In this paper, we compute sub-Riemannian limits of Gaussian curvature for a Euclidean $ C^2 $-smooth surface in the generalized affine group and the generalized BCV spaces away from characteristic points and signed geodesic curvature for Euclidean $ C^2 $-smooth curves on surfaces. We get Gauss-Bonnet theorems in the generalized affine group and the generalized BCV spaces.
Citation: Tong Wu, Yong Wang. Gauss-Bonnet theorems in the generalized affine group and the generalized BCV spaces[J]. AIMS Mathematics, 2021, 6(11): 11655-11685. doi: 10.3934/math.2021678
In this paper, we compute sub-Riemannian limits of Gaussian curvature for a Euclidean $ C^2 $-smooth surface in the generalized affine group and the generalized BCV spaces away from characteristic points and signed geodesic curvature for Euclidean $ C^2 $-smooth curves on surfaces. We get Gauss-Bonnet theorems in the generalized affine group and the generalized BCV spaces.
[1] | Z. Balogh, J. Tyson, E. Vecchi, Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group, Math. Z., 287 (2017), 1–38. doi: 10.1007/s00209-016-1815-6 |
[2] | Z. Balogh, J. Tyson, E. Vecchi, Correction to: Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group, Math. Z., 296 (2020), 875–876. doi: 10.1007/s00209-019-02234-8 |
[3] | L. Capogna, D. Danielli, S. Pauls, J. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Basel: Birkhauser Verlag, 2007. |
[4] | M. Diniz, M. Veloso, Gauss-Bonnet theorem in sub-Riemannian Heisenberg space, J. Dyn. Control Syst., 22 (2016), 807–820. doi: 10.1007/s10883-016-9338-3 |
[5] | M. Veloso, Rotation surfaces of constant Gaussian curvature as Riemannian approximation scheme in sub-Riemannian Heisenberg space $\mathbb{H}^1$, arXiv: 1909.13341. |
[6] | Y. Wang, S. Wei, Gauss-Bonnet theorems in the affine group and the group of rigid motions of the Minkowski plane, Sci. China Math., 2020, https://doi.org/10.1007/s11425-019-1667-5. |
[7] | Y. Wang, S. Wei, Gauss-Bonnet theorems in the BCV spaces and the twisted Heisenberg Group, Results Math., 75 (2020), 126. doi: 10.1007/s00025-020-01254-9 |