Research article Special Issues

Rotational periodic solutions for fractional iterative systems

  • Received: 01 June 2021 Accepted: 26 July 2021 Published: 04 August 2021
  • MSC : 34C25, 34B16, 37J40

  • In this paper, we devoted to deal with the rotational periodic problem of some fractional iterative systems in the sense of Caputo fractional derivative. Under one sided-Lipschtiz condition on nonlinear term, the existence and uniqueness of solution for a fractional iterative equation is proved by applying the Leray-Schauder fixed point theorem and topological degree theory. Furthermore, the well posedness for a nonlinear control system with iteration term and a multivalued disturbance is established by using set-valued theory. The existence of solutions for a iterative neural network system is demonstrated at the end.

    Citation: Rui Wu, Yi Cheng, Ravi P. Agarwal. Rotational periodic solutions for fractional iterative systems[J]. AIMS Mathematics, 2021, 6(10): 11233-11245. doi: 10.3934/math.2021651

    Related Papers:

  • In this paper, we devoted to deal with the rotational periodic problem of some fractional iterative systems in the sense of Caputo fractional derivative. Under one sided-Lipschtiz condition on nonlinear term, the existence and uniqueness of solution for a fractional iterative equation is proved by applying the Leray-Schauder fixed point theorem and topological degree theory. Furthermore, the well posedness for a nonlinear control system with iteration term and a multivalued disturbance is established by using set-valued theory. The existence of solutions for a iterative neural network system is demonstrated at the end.



    加载中


    [1] V. R. Petuhov, On a boundary value problem, Tr. Sem. Teor. Differ. Uravn. Otklon, 3 (1965), 252-255.
    [2] E. R. Kaufmann, Existence and uniqueness of solutions for a second-order iterative boundary-value problem, Electron. J. Differ. Equations, 2018 (2018), 342-358.
    [3] H. Y. Zhao, J. Liu, Periodic solutions of an iterative functional differential equation with variable coefficients, Math. Methods Appl. Sci., 40 (2016), 286-292.
    [4] A. Bouakkaz, A. Ardjouni, A. Djoudi, Periodic solutions for a second order nonlinear functional differential equation with iterative terms by schauder's fixed point theorem, Acta Math. Univ. Comenianae, 87 (2018), 223-235.
    [5] B. W. Liu, C. Tunc, Pseudo almost periodic solutions for a class of first order differential iterative equations, Appl. Math. Lett., 40 (2015), 29-34. doi: 10.1016/j.aml.2014.08.019
    [6] M. Fečkan, J. R. Wang, H. Y. Zhao, Maximal and minimal nondecreasing bounded solutions of iterative functional differential equations, Appl. Math. Lett., 113 (2020), 106886.
    [7] R. W. Ibrahim, A. Kılıçman, F. H. Damag, Existence and uniqueness for a class of iterative fractional differential equations, Adv. Differ. Equations, 2015 (2015), 78. doi: 10.1186/s13662-015-0421-y
    [8] X. J. Chang, Y. Li, Rotating periodic solutions of second order dissipative dynamical systems, Discrete Contin. Dyn. Syst., 36 (2016), 643-652.
    [9] X. J. Chang, Y. Li, Rotating periodic solutions for second-order dynamical systems with singularities of repulsive type, Math. Methods Appl. Sci., 40 (2017), 3092-3099. doi: 10.1002/mma.4223
    [10] G. G. Liu, Y. Li, X. Yang, Rotating periodic solutions for asymptotically linear second-order hamiltonian systems with resonance at infinity, Math. Methods Appl. Sci., 40 (2017), 7139-7150. doi: 10.1002/mma.4518
    [11] G. G. Liu, Y. Li, X. Yang, Rotating periodic solutions for super-linear second order hamiltonian systems, Appl. Math. Lett., 79 (2018), 73-79. doi: 10.1016/j.aml.2017.11.024
    [12] M. J. Clifford, S. R. Bishop, Rotating periodic orbits of the parametrically excited pendulum, Phys. Lett. A, 201 (1995), 191-196. doi: 10.1016/0375-9601(95)00255-2
    [13] D. Beli, J. M. Mencik, P. B. Silva, J. R. F. Arruda, A projection-based model reduction strategy for the wave and vibration analysis of rotating periodic structures, Comput. Mech., 62 (2018), 1511-1528. doi: 10.1007/s00466-018-1576-7
    [14] N. S. Papageorgiou, C. Vetro, F. Vetro, Nonlinear multivalued duffing systems, J. Math. Anal. Appl., 468 (2018), 376-390. doi: 10.1016/j.jmaa.2018.08.024
    [15] L. Gasiński, N. S. Papageorgiou, Nonlinear multivalued periodic systems, J. Dyn. Control Syst., 25 (2019), 219-243. doi: 10.1007/s10883-018-9408-9
    [16] K. Song, H. Q. Wu, L. F. Wang, Luré-postnikov lyapunov function approach to global robust Mittag-Leffler stability of fractional-order neural networks, Adv. Differ. Equations, 2017 (2017), 232. doi: 10.1186/s13662-017-1298-8
    [17] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1998.
    [18] V. E. Tarasov, Fractional dynamics: Applications of fractional calculus to dynamics of particles, fields and media, Springer Science & Business Media, 2011.
    [19] V. V. Uchaikin, Fractional derivatives for physicists and engineers, Springer, 2013.
    [20] H. P. Ye, J. M. Gao, Y. S. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081. doi: 10.1016/j.jmaa.2006.05.061
    [21] H. Q. Wu, L. F. Wang, Y. Wang, P. F. Niu, B. L. Fang, Global Mittag-Leffler projective synchronization for fractional-order neural networks: An LMI-based approach, Adv. Differ. Equations, 2016 (2016), 132. doi: 10.1186/s13662-016-0857-8
    [22] J. J. Chen, Z. J. Zeng, P. Jiang, Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks, Neural Networks, 51 (2014), 1-8. doi: 10.1016/j.neunet.2013.11.016
    [23] A. Granas, J. Dugundji, Fixed point theory, Springer, 2003.
    [24] K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Springer Science & Business Media, 2010.
    [25] Y. Cheng, F. Z. Cong, H. T. Hua, Anti-periodic solutions for nonlinear evolution equations, Adv. Differ. Equations, 2012 (2012), 165. doi: 10.1186/1687-1847-2012-165
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1976) PDF downloads(123) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog