -A_{11}\int_0^T e^{-\lambda_1(T-s)}I^\nu \frac{|u_0(w)|}{8+e^w+w^2}ds +\bigg(A_{11}\big(\eta_1^{p_1} E_{(1, p_1+1)}(aw)-e^{\lambda_1 T}\big)+e^{\lambda_1 T}\bigg)u_0, \ w\in[0, 1]\\& \frac{u_0(w)}{(3+w^2)(1+|u_0(w)|)}, \quad w\in(1, 2], \quad k = 0, 1, \dots, m, \\& \int_0^we^{-\lambda_1(w-s)}I^\nu \frac{|u_0(w)|}{8+e^w+w^2}ds+\frac{M_{k_1}}{\Gamma(p_1+1)}\int_0^{\eta_1}(\eta_1-s)^{p_1} e^{-\lambda_1(\eta_1-s)}I^\nu \frac{|u_0(w)|}{8+e^w+w^2}ds\\& -M_{k_1}\int_0^T e^{-\lambda_1(T-s)}I^\nu \frac{|u_0(w)|}{8+e^w+w^2}ds +N_{k_1}\int_0^{w_k} e^{-\lambda_1(w_k-s)}I^\nu \frac{|u_0(w)|}{8+e^w+w^2}ds\\& +N_{k_1}\frac{u_0(w)}{(3+w^2)(1+|u_0(w)|)}, \quad w\in(2, 3], \end{split}\right.\\& v_0(w) = \left\{\begin{split}& \int_0^we^{-\lambda_2(w-s)}I^\mu \frac{|v_0(w)|}{8+e^w+w^2}ds+\frac{A_{22}}{\Gamma(p_2+1)}\int_0^{\eta_2}(\eta_2-s)^{p_2} e^{-\lambda_2(\eta_2-s)}I^\mu \frac{|v_0(w)|}{8+e^w+w^2}ds\\& -A_{22}\int_0^T e^{-\lambda_2(T-s)}I^\mu \frac{|v_0(w)|}{8+e^w+w^2}ds +\bigg(A_{22}\big(\eta_2^{p_2} E_{(1, p_2+1)}(aw)-e^{\lambda_2 T}\big)+e^{\lambda_2 T}\bigg)v_0, \ w\in[0, 1]\\& \frac{v_0(w)}{(3+w^2)(1+|v_0(w)|)}, \quad w\in(1, 2], \quad k = 0, 1, \dots, m, \\& \int_0^we^{-\lambda_2(w-s)}I^\mu \frac{|v_0(w)|}{8+e^w+w^2}ds+\frac{M_{k_2}}{\Gamma(p_2+1)}\int_0^{\eta_2}(\eta_2-s)^{p_2} e^{-\lambda_2(\eta_2-s)}I^\mu \frac{|v_0(w)|}{8+e^w+w^2}ds\\& -M_{k_2}\int_0^T e^{-\lambda_2(T-s)}I^\mu \frac{|v_0(w)|}{8+e^w+w^2}ds +N_{k_2}\int_0^{w_k} e^{-\lambda_2(w_k-s)}I^\mu \frac{|v_0(w)|}{8+e^w+w^2}ds\\& +N_{k_2}\frac{v_0(w)}{(3+w^2)(1+|v_0(w)|)}, \quad w\in(2, 3], \end{split}\right. \end{split}\right. \end{equation*} |
\begin{eqnarray*} \label{eq8.1} &&\nonumber\big|(u, v)(w)-(u_0, v_0)(w)\big|\\ \nonumber&\leq&\Bigg\{\Bigg(\bigg(\frac{1-e^{-{\lambda} w}}{{\lambda}}\bigg) +\frac{{M_{k}}}{\Gamma(p+1)}\frac{{\eta}^{p+1}}{p+1} \bigg(\frac{1-e^{-{\lambda} {\eta}}}{{\lambda}}\bigg)+ {M_{k}}\bigg(\frac{1-e^{-{\lambda} T}}{{\lambda}}\bigg)\\ &&+ {N_{k}}\bigg(\frac{1-e^{-{\lambda} w_k}}{{\lambda}}\bigg)\Bigg)\bigg(\frac{C_u L_{f_{u_1}}}{1-L_{f_{u_2}}}+\frac{C_v L_{f_{v_1}}}{1-L_{f_{v_2}}}\bigg)\Bigg\}\bigg(\frac{C_\varphi \big(\varphi_u(w)+\varphi_v(w)\big)+L_{gk} (C_u+C_v)\psi}{1-Ł}\bigg). \end{eqnarray*} |
putting maximum of w = w_k = T = \eta = \tau
\big|(u, v)(w)-(u_0, v_0)(w)\big|\\ \leq \Bigg\{\Bigg(\bigg(\frac{1-e^{-{\lambda} \tau}}{{\lambda}}\bigg) +\frac{{M_{k}}}{\Gamma(p+1)}\frac{{\eta}^{p+1}}{p+1} \bigg(\frac{1-e^{-{\lambda} {\tau}}}{{\lambda}}\bigg)+ {M_{k}}\bigg(\frac{1-e^{-{\lambda} \tau}}{{\lambda}}\bigg)\\ + {N_{k}}\bigg(\frac{1-e^{-{\lambda} \tau}}{{\lambda}}\bigg)\Bigg)\bigg(\frac{C_u L_{f_{u_1}}}{1-L_{f_{u_2}}}+\frac{C_v L_{f_{v_1}}}{1-L_{f_{v_2}}}\bigg)\Bigg\}\bigg(\frac{C_\varphi \big(\varphi_u(w)+\varphi_v(w)\big)+L_{gk} (C_u+C_v)\psi}{1-Ł}\bigg). |
Now putting the values, we get
\begin{eqnarray*} \big|(u, v)(w)-(u_0, v_0)(w)\big|&\leq& 0.8840\bigg(\frac{2e^w+2}{1-0.9501}\bigg), \end{eqnarray*} |
\begin{eqnarray*} \big|(u, v)(w)-(u_0, v_0)(w)\big|&\leq& 0.8840\bigg(\frac{2(e^w+1)}{1-0.9501}\bigg), \end{eqnarray*} |
\begin{eqnarray*} \big|(u, v)(w)-(u_0, v_0)(w)\big|&\leq& 35.4308(e^w+1), \qquad \text{for all} \quad w\in [0, 3]. \end{eqnarray*} |
Thus the problem (4.18) is Ulam-Hyers-Rassias stability.
In this article, we considered switched coupled system of nonlinear impulsive Langevin equations with mixed derivatives and Some sufficient conditions are constructed to observe the existence, uniqueness and generalized Ulam-Hyers-Rassias stability. After introduction we built a uniform structure to originate a formula of solutions for our proposed model. We implemented the new concept of generalized Ulam-Hyers-Rassias stability to our proposed model, finally we solved a particular example for our proposed model.
The authors declare that they have no competing interest regarding this research work.
[1] |
R. P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973–1033. doi: 10.1007/s10440-008-9356-6
![]() |
[2] |
B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal.: Real World Appl., 13 (2012), 599–602. doi: 10.1016/j.nonrwa.2011.07.052
![]() |
[3] |
Z. Ali, A. Zada, K. Shah, Ulam satbility to a toppled systems of nonlinear implicit fractional order boundary value problem, Bound. Value Probl., 2018 (2018), 1–16. doi: 10.1186/s13661-017-0918-2
![]() |
[4] |
Z. Ali, A. Zada, K. Shah, On Ulam stability for a coupled systems of nonlinear implicit fractional differential equations, Bull. Malays. Math. Sci. Soc., 42 (2019), 2681–2699. doi: 10.1007/s40840-018-0625-x
![]() |
[5] |
Z. Bai, On positive solutions of a non-local fractional boundary value problem, Nonlinear Anal.: Theory Methods Appl., 72 (2010), 916–924. doi: 10.1016/j.na.2009.07.033
![]() |
[6] |
D. Baleanu, H. Khan, H. Jafari, R. A. Khan, M. Alipure, On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions, Adv. Differ. Equ., 2015 (2015), 1–14. doi: 10.1186/s13662-014-0331-4
![]() |
[7] |
M. Benchohra, J. R. Graef, S. Hamani, Existence results for boundary value problems with nonlinear fractional differential equations, Appl. Anal., 87 (2008), 851–863. doi: 10.1080/00036810802307579
![]() |
[8] | M. Benchohra, D. Seba, Impulsive fractional differential equations in Banach spaces, Electron. J. Qual. Theory Differ. Equ., 2009 (2009), 1–14. |
[9] |
J. B. Diaz, B. Margolis, A fixesd point theorem of the alternative, for contractions on a generalized complete matric space, Bull. Am. Math. Soc., 74 (1968), 305–309. doi: 10.1090/S0002-9904-1968-11933-0
![]() |
[10] |
K. S. Fa, Generalized Langevin equation with fractional derivative and long-time correlation function, Phys. Rev. E, 73 (2006), 061104. doi: 10.1103/PhysRevE.73.061104
![]() |
[11] |
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. doi: 10.1073/pnas.27.4.222
![]() |
[12] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equation, Elsevier, 2006. |
[13] |
N. Kosmatov, Initial value problems of fractional order with fractional impulsive conditions, Results Math., 63 (2013), 1289–1310. doi: 10.1007/s00025-012-0269-3
![]() |
[14] | V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009. |
[15] |
S. C. Lim, M. Li, L. P. Teo, Langevin equation with two fractional orders, Phys. Lett. A., 372 (2008), 6309–6320. doi: 10.1016/j.physleta.2008.08.045
![]() |
[16] | F. Mainardi, P. Pironi, The fractional Langevin equation: Brownian motion revisited, Extracta Math., 11 (1996), 140–154. |
[17] | I. Podlubny, Fractional differential equations, Academic Press, 1999. |
[18] |
T. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. doi: 10.1090/S0002-9939-1978-0507327-1
![]() |
[19] |
R. Rizwan, Existence theory and stability snalysis of fractional Langevin equation, Int. J. Nonlinear Sci. Numer. Simul., 20 (2019), 833–848. doi: 10.1515/ijnsns-2019-0053
![]() |
[20] |
R. Rizwan, A. Zada, Existence theory and Ulam's stabilities of fractional Langevin equation, Qual. Theory Dyn. Syst., 20 (2021), 1–17. doi: 10.1007/s12346-020-00443-9
![]() |
[21] |
R. Rizwan, A. Zada, M. Ahmad, S. O. Shah, H. Waheed, Existence theory and stability analysis of switched coupled system of nonlinear implicit impulsive Langevin equations with mixed derivatives, Math. Meth. Appl. Sci., 44 (2021), 1–23. doi: 10.1002/mma.6548
![]() |
[22] | R. Rizwan, A. Zada, H. Waheed, U. Riaz, Switched coupled system of nonlinear impulsive Langevin equations involving Hilfer fractional-order derivatives, Int. J. Nonlinear Sci. Numer. Simul., 2021. Available from: https://doi.org/10.1515/ijnsns-2020-0240. |
[23] |
R. Rizwan, A. Zada, X. Wang, Stability analysis of non linear implicit fractional Langevin equation with non-instantaneous impulses, Adv. Differ. Equ., 2019 (2019), 1–31. doi: 10.1186/s13662-018-1939-6
![]() |
[24] |
R. Rizwan, A. Zada, Nonlinear impulsive Langevin equation with mixed derivatives, Math. Meth. App. Sci., 43 (2020), 427–442. doi: 10.1002/mma.5902
![]() |
[25] | I. A. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babes Bolyai Math., 54 (2009), 125–133. |
[26] |
S. O. Shah, A. Zada, A. E. Hamza, Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time scales, Qual. Theory Dyn. Syst., 18 (2019), 825–840. doi: 10.1007/s12346-019-00315-x
![]() |
[27] | V. E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media, Springer, HEP, 2011. |
[28] | S. M. Ulam, A collection of mathematical problems, New York: Interscience Publisher, 1960. |
[29] |
J. Wang, M. Feckan, Y. Zhou, Ulam's stype stability of impulsive ordinary differential equation, J. Math. Anal. Appl., 395 (2012), 258–264. doi: 10.1016/j.jmaa.2012.05.040
![]() |
[30] |
J. Wang, Y. Zhou, M. Feckan, Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl., 64 (2012), 3389–3405. doi: 10.1016/j.camwa.2012.02.021
![]() |
[31] | J. Wang, Y. Zhou, Z. Lin, On a new class of impulsive fractional differential equations, Appl. Math. Comput., 242 (2014), 649–657. |
[32] |
X. Wang, R. Rizwan, J. R. Lee, A. Zada, S. O. Shah, Existence, uniqueness and Ulam stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives, AIMS Math., 6 (2021), 4915–4929. doi: 10.3934/math.2021288
![]() |
[33] |
L. Xu, X. Chu, H. Hu, Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses, Appl. Math. Lett., 99 (2020), 106000. doi: 10.1016/j.aml.2019.106000
![]() |
[34] |
L. Xu, H. Hu, F. Qin, Ultimate boundedness of impulsive fractional differential equations, Appl. Math. Lett., 62 (2016), 110–117. doi: 10.1016/j.aml.2016.06.011
![]() |
[35] |
L. Xu, J. Li, S. S. Ge, Impulsive stabilization of fractional differential systems, ISA Trans., 70 (2017), 125–131. doi: 10.1016/j.isatra.2017.06.009
![]() |
[36] |
A. Zada, S. Ali, Stability analysis of multi-point boundary value problem for sequential fractional differential equations with non-instantaneous impulses, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 763–774 doi: 10.1515/ijnsns-2018-0040
![]() |
[37] |
A. Zada, S. Ali, Y. Li, Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition, Adv. Differ. Equ., 2017 (2017), 1–26. doi: 10.1186/s13662-016-1057-2
![]() |
[38] |
A. Zada, W. Ali, S. Farina, Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Methods Appl. Sci., 40 (2017), 5502–5514. doi: 10.1002/mma.4405
![]() |
[39] | A. Zada, W. Ali, C. Park, Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Gr\ddot{o}nwall-Bellman-Bihari's type, Appl. Math. Comput., 350 (2019), 60–65. |
[40] |
A. Zada, R. Rizwan, J. Xu, Z. Fu, On implicit impulsive Langevin equation involving mixed order derivatives, Adv. Differ. Equ., 2019 (2019), 1–26. doi: 10.1186/s13662-018-1939-6
![]() |
[41] | A. Zada, S. O. Shah, Hyers-Ulam stability of first-order non-linear delay dierential equations with fractional integrable impulses, Hacettepe J. Math. Stat., 47 (2018), 1196–1205. |
[42] | A. Zada, O. Shah, R. Shah, Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems, Appl. Math. Comput., 271 (2015), 512–518. |
1. | Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada, Qualitative analysis of nonlinear impulse langevin equation with helfer fractional order derivatives, 2022, 7, 2473-6988, 6204, 10.3934/math.2022345 | |
2. | Syed Omar Shah, Rizwan Rizwan, Yonghui Xia, Akbar Zada, Existence, uniqueness, and stability analysis of fractional Langevin equations with anti‐periodic boundary conditions, 2023, 46, 0170-4214, 17941, 10.1002/mma.9539 | |
3. | M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid, 2025, Chapter 17, 978-3-031-58640-8, 253, 10.1007/978-3-031-58641-5_17 |