The Variable-order fractional operators (VO-FO) have considered mathematically formalized recently. The opportunity of verbalizing evolutionary leading equations has led to the effective application to the modeling of composite physical problems ranging from mechanics to transport processes, to control theory, to biology. In this paper, find the closed form traveling wave solutions for nonlinear variable-order fractional evolution equations reveal in all fields of sciences and engineering. The variable-order evolution equation is an impressive mathematical model describes the complex dynamical problems. Here, we discuss space-time variable-order fractional modified equal width equation (MEWE) and used exp (−ϕ(ξ)) method in the sense of Caputo fractional-order derivative. Based on variable order derivative and traveling wave transformation convert equation into nonlinear ordinary differential equation (ODE). As a result, constructed new exact solutions for nonlinear space-time variable-order fractional MEWE. It clearly shows that the nonlinear variable-order evolution equations are somewhat natural and efficient in mathematical physics.
Citation: Umair Ali, Sanaullah Mastoi, Wan Ainun Mior Othman, Mostafa M. A Khater, Muhammad Sohail. Computation of traveling wave solution for nonlinear variable-order fractional model of modified equal width equation[J]. AIMS Mathematics, 2021, 6(9): 10055-10069. doi: 10.3934/math.2021584
[1] | Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018 |
[2] | Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112 |
[3] | Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704 |
[4] | Pinghua Yang, Caixia Yang . The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative. AIMS Mathematics, 2023, 8(5): 11837-11850. doi: 10.3934/math.2023599 |
[5] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[6] | Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013 |
[7] | Ravi Agarwal, Snezhana Hristova, Donal O'Regan . Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS Mathematics, 2022, 7(2): 2973-2988. doi: 10.3934/math.2022164 |
[8] | Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593 |
[9] | Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155 |
[10] | Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami . Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense. AIMS Mathematics, 2024, 9(4): 9926-9950. doi: 10.3934/math.2024486 |
The Variable-order fractional operators (VO-FO) have considered mathematically formalized recently. The opportunity of verbalizing evolutionary leading equations has led to the effective application to the modeling of composite physical problems ranging from mechanics to transport processes, to control theory, to biology. In this paper, find the closed form traveling wave solutions for nonlinear variable-order fractional evolution equations reveal in all fields of sciences and engineering. The variable-order evolution equation is an impressive mathematical model describes the complex dynamical problems. Here, we discuss space-time variable-order fractional modified equal width equation (MEWE) and used exp (−ϕ(ξ)) method in the sense of Caputo fractional-order derivative. Based on variable order derivative and traveling wave transformation convert equation into nonlinear ordinary differential equation (ODE). As a result, constructed new exact solutions for nonlinear space-time variable-order fractional MEWE. It clearly shows that the nonlinear variable-order evolution equations are somewhat natural and efficient in mathematical physics.
Segre [1] made a pioneering attempt in the development of special algebra. He conceptualized the commutative generalization of complex numbers, bicomplex numbers, tricomplex numbers, etc. as elements of an infinite set of algebras. Subsequently, in the 1930s, researchers contributed in this area [2,3,4]. The next fifty years failed to witness any advancement in this field. Later, Price [5] developed the bicomplex algebra and function theory. Recent works in this subject [6,7] find some significant applications in different fields of mathematical sciences as well as other branches of science and technology. An impressive body of work has been developed by a number of researchers. Among these works, an important work on elementary functions of bicomplex numbers has been done by Luna-Elizaarrarˊas et al. [8]. Choi et al. [9] proved some common fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces. Jebril [10] proved some common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued metric spaces. In 2017, Dhivya and Marudai [11] introduced the concept of a complex partial metric space, suggested a plan to expand the results and proved some common fixed point theorems under a rational expression contraction condition. In 2019, Mani and Mishra [12] proved coupled fixed point theorems on a complex partial metric space using different types of contractive conditions. In 2021, Gunaseelan et al. [13] proved common fixed point theorems on a complex partial metric space. In 2021, Beg et al.[14] proved fixed point theorems on a bicomplex valued metric space. In 2021, Zhaohui et al. [15] proved common fixed theorems on a bicomplex partial metric space. In this paper, we prove coupled fixed point theorems on a bicomplex partial metric space. An example is provided to verify the effectiveness and applicability of our main results. An application of these results to Fredholm integral equations and nonlinear integral equations is given.
Throughout this paper, we denote the set of real, complex and bicomplex numbers, respectively, as C0, C1 and C2. Segre [1] defined the complex number as follows:
z=ϑ1+ϑ2i1, |
where ϑ1,ϑ2∈C0, i21=−1. We denote the set ofcomplex numbers C1 as:
C1={z:z=ϑ1+ϑ2i1,ϑ1,ϑ2∈C0}. |
Let z∈C1; then, |z|=(ϑ21+ϑ22)12. The norm ||.|| of an element in C1 is the positive real valued function ||.||:C1→C+0 defined by
||z||=(ϑ21+ϑ22)12. |
Segre [1] defined the bicomplex number as follows:
ς=ϑ1+ϑ2i1+ϑ3i2+ϑ4i1i2, |
where ϑ1,ϑ2,ϑ3,ϑ4∈C0, and independent units i1,i2 are such that i21=i22=−1 and i1i2=i2i1. We denote the set of bicomplex numbers C2 as:
C2={ς:ς=ϑ1+ϑ2i1+ϑ3i2+ϑ4i1i2,ϑ1,ϑ2,ϑ3,ϑ4∈C0}, |
i.e.,
C2={ς:ς=z1+i2z2,z1,z2∈C1}, |
where z1=ϑ1+ϑ2i1∈C1 and z2=ϑ3+ϑ4i1∈C1. If ς=z1+i2z2 and η=ω1+i2ω2 are any two bicomplex numbers, then the sum is ς±η=(z1+i2z2)±(ω1+i2ω2)=z1±ω1+i2(z2±ω2), and the product is ς.η=(z1+i2z2)(ω1+i2ω2)=(z1ω1−z2ω2)+i2(z1ω2+z2ω1).
There are four idempotent elements in C2: They are 0,1,e1=1+i1i22,e2=1−i1i22 of which e1 and e2 are nontrivial, such that e1+e2=1 and e1e2=0. Every bicomplex number z1+i2z2 can be uniquely expressed as the combination of e1 and e2, namely
ς=z1+i2z2=(z1−i1z2)e1+(z1+i1z2)e2. |
This representation of ς is known as the idempotent representation of a bicomplex number, and the complex coefficients ς1=(z1−i1z2) and ς2=(z1+i1z2) are known as the idempotent components of the bicomplex number ς.
An element ς=z1+i2z2∈C2 is said to be invertible if there exists another element η in C2 such that ςη=1, and η is said to be inverse (multiplicative) of ς. Consequently, ς is said to be the inverse(multiplicative) of η. An element which has an inverse in C2 is said to be a non-singular element of C2, and an element which does not have an inverse in C2 is said to be a singular element of C2.
An element ς=z1+i2z2∈C2 is non-singular if and only if ||z21+z22||≠0 and singular if and only if ||z21+z22||=0. When it exists, the inverse of ς is as follows.
ς−1=η=z1−i2z2z21+z22. |
Zero is the only element in C0 which does not have a multiplicative inverse, and in C1, 0=0+i10 is the only element which does not have a multiplicative inverse. We denote the set of singular elements of C0 and C1 by O0 and O1, respectively. However, there is more than one element in C2 which does not have a multiplicative inverse: for example, e1 and e2. We denote this set by O2, and clearly O0={0}=O1⊂O2.
A bicomplex number ς=ϑ1+ϑ2i1+ϑ3i2+ϑ4i1i2∈C2 is said to be degenerated (or singular) if the matrix
(ϑ1ϑ2ϑ3ϑ4) |
is degenerated (or singular). The norm ||.|| of an element in C2 is the positive real valued function ||.||:C2→C+0 defined by
||ς||=||z1+i2z2||={||z21||+||z22||}12=[|z1−i1z2|2+|z1+i1z2|22]12=(ϑ21+ϑ22+ϑ23+ϑ24)12, |
where ς=ϑ1+ϑ2i1+ϑ3i2+ϑ4i1i2=z1+i2z2∈C2.
The linear space C2 with respect to a defined norm is a normed linear space, and C2 is complete. Therefore, C2 is a Banach space. If ς,η∈C2, then ||ςη||≤√2||ς||||η|| holds instead of ||ςη||≤||ς||||η||, and therefore C2 is not a Banach algebra. For any two bicomplex numbers ς,η∈C2, we can verify the following:
1. ς⪯i2η⟺||ς||≤||η||,
2. ||ς+η||≤||ς||+||η||,
3. ||ϑς||=|ϑ|||ς||, where ϑ is a real number,
4. ||ςη||≤√2||ς||||η||, and the equality holds only when at least one of ς and η is degenerated,
5. ||ς−1||=||ς||−1 if ς is a degenerated bicomplex number with 0≺ς,
6. ||ςη||=||ς||||η||, if η is a degenerated bicomplex number.
The partial order relation ⪯i2 on C2 is defined as follows. Let C2 be the set of bicomplex numbers and ς=z1+i2z2, η=ω1+i2ω2∈C2. Then, ς⪯i2η if and only if z1⪯ω1 and z2⪯ω2, i.e., ς⪯i2η if one of the following conditions is satisfied:
1. z1=ω1, z2=ω2,
2. z1≺ω1, z2=ω2,
3. z1=ω1, z2≺ω2,
4. z1≺ω1, z2≺ω2.
In particular, we can write ς⋦i2η if ς⪯i2η and ς≠η, i.e., one of 2, 3 and 4 is satisfied, and we will write ς≺i2η if only 4 is satisfied.
Now, let us recall some basic concepts and notations, which will be used in the sequel.
Definition 2.1. [15] A bicomplex partial metric on a non-void set U is a function ρbcpms:U×U→C+2, where C+2={ς:ς=ϑ1+ϑ2i1+ϑ3i2+ϑ4i1i2,ϑ1,ϑ2,ϑ3,ϑ4∈C+0} and C+0={ϑ1∈C0|ϑ1≥0} such that for all φ,ζ,z∈U:
1. 0⪯i2ρbcpms(φ,φ)⪯i2ρbcpms(φ,ζ) (small self-distances),
2. ρbcpms(φ,ζ)=ρbcpms(ζ,φ) (symmetry),
3. ρbcpms(φ,φ)=ρbcpms(φ,ζ)=ρbcpms(ζ,ζ) if and only if φ=ζ (equality),
4. ρbcpms(φ,ζ)⪯i2ρbcpms(φ,z)+ρbcpms(z,ζ)−ρbcpms(z,z) (triangularity) .
A bicomplex partial metric space is a pair (U,ρbcpms) such that U is a non-void set and ρbcpms is a bicomplex partial metric on U.
Example 2.2. Let U=[0,∞) be endowed with bicomplex partial metric space ρbcpms:U×U→C+2 with ρbcpms(φ,ζ)=max, where e^{i_{2}\theta} = \cos \theta +i_{2}\sin \theta , for all \varphi, \zeta\in \mathcal{U} and 0\leq \theta\leq \frac{\pi}{2} . Obviously, (\mathcal{U}, \rho_{bcpms}) is a bicomplex partial metric space.
Definition 2.3. [15] A bicomplex partial metric space \mathcal{U} is said to be a T_{0} space if for any pair of distinct points of \mathcal{U} , there exists at least one open set which contains one of them but not the other.
Theorem 2.4. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space; then, (\mathcal{U}, \rho_{bcpms}) is T_{0} .
Definition 2.5. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space. A sequence \{\varphi_{\tau}\} in \mathcal{U} is said to be convergent and converges to \varphi\in\mathcal{U} if for every 0\prec_{i_{2}}\epsilon\in \mathscr{C}^{+}_{2} there exists \mathcal{N}\in \mathbb{N} such that \varphi_{\tau}\in \mathfrak{B}_{ \rho_{bcpms}}(\varphi, \epsilon) = \{\omega\in \mathcal{U}:\rho_{bcpms}(\varphi, \omega) < \epsilon+\rho_{bcpms}(\varphi, \varphi)\} for all \tau\geq \mathcal{N} , and it is denoted by \lim\limits_{\tau\rightarrow \infty} \varphi_{\tau} = \varphi .
Lemma 2.6. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space. A sequence \{\varphi_{\tau}\}\in \mathcal{U} is converges to \varphi\in \mathcal{U} iff \rho_{bcpms}(\varphi, \varphi) = \lim\limits_{\tau \to \infty} \rho_{bcpms}(\varphi, \varphi_{\tau}) .
Definition 2.7. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space. A sequence \{\varphi_{\tau}\} in \mathcal{U} is said to be a Cauchy sequence in (\mathcal{U}, \rho_{bcpms}) if for any \epsilon > 0 there exist \vartheta\in \mathscr{C}^{+}_{2} and \mathcal{N}\in \mathbb{N} such that || \rho_{bcpms}(\varphi_{\tau}, \varphi_{\upsilon})-\vartheta|| < \epsilon for all \tau, \upsilon\geq\mathcal{N} .
Definition 2.8. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space. Let \{\varphi_{\tau}\} be any sequence in \mathcal{U} . Then,
1. If every Cauchy sequence in \mathcal{U} is convergent in \mathcal{U} , then (\mathcal{U}, \rho_{bcpms}) is said to be a complete bicomplex partial metric space.
2. A mapping \mathcal{S}:\mathcal{U} \to \mathcal{U} is said to be continuous at \varphi_{0}\in \mathcal{U} if for every \epsilon > 0 , there exists \delta > 0 such that \mathcal{S}(\mathfrak{B}_{ \rho_{bcpms}}(\varphi_{0}, \delta))\subset \mathfrak{B}_{ \rho_{bcpms}}(\mathcal{S}(\varphi_{0}, \epsilon)) .
Lemma 2.9. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space and \{\varphi_{\tau}\} be a sequence in \mathcal{U} . Then, \{\varphi_{\tau}\} is a Cauchy sequence in \mathcal{U} iff \lim\limits_{\tau, \upsilon\to \infty} \rho_{bcpms}(\varphi_{\tau}, \varphi_{\upsilon}) = \rho_{bcpms}(\varphi, \varphi) .
Definition 2.10. Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space. Then, an element (\varphi, \zeta)\in \mathcal{U}\times \mathcal{U} is said to be a coupled fixed point of the mapping \mathcal{S}: \mathcal{U}\times \mathcal{U}\to \mathcal{U} if \mathcal{S}(\varphi, \zeta) = \varphi and \mathcal{S}(\zeta, \varphi) = \zeta .
Theorem 2.11. [15] Let (\mathcal{U}, \rho_{bcpms}) be a complete bicomplex partial metric space and \mathcal{S}, \mathcal{T} \colon \mathcal{ U} \rightarrow \mathcal{U} be two continuous mappings such that
\begin{align*} \rho_{bcpms}(\mathcal{S} \varphi, \mathcal{T} \zeta) &\preceq_{i_{2}} \mathfrak{l} \max\{ \rho_{bcpms}(\varphi, \zeta), \rho_{bcpms}(\varphi, \mathcal{S} \varphi), \rho_{bcpms}(\zeta, \mathcal{T} \zeta), \notag \\ &\; \; \; \; \dfrac{1}{2}( \rho_{bcpms}(\varphi, \mathcal{T} \zeta)+ \rho_{bcpms}(\zeta, \mathcal{S} \varphi))\}, \label{e1} \end{align*} |
for all \varphi, \zeta \in \mathcal{U} , where 0\leq \mathfrak{l} < 1 . Then, the pair (\mathcal{S}, \mathcal{T}) has a unique common fixed point, and \rho_{bcpms}(\varphi^{*}, \varphi^{*}) = 0 .
Inspired by Theorem 2.11, here we prove coupled fixed point theorems on a bicomplex partial metric space with an application.
Theorem 3.1. Let (\mathcal{U}, \rho_{bcpms}) be a complete bicomplex partial metric space. Suppose that the mapping \mathcal{S}:\mathcal{U}\times \mathcal{U}\to \mathcal{U} satisfies the following contractive condition:
\begin{equation*} \rho_{bcpms}(\mathcal{S}(\varphi , \zeta), \mathcal{S}(\nu, \mu)) \preceq_{i_{2}} \lambda\rho_{bcpms}(\mathcal{S}(\varphi, \zeta) , \varphi )+ \mathfrak{l}\rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu), \end{equation*} |
for all \varphi, \zeta, \nu, \mu\in \mathcal{U} , where \lambda, \mathfrak{l} are nonnegative constants with \lambda+\mathfrak{l} < 1 . Then, \mathcal{S} has a unique coupled fixed point.
Proof. Choose \nu_{0}, \mu_{0}\in \mathcal{U} and set \nu_{1} = \mathcal{S}(\nu_{0}, \mu_{0}) and \mu_{1} = \mathcal{S}(\mu_{0}, \nu_{0}) . Continuing this process, set \nu_{\tau+1} = \mathcal{S}(\nu_{\tau}, \mu_{\tau}) and \mu_{\tau+1} = \mathcal{S}(\mu_{\tau}, \nu_{\tau}) . Then,
\begin{align*} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})& = \rho_{bcpms}(\mathcal{S}(\nu_{\tau-1}, \mu_{\tau-1}), \mathcal{S}(\nu_{\tau}, \mu_{\tau}))\\ &\preceq_{i_{2}} \lambda\rho_{bcpms}(\mathcal{S}(\nu_{\tau-1}, \mu_{\tau-1}), \nu_{\tau-1})+\mathfrak{l}\rho_{bcpms}(\mathcal{S}(\nu_{\tau}, \mu_{\tau}), \nu_{\tau})\\ & = \lambda\rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})+\mathfrak{l}\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau})\\ \rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})&\preceq_{i_{2}} \frac{\lambda}{1-\mathfrak{l}}\rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1}), \end{align*} |
which implies that
\begin{align} \lvert\lvert\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})\rvert \rvert\leq \mathfrak{z} \lvert\lvert\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})\rvert\rvert \end{align} | (3.1) |
where \mathfrak{z} = \frac{\lambda}{1-\mathfrak{l}} < 1 . Similarly, one can prove that
\begin{align} ||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||\leq \mathfrak{z}\lvert \lvert\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})\rvert\rvert. \end{align} | (3.2) |
From (3.1) and (3.2), we get
\begin{align*} \lvert\lvert\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})\rvert\rvert+ ||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||&\leq \mathfrak{z} (\lvert\lvert\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})\rvert\rvert\\ &+\lvert\lvert \rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||), \end{align*} |
where \mathfrak{z} < 1 .
Also,
\begin{align} ||\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau+2})||\leq \mathfrak{z}||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})|| \end{align} | (3.3) |
\begin{align} ||\rho_{bcpms}(\mu_{\tau+1}, \mu_{\tau+2})||\leq \mathfrak{z}||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||. \end{align} | (3.4) |
From (3.3) and (3.4), we get
\begin{align*} ||\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau+2})||+||\rho_{bcpms}(\mu_{\tau+1}, \mu_{\tau+2})||&\leq \mathfrak{z}(||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||\\ &+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||). \end{align*} |
Repeating this way, we get
\begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||&\leq \mathfrak{z}(||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||)\\ &\leq \mathfrak{z}^{2}(||\rho_{bcpms}(\mu_{\tau-2}, \mu_{\tau-1})||\\ &+||\rho_{bcpms}(\nu_{\tau-2}, \nu_{\tau-1})||)\\ &\leq \dots \leq \mathfrak{z}^{\tau}(||\rho_{bcpms}(\mu_{0}, \mu_{1})||\\ &+||\rho_{bcpms}(\nu_{0}, \nu_{1})||). \end{align*} |
Now, if ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})|| = \gamma_{\tau} , then
\begin{align} \gamma_{\tau}\leq \mathfrak{z} \gamma_{\tau-1} \leq \dots \leq \mathfrak{z}^\tau\gamma_{0}. \end{align} | (3.5) |
If \gamma_{0} = 0 , then ||\rho_{bcpms}(\nu_{0}, \nu_{1})||+||\rho_{bcpms}(\mu_{0}, \mu_{1})|| = 0 . Hence, \nu_{0} = \nu_{1} = \mathcal{S}(\nu_{0}, \mu_{0}) and \mu_{0} = \mu_{1} = \mathcal{S}(\mu_{0}, \mu_{0}) , which implies that (\nu_{0}, \mu_{0}) is a coupled fixed point of \mathcal{S} . Let \gamma_{0} > 0 . For each \tau\geq \upsilon , we have
\begin{align*} \rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})&\preceq_{i_{2}} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})+\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})-\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-1})\\ &+\rho_{bcpms}(\nu_{\tau-2}, \nu_{\tau-3})+\rho_{bcpms}(\nu_{\tau-3}, \nu_{\tau-4})-\rho_{bcpms}(\nu_{\tau-3}, \nu_{\tau-3})\\ &+\dots +\rho_{bcpms}(\nu_{\upsilon+2}, \nu_{\upsilon+1})+\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon})-\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon+1})\\ &\preceq_{i_{2}} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})+\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})+\dots+\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon}), \end{align*} |
which implies that
\begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})||&\leq ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})||+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})||\\ &+\dots+||\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon})||. \end{align*} |
Similarly, one can prove that
\begin{align*} ||\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon})||&\leq ||\rho_{bcpms}({\mu_{\tau}, \mu_{\tau-1}})||+||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau-2})||\\ &+\dots +||\rho_{bcpms}(\mu_{\upsilon+1}, \mu_{\upsilon})||. \end{align*} |
Thus,
\begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon})||&\leq \gamma_{\tau-1}+\gamma_{\tau-2}+\gamma_{\tau-3}+\dots +\gamma_{\upsilon}\\ &\leq (\mathfrak{z}^{\tau-1}+\mathfrak{z}^{\tau-2}+\dots +\mathfrak{z}^{\upsilon})\gamma_{0}\\ &\leq \frac{\mathfrak{z}^{\upsilon}}{1-\mathfrak{z}}\gamma_{0}\rightarrow 0\, \, \text{as}\, \, \upsilon\rightarrow \infty, \end{align*} |
which implies that \{\nu_{\tau}\} and \{\mu_{\tau}\} are Cauchy sequences in (\mathcal{U}, \rho_{bcpms}) . Since the bicomplex partial metric space (\mathcal{U}, \rho_{bcpms}) is complete, there exist \nu, \mu\in \mathcal{U} such that \{\nu_{\tau}\}\rightarrow \nu and \{\mu_{\tau}\}\rightarrow \mu as \tau \rightarrow \infty , and
\begin{align*} \rho_{bcpms}(\nu, \nu) = \lim\limits_{\tau \rightarrow \infty }\rho_{bcpms}(\nu, \nu_{\tau}) = \lim\limits_{\tau, \upsilon \rightarrow \infty }\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon}) = 0, \\ \rho_{bcpms}(\mu, \mu) = \lim\limits_{\tau \rightarrow \infty }\rho_{bcpms}(\mu, \mu_{\tau}) = \lim\limits_{\tau, \upsilon \rightarrow \infty }\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon}) = 0. \end{align*} |
We now show that \nu = \mathcal{S}(\nu, \mu) . We suppose on the contrary that \nu\neq \mathcal{S}(\nu, \mu) and \mu\neq \mathcal{S} (\mu, \nu) , so that 0\prec_{i_{2}} \rho_{bcpms}(\nu, \mathcal{S}(\nu, \mu)) = \mathfrak{l}_{1} and 0\prec_{i_{2}}\rho_{bcpms}(\mu, \mathcal{S}(\mu, \nu)) = \mathfrak{l}_{2} . Then,
\begin{align*} \mathfrak{l}_{1} = \rho_{bcpms}(\nu, \mathcal{S}(\nu, \mu))&\preceq_{i_{2}} \rho_{bcpms}(\nu, \nu_{\tau+1})+\rho_{bcpms}(\nu_{\tau+1}, \mathcal{S}(\nu, \mu))\\ & = \rho_{bcpms}(\nu, \nu_{\tau+1})+\rho_{bcpms}(\mathcal{S}(\nu_{\tau}, \mu_{\tau}), \mathcal{S}(\nu, \mu))\\ &\preceq_{i_{2}} \rho_{bcpms}(\nu, \nu_{\tau+1})+\lambda\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})+\mathfrak{l}\rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu)\\ &\preceq_{i_{2}}\frac{1}{1-\mathfrak{l}} \rho_{bcpms}(\nu, \nu_{\tau+1})+\frac{\lambda}{1-\mathfrak{l}}\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau}), \end{align*} |
which implies that
\begin{align*} \lvert \lvert\mathfrak{l}_{1}\rvert\rvert\leq \frac{1}{1-\mathfrak{l}} \lvert\lvert\rho_{bcpms}(\nu, \nu_{\tau+1})\rvert\rvert+\frac{\lambda}{1-\mathfrak{l}}\lvert\lvert\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})\rvert\rvert. \end{align*} |
As \tau\rightarrow \infty , \lvert\lvert \mathfrak{l}_{1}\rvert\rvert\leq 0 . This is a contradiction, and therefore \lvert\lvert\rho_{bcpms}(\nu, \mathcal{S}(\nu, \mu))\rvert\rvert = 0 implies \nu = \mathcal{S}(\nu, \mu) . Similarly, we can prove that \mu = \mathcal{S}(\mu, \nu) . Thus (\nu, \mu) is a coupled fixed point of \mathcal{S} . Now, if (\mathfrak{g}, \mathfrak{h}) is another coupled fixed point of \mathcal{S} , then
\begin{align*} \rho_{bcpms}(\nu, \mathfrak{g}) = \rho_{bcpms}(\mathcal{S}(\nu, \mu), \mathcal{S}(\mathfrak{g}, \mathfrak{h})) &\preceq_{i_{2}} \lambda\rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu)+\mathfrak{l}\rho_{bcpms}(\mathcal{S}(\mathfrak{g}, \mathfrak{h}), \mathfrak{g})\\ & = \lambda\rho_{bcpms}(\nu, \nu)+\mathfrak{l}\rho_{bcpms}(\mathfrak{g}, \mathfrak{g}) = 0. \end{align*} |
Thus, we have \mathfrak{g} = \nu . Similarly, we get \mathfrak{h} = \mu . Therefore \mathcal{S} has a unique coupled fixed point.
Corollary 3.2. Let (\mathcal{U}, \rho_{bcpms}) be a complete bicomplex partial metric space. Suppose that the mapping \mathcal{S}:\mathcal{U}\times \mathcal{U} \to \mathcal{U} satisfies the following contractive condition:
\begin{equation} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \mu))\preceq_{i_{2}} \lambda(\rho_{bcpms}(\mathcal{S}(\varphi, \zeta) , \varphi)+\rho_{bcpms}( \mathcal{S}(\nu, \mu), \nu)), \end{equation} | (3.6) |
for all \varphi, \zeta, \nu, \mu\in \mathcal{U} , where 0\leq \lambda < \frac{1 }{2} . Then, \mathcal{S} has a unique coupled fixed point.
Theorem 3.3. Let (\mathcal{U}, \rho_{bcpms}) be a complete complex partial metric space. Suppose that the mapping \mathcal{S}:\mathcal{U}\times \mathcal{U}\to \mathcal{U} satisfies the following contractive condition:
\begin{equation*} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \mu))\preceq_{i_{2}} \lambda\rho_{bcpms}(\varphi, \nu)+\mathfrak{l}\rho_{bcpms}(\zeta, \mu), \end{equation*} |
for all \varphi, \zeta, \nu, \mu\in \mathcal{U} , where \lambda, \mathfrak{l} are nonnegative constants with \lambda+\mathfrak{l} < 1 . Then, \mathcal{S} has a unique coupled fixed point.
Proof. Choose \nu_{0}, \mu_{0}\in \mathcal{U} and set \nu_{1} = \mathcal{S}(\nu_{0}, \mu_{0}) and \mu_{1} = \mathcal{S}(\mu_{0}, \nu_{0}) . Continuing this process, set \nu_{\tau+1} = \mathcal{S}(\nu_{\tau}, \mu_{\tau}) and \mu_{\tau+1} = \mathcal{S}(\mu_{\tau}, \nu_{\tau}) . Then,
\begin{align*} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})& = \rho_{bcpms}(\mathcal{S}(\nu_{\tau-1}, \mu_{\tau-1}), \mathcal{S}(\nu_{\tau}, \mu_{\tau}))\\ &\preceq_{i_{2}} \lambda\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})+\mathfrak{l}\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau}), \end{align*} |
which implies that
\begin{align} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||\leq \lambda||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||+\mathfrak{l}||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||. \end{align} | (3.7) |
Similarly, one can prove that
\begin{align} ||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||\leq \lambda||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||+\mathfrak{l}||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||. \end{align} | (3.8) |
From (3.7) and (3.8), we get
\begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||&\leq (\lambda+\mathfrak{l})(||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||\\ &+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||)\\ & = \alpha(||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||\\ &+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||), \end{align*} |
where \alpha = \lambda+\mathfrak{l} < 1 . Also,
\begin{align} ||\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau+2})||\leq \lambda||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||+\mathfrak{l}||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})|| \end{align} | (3.9) |
\begin{align} ||\rho_{bcpms}(\mu_{\tau+1}, \mu_{\tau+2})||\leq \lambda||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||+\mathfrak{l}||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||. \end{align} | (3.10) |
From (3.9) and (3.10), we get
\begin{align*} ||\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau+2})||+||\rho_{bcpms}(\mu_{\tau+1}, \mu_{\tau+2})||&\leq (\lambda+\mathfrak{l})(||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||\\ &+||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||)\\ & = \alpha(||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||\\ &+||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||). \end{align*} |
Repeating this way, we get
\begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{n+1})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||&\leq\alpha(||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||\\ &+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||)\\ &\leq \alpha^{2}(||\rho_{bcpms}(\mu_{\tau-2}, \mu_{\tau-1})||\\ &+||\rho_{bcpms}(\nu_{\tau-2}, \nu_{\tau-1})||)\\ &\leq \dots \leq \alpha^{\tau}(||\rho_{bcpms}(\mu_{0}, \mu_{1})||\\ &+||\rho_{bcpms}(\nu_{0}, \nu_{1})||). \end{align*} |
Now, if ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})|| = \gamma_{\tau} , then
\begin{align} \gamma_{\tau}\leq \alpha \gamma_{\tau-1} \leq \dots \leq \alpha^{\tau}\gamma_{0}. \end{align} | (3.11) |
If \gamma_{0} = 0 , then ||\rho_{bcpms}(\nu_{0}, \nu_{1})||+||\rho_{bcpms}(\mu_{0}, \mu_{1})|| = 0 . Hence, \nu_{0} = \nu_{1} = \mathcal{S}(\nu_{0}, \mu_{0}) and \mu_{0} = \mu_{1} = \mathcal{S}(\mu_{0}, \nu_{0}) , which implies that (\nu_{0}, \mu_{0}) is a coupled fixed point of \mathcal{S} . Let \gamma_{0} > 0 . For each \tau\geq \upsilon , we have
\begin{align*} \rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})&\preceq_{i_{2}} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})+\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})-\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-1})\\ &+\rho_{bcpms}(\nu_{\tau-2}, \nu_{\tau-3})+\rho_{bcpms}(\nu_{\tau-3}, \nu_{\tau-4})-\rho_{bcpms}(\nu_{\tau-3}, \nu_{\tau-3})\\ &+\dots +\rho_{bcpms}(\nu_{\upsilon+2}, \nu_{\upsilon+1})+\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon})-\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon+1})\\ &\preceq_{i_{2}} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})+\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})+\dots+\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon}), \end{align*} |
which implies that
\begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})||&\leq ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})||+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})||\\ &+\dots+||\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon})||. \end{align*} |
Similarly, one can prove that
\begin{align*} ||\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon})||&\leq ||\rho_{bcpms}({\mu_{\tau}, \mu_{\tau-1}})||+||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau-2})||\\ &+\dots+||\rho_{bcpms}(\mu_{\upsilon+1}, \mu_{\upsilon})||. \end{align*} |
Thus,
\begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon})||&\leq \gamma_{\tau-1}+\gamma_{\tau-2}+\gamma_{\tau-3}+\dots +\gamma_{\upsilon}\\ &\leq (\alpha^{\tau-1}+\alpha^{\tau-2}+\dots +\alpha^{\upsilon})\gamma_{0}\\ &\leq \frac{\alpha^{\upsilon}}{1-\alpha}\gamma_{0}\, \, {\rm{as}}\, \, \tau\to \infty, \end{align*} |
which implies that \{\nu_{\tau}\} and \{\mu_{\tau}\} are Cauchy sequences in (\mathcal{U}, \rho_{bcpms}) . Since the bicomplex partial metric space (\mathcal{U}, \rho_{bcpms}) is complete, there exist \nu, \mu\in \mathcal{U} such that \{\nu_{\tau}\}\rightarrow \nu and \{\mu_{\tau}\}\rightarrow \mu as \tau \rightarrow \infty , and
\begin{align*} \rho_{bcpms}(\nu, \nu) = \lim\limits_{\tau \rightarrow \infty }\rho_{bcpms}(\nu, \nu_{\tau}) = \lim\limits_{\tau, \upsilon \rightarrow \infty }\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon}) = 0, \\ \rho_{bcpms}(\mu, \mu) = \lim\limits_{\tau \rightarrow \infty }\rho_{bcpms}(\mu, \mu_{\tau}) = \lim\limits_{\tau, \upsilon \rightarrow \infty }\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon}) = 0. \end{align*} |
Therefore,
\begin{align*} \rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu)&\leq \rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu_{\tau+1})+\rho_{bcpms}(\nu_{\tau+1}, \nu)-\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau+1}), \\ &\leq \rho_{bcpms}(\mathcal{S}(\nu, \mu)), \mathcal{S}(\nu_{\tau}, \mu_{\tau})+\rho_{bcpms}(\nu_{\tau+1}, \nu)\\ &\leq \lambda\rho_{bcpms}(\nu_{\tau}, \nu)+\mathfrak{l}\rho_{bcpms}(\mu_{\tau}, \mu)+\rho_{bcpms}(\nu_{\tau+1}, \nu). \end{align*} |
As \tau \rightarrow \infty , from (3.6) and (3.12) we obtain \rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu) = 0 . Therefore \mathcal{S}(\nu, \mu) = \nu . Similarly, we can prove \mathcal{S}(\mu, \nu) = \mu , which implies that (\nu, \mu) is a coupled fixed point of \mathcal{S} . Now, if (\mathfrak{g}_{1}, \mathfrak{h}_{1}) is another coupled fixed point of \mathcal{S} , then
\begin{align*} \rho_{bcpms}(\mathfrak{g}_{1}, \nu) = \rho_{bcpms}(\mathcal{S}(\mathfrak{g}_{1}, \mathfrak{h}_{1}), \mathcal{S}(\nu, \mu)) &\preceq_{i_{2}} \lambda\rho_{bcpms}(\mathfrak{g}_{1}, \nu)+\mathfrak{l}\rho_{bcpms}(\mathfrak{h}_{1}, \mu), \\ \rho_{bcpms}(\mathfrak{h}_{1}, \mu) = \rho_{bcpms}(\mathcal{S}(\mathfrak{h}_{1}, \mathfrak{g}_{1}), \mathcal{S}(\mu, \nu))&\preceq_{i_{2}} \lambda\rho_{bcpms}(\mathfrak{h}_{1}, \mu)+\mathfrak{l}\rho_{bcpms}(\mathfrak{g}_{1}, \nu), \end{align*} |
which implies that
\begin{align} \lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert&\leq \lambda\lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert+\mathfrak{l}\lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert, \end{align} | (3.12) |
\begin{align} \lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert&\leq \lambda\lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert+\mathfrak{l}\lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert. \end{align} | (3.13) |
From (3.12) and (3.13), we get
\begin{align*} \lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert+\lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert\leq (\lambda+\mathfrak{l})[\lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert+\lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert]. \end{align*} |
Since \lambda+\mathfrak{l} < 1 , this implies that \lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert+\lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert = 0 . Therefore, \nu = \mathfrak{g}_{1} and \mu = \mathfrak{h}_{1} . Thus, \mathcal{S} has a unique coupled fixed point.
Corollary 3.4. Let (\mathcal{U}, \rho_{bcpms}) be a complete bicomplex partial metric space. Suppose that the mapping \mathcal{S}:\mathcal{U}\times \mathcal{U} \to \mathcal{U} satisfies the following contractive condition:
\begin{equation} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \mu))\preceq_{i_{2}} \lambda(\rho_{bcpms}(\varphi, \nu)+\rho_{bcpms}(\zeta, \mu)), \end{equation} | (3.14) |
for all \varphi, \zeta, \nu, \mu\in \mathcal{U} , where 0\leq \lambda < \frac{1 }{2} . Then, \mathcal{S} has a unique coupled fixed point.
Example 3.5. Let \mathcal{U} = [0, \infty) and define the bicomplex partial metric \rho_{bcpms} :\mathcal{U}\times\mathcal{U}\to \mathscr{C}_{2}^{+} defined by
\begin{align*} \rho_{bcpms}(\varphi, \zeta) = \max\{\varphi, \zeta\}e^{i_{2}\theta}, \, \, 0\leq\theta\leq\frac{\pi}{2}. \end{align*} |
We define a partial order \preceq in \mathscr{C}_{2}^{+} as \varphi \preceq \zeta iff \varphi \leq \zeta . Clearly, (\mathcal{U}, \rho_{bcpms}) is a complete bicomplex partial metric space.
Consider the mapping \mathcal{S}:\mathcal{U}\times \mathcal{U}\to \mathcal{U } defined by
\begin{align*} \mathcal{S}(\varphi, \zeta) = \frac{\varphi+\zeta}{4}\, \, \, \forall \varphi, \zeta\in \mathcal{U}. \end{align*} |
Now,
\begin{align*} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \mu))& = \rho_{bcpms} \bigg(\frac{\varphi+\zeta}{4}, \frac{\nu+\mu}{4}\bigg) \\ & = \frac{1}{4}\max\{\varphi+\zeta, \nu+\mu\} e^{i_{2}\theta} \\ &\preceq_{i_{2}}\frac{1}{4}\bigg[\max\{\varphi, \nu\}+\max\{\zeta, \mu\}\bigg] e^{i_{2}\theta} \\ & = \frac{1}{4}\bigg[\rho_{bcpms}(\varphi, \nu)+\rho_{bcpms}(\zeta, \mu)\bigg] \\ & = \lambda\bigg(\rho_{bcpms}(\varphi, \nu)+\rho_{bcpms}(\zeta, \mu)\bigg), \end{align*} |
for all \varphi, \zeta, \nu, \mu\in \mathcal{U} , where 0\leq\lambda = \frac{1 }{4} < \frac{1}{2} . Therefore, all the conditions of Corollary 3.4 are satisfied, then the mapping \mathcal{S} has a unique coupled fixed point (0, 0) in \mathcal{U} .
As an application of Theorem 3.3, we find an existence and uniqueness result for a type of the following system of nonlinear integral equations:
\begin{align} \varphi (\mu )& = \int_{0}^{\mathcal{M}}\kappa (\mu , \mathfrak{p})[\mathcal{G} _{1}(\mathfrak{p}, \varphi (\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \zeta (\mathfrak{p}))]d\mathfrak{p}+\delta (\mu ), \\ \zeta (\mu )& = \int_{0}^{\mathcal{M}}\kappa (\mu , \mathfrak{p})[\mathcal{G} _{1}(\mathfrak{p}, \zeta (\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \varphi (\mathfrak{p}))]d\mathfrak{p}+\delta (\mu ), \, \, \mu , \in \lbrack 0, \mathcal{M }], \mathcal{M}\geq1. \end{align} | (4.1) |
Let \mathcal{U} = C([0, \mathcal{M}], \mathbb{R}) be the class of all real valued continuous functions on [0, \mathcal{M}] . We define a partial order \preceq in \mathscr{C}_{2}^{+} as x\preceq y iff x \leq y . Define \mathcal{S}:\mathcal{U}\times\mathcal{U}\to \mathcal{U} by
\begin{align*} \mathcal{S}(\varphi, \zeta)(\mu) = \int^{\mathcal{M}}_{0}\kappa(\mu, \mathfrak{p} )[\mathcal{G}_{1}(\mathfrak{p}, \varphi(\mathfrak{p}))+\mathcal{G}_{2}( \mathfrak{p}, \zeta(\mathfrak{p}))] d\mathfrak{p}+\delta(\mu). \end{align*} |
Obviously, (\varphi(\mu), \zeta(\mu)) is a solution of system of nonlinear integral equations (4.1) iff (\varphi(\mu), \zeta(\mu)) is a coupled fixed point of \mathcal{S} . Define \rho _{bcpms}:\mathcal{U} \times \mathcal{U}\rightarrow \mathscr{C}_{2} by
\begin{equation*} \rho _{bcpms}(\varphi , \zeta ) = (|\varphi -\zeta |+1)e^{i_{2}\theta }, \end{equation*} |
for all \varphi, \zeta \in \mathcal{U} , where 0\leq \theta \leq \frac{\pi }{2} . Now, we state and prove our result as follows.
Theorem 4.1. Suppose the following:
1. The mappings \mathcal{G}_{1}:[0, \mathcal{M}]\times\mathbb{R}\to \mathbb{R} , \mathcal{G}_{2}:[0, \mathcal{M}]\times\mathbb{R}\to\mathbb{R} , \delta:[0, \mathcal{M}]\to \mathbb{R} and \kappa:[0, \mathcal{M}]\times \mathbb{R}\to [0, \infty) are continuous.
2. There exists \eta > 0 , and \lambda, \mathfrak{l} are nonnegative constants with \lambda+ \mathfrak{l} < 1 , such that
\begin{align*} |\mathcal{G}_{1}(\mathfrak{p}, \varphi(\mathfrak{p}))-\mathcal{G}_{1}( \mathfrak{p}, \zeta(\mathfrak{p}))|&\preceq_{i_{2}}\eta\lambda (|\varphi-\zeta|+1)-\frac{1}{2}, \\ |\mathcal{G}_{2}(\mathfrak{p}, \zeta(\mathfrak{p}))-\mathcal{G}_{2}(\mathfrak{ p}, \varphi(\mathfrak{p}))|&\preceq_{i_{2}}\eta\mathfrak{l} (|\zeta-\varphi|+1)-\frac{1}{2}. \end{align*} |
3. \int^{\mathcal{M}}_{0}\eta|\kappa(\mu, \mathfrak{p})|d\mathfrak{p} \preceq_{i_{2}}1 .
Then, the integral equation (4.1) has a unique solution in \mathcal{U} .
Proof. Consider
\begin{align*} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \varPhi))& = (|\mathcal{S}(\varphi, \zeta)-\mathcal{S}(\nu, \varPhi)|+1)e^{i_{2}\theta}\\ & = \bigg(|\int^{\mathcal{M}}_{0}\kappa(\mu, \mathfrak{p})[\mathcal{G}_{1}(\mathfrak{p}, \varphi(\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \zeta(\mathfrak{p}))] d\mathfrak{p}+\delta(\mu)\\ &-\bigg(\int^{\mathcal{M}}_{0}\kappa(\mu, \mathfrak{p})[\mathcal{G}_{1}(\mathfrak{p}, \nu(\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \varPhi(\mathfrak{p}))] d\mathfrak{p}+\delta(\mu)\bigg)|+1\bigg)e^{i_{2}\theta}\\ & = \bigg(|\int^{\mathcal{M}}_{0}\kappa(\mu, \mathfrak{p})[\mathcal{G}_{1}(\mathfrak{p}, \varphi(\mathfrak{p}))-\mathcal{G}_{1}(\mathfrak{p}, \nu(\mathfrak{p}))\\ &+\mathcal{G}_{2}(\mathfrak{p}, \zeta(\mathfrak{p}))-\mathcal{G}_{2}(\mathfrak{p}, \varPhi(\mathfrak{p}))] d\mathfrak{p}|+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}}\bigg(\int^{\mathcal{M}}_{0}|\kappa(\mu, \mathfrak{p})|[|\mathcal{G}_{1}(\mathfrak{p}, \varphi(\mathfrak{p}))-\mathcal{G}_{1}(\mathfrak{p}, \nu(\mathfrak{p}))|\\ &+|\mathcal{G}_{2}(\mathfrak{p}, \zeta(\mathfrak{p}))-\mathcal{G}_{2}(\mathfrak{p}, \varPhi(\mathfrak{p}))|] d\mathfrak{p}+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}}\bigg(\int^{\mathcal{M}}_{0}|\kappa(\mu, \mathfrak{p})|d\mathfrak{p}(\eta\lambda (|\varphi-\nu|+1)-\frac{1}{2}\\ &+\eta\mathfrak{l} (|\zeta-\varPhi|+1)-\frac{1}{2})+1\bigg)e^{i_{2}\theta}\\ & = \bigg(\int^{\mathcal{M}}_{0}\eta|\kappa(\mu, \mathfrak{p})|d\mathfrak{p}(\lambda (|\varphi-\nu|+1)\\ &+\mathfrak{l} (|\zeta-\varPhi|+1))\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}} \bigg(\lambda (|\varphi-\nu|+1)+\mathfrak{l} (|\zeta-\varPhi|+1)\bigg)e^{i_{2}\theta}\\ & = \lambda\rho_{bcpms}(\varphi, \nu)+\mathfrak{l}\rho_{bcpms}(\zeta, \varPhi) \end{align*} |
for all \varphi, \zeta, \nu, \varPhi\in \mathcal{U} . Hence, all the hypotheses of Theorem 3.3 are verified, and consequently, the integral equation (4.1) has a unique solution.
Example 4.2. Let \mathcal{U} = C([0, 1], \mathbb{R}) . Now, consider the integral equation in \mathcal{U} as
\begin{align} \varphi(\mu) = \int_{0}^{1}\frac{\mathfrak{\mu p}}{23(\mu+5)}\bigg[\frac{1}{ 1+\varphi(\mathfrak{p})}+\frac{1}{2+\zeta(\mathfrak{p})}\bigg]d\mathfrak{p}+ \frac{6\mu^{2}}{5} \\ \zeta(\mu) = \int_{0}^{1}\frac{ \mathfrak{\mu p}}{23(\mu+5)}\bigg[\frac{1}{ 1+\zeta(\mathfrak{p})}+\frac{1}{ 2+\varphi(\mathfrak{p})}\bigg]d\mathfrak{p}+ \frac{6\mu^{2}}{5}. \end{align} | (4.2) |
Then, clearly the above equation is in the form of the following equation:
\begin{align} \varphi (\mu )& = \int_{0}^{\mathcal{M}}\kappa (\mu , \mathfrak{p})[\mathcal{G} _{1}(\mathfrak{p}, \varphi (\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \zeta (\mathfrak{p}))]d\mathfrak{p}+\delta (\mu ), \\ \zeta (\mu )& = \int_{0}^{\mathcal{M}}\kappa (\mu , \mathfrak{p})[\mathcal{G} _{1}(\mathfrak{p}, \zeta (\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \varphi (\mathfrak{p}))]d\mathfrak{p}+\delta (\mu ), \, \, \mu , \in \lbrack 0, \mathcal{M }], \end{align} | (4.3) |
where \delta(\mu) = \frac{6\mu^{2}}{5} , \kappa(\mu, \mathfrak{p}) = \frac{ \mathfrak{\mu p}}{23(\mu+5)} , \mathcal{G}_{1}(\mathfrak{p}, \mu) = \frac{1}{ 1+\mu} , \mathcal{G}_{2}(\mathfrak{p}, \mu) = \frac{1}{2+\mu} and \mathcal{M} = 1 . That is, (4.2) is a special case of (4.1) in Theorem 4.1. Here, it is easy to verify that the functions \delta(\mu) , \kappa(\mu, \mathfrak{p}) , \mathcal{G}_{1}(\mathfrak{p}, \mu) and \mathcal{ G}_{2}(\mathfrak{p}, \mu) are continuous. Moreover, there exist \eta = 10 , \lambda = \frac{1}{3} and \mathfrak{l} = \frac{1}{4} with \lambda+\mathfrak{l } < 1 such that
\begin{align*} |\mathcal{G}_{1}(\mathfrak{p}, \varphi)-\mathcal{G}_{1}(\mathfrak{p} , \zeta)|&\leq\eta\lambda (|\varphi-\zeta|+1)-\frac{1}{2}, \\ |\mathcal{G}_{2}(\mathfrak{p}, \zeta)-\mathcal{G}_{2}(\mathfrak{p} , \varphi)|&\leq\eta\mathfrak{l} (|\zeta-\varphi|+1)-\frac{1}{2} \end{align*} |
and \int^{\mathcal{M}}_{0}\eta|\kappa(\mu, \mathfrak{p})|d\mathfrak{p} = \int^{1}_{0}\frac{\eta\mu\mathfrak{p}}{23(\mu+5)}d\mathfrak{p} = \frac{\mu\eta }{23(\mu+5)} < 1 . Therefore, all the conditions of Theorem 3.3 are satisfied. Hence, system (4.2) has a unique solution (\varphi^{*}, \zeta^{*}) in \mathcal{U}\times\mathcal{U} .
As an application of Corollary 3.4, we find an existence and uniqueness result for a type of the following system of Fredholm integral equations:
\begin{align} \varphi (\mu )& = \int_{\mathcal{E}}\mathcal{G}(\mu , \mathfrak{p}, \varphi ( \mathfrak{p}), \zeta (\mathfrak{p}))d\mathfrak{p}+\delta (\mu ), \, \, \mu , \mathfrak{p}\in \mathcal{E}, \\ \zeta (\mu )& = \int_{\mathcal{E}}\mathcal{G}(\mu , \mathfrak{p}, \zeta ( \mathfrak{p}), \varphi (\mathfrak{p}))d\mathfrak{p}+\delta (\mu ), \, \, \mu , \mathfrak{p}\in \mathcal{E}, \end{align} | (4.4) |
where \mathcal{E} is a measurable, \mathcal{G}:\mathcal{E}\times \mathcal{ E}\times \mathbb{R}\times \mathbb{R}\rightarrow \mathbb{R} , and \delta \in \mathcal{L}^{\infty }(\mathcal{E}) . Let \mathcal{U} = \mathcal{L}^{\infty }(\mathcal{E}) . We define a partial order \preceq in \mathscr{C}_{2}^{+} as x\preceq y iff x\leq y. Define \mathcal{S}:\mathcal{U}\times \mathcal{U}\to \mathcal{U} by
\begin{align*} \mathcal{S}(\varphi, \zeta)(\mu) = \int_{\mathcal{E}}\mathcal{G}(\mu , \mathfrak{ p}, \varphi (\mathfrak{p}), \zeta (\mathfrak{p}))d\mathfrak{p}+\delta (\mu ). \end{align*} |
Obviously, (\varphi(\mu), \zeta(\mu)) is a solution of the system of Fredholm integral equations (4.4) iff (\varphi(\mu), \zeta(\mu)) is a coupled fixed point of \mathcal{S} . Define \rho _{bcpms}:\mathcal{U}\times \mathcal{U}\rightarrow \mathscr{C}_{2} by
\begin{equation*} \rho _{bcpms}(\varphi , \zeta ) = (|\varphi -\zeta |+1)e^{i_{2}\theta }, \end{equation*} |
for all \varphi, \zeta \in \mathcal{U} , where 0\leq \theta \leq \frac{\pi }{2} . Now, we state and prove our result as follows.
Theorem 4.3. Suppose the following:
1. There exists a continuous function \kappa:\mathcal{E}\times\mathcal{E} \to \mathbb{R} such that
\begin{align*} |\mathcal{G}(\mu, \mathfrak{p}, \varphi(\mathfrak{p}), \zeta(\mathfrak{p}))- \mathcal{G}(\mu, \mathfrak{p}, \nu(\mathfrak{p}), \varPhi(\mathfrak{p} ))|&\preceq_{i_{2}} |\kappa(\mu, \mathfrak{p})|(|\varphi(\mathfrak{p})-\nu( \mathfrak{p})| \\ &+|\zeta(\mathfrak{p})-\varPhi(\mathfrak{p})|-2), \end{align*} |
for all \varphi, \zeta, \nu, \varPhi\in \mathcal{U} , \mu, \mathfrak{p}\in \mathcal{E} .
2. \int_{\mathcal{E}}|\kappa(\mu, \mathfrak{p})|d\mathfrak{p} \preceq_{i_{2}} \frac{1}{4}\preceq_{i_{2}}1 .
Then, the integral equation (4.4) has a unique solution in \mathcal{U} .
Proof. Consider
\begin{align*} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \varPhi))& = (|\mathcal{S}(\varphi, \zeta)-\mathcal{S}(\nu, \varPhi)|+1)e^{i_{2}\theta}\\ & = \bigg(|\int_{\mathcal{E}}\mathcal{G}(\mu, \mathfrak{p}, \varphi(\mathfrak{p}), \zeta(\mathfrak{p}))d\mathfrak{p}+\delta(\mu)\\ &-\bigg(\int_{\mathcal{E}}\mathcal{G}(\mu, \mathfrak{p}, \nu(\mathfrak{p}), \varPhi(\mathfrak{p}))d\mathfrak{p}+\delta(\mu)\bigg)|+1\bigg)e^{i_{2}\theta}\\ & = \bigg(|\int_{\mathcal{E}}\bigg(\mathcal{G}(\mu, \mathfrak{p}, \varphi(\mathfrak{p}), \zeta(\mathfrak{p}))\\ &-\mathcal{G}(\mu, \mathfrak{p}, \nu(\mathfrak{p}), \varPhi(\mathfrak{p}))\bigg)d\mathfrak{p}|+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}}\bigg(\int_{\mathcal{E}}|\mathcal{G}(\mu, \mathfrak{p}, \varphi(\mathfrak{p}), \zeta(\mathfrak{p}))-\mathcal{G}(\mu, \mathfrak{p}, \nu(\mathfrak{p}), \varPhi(\mathfrak{p}))|d\mathfrak{p}+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}}\bigg(\int_{\mathcal{E}}|\kappa(\mu, \mathfrak{p})|(|\varphi(\mathfrak{p})-\nu(\mathfrak{p})|+|\zeta(\mathfrak{p})-\varPhi(\mathfrak{p})|-2)d\mathfrak{p}+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}}\bigg(\int_{\mathcal{E}}|\kappa(\mu, \mathfrak{p})|d\mathfrak{p}(|\varphi(\mathfrak{p})-\nu(\mathfrak{p})|+|\zeta(\mathfrak{p})-\varPhi(\mathfrak{p})|-2)+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}} \frac{1}{4}\bigg(|\varphi(\mathfrak{p})-\nu(\mathfrak{p})|+|\zeta(\mathfrak{p})-\varPhi(\mathfrak{p})|-2+4\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}} \frac{1}{4}(\rho_{bcpms}(\varphi, \nu)+\rho_{bcpms}(\zeta, \varPhi))\\ & = \lambda(\rho_{bcpms}(\varphi, \nu)+\rho_{bcpms}(\zeta, \varPhi)), \end{align*} |
for all \varphi, \zeta, \nu, \varPhi\in \mathcal{U} , where 0\leq\lambda = \frac{1}{4} < \frac{1}{2} . Hence, all the hypotheses of Corollary 3.4 are verified, and consequently, the integral equation (4.4) has a unique solution.
In this paper, we proved coupled fixed point theorems on a bicomplex partial metric space. An illustrative example and an application on a bicomplex partial metric space were given.
The authors declare no conflict of interest.
[1] | A. Bekir, Ö. Güner, The G' G-expansion method using modified Riemann-Liouville derivative for some space-time fractional differential equations, Ain Shams Eng. J., 5 (2014), 959-965. |
[2] |
Z. Bin, (G'/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics, Commun. Theor. Phys., 58 (2012), 623. doi: 10.1088/0253-6102/58/5/02
![]() |
[3] |
U. Ali, M. Sohail, M. Usman, F. A. Abdullah, I. Khan, K. S. Nisar, Fourth-order difference approximation for time-fractional modified sub-diffusion equation, Symmetry, 12 (2020), 691. doi: 10.3390/sym12050691
![]() |
[4] | U. Ali, F. A. Abdullah, A. I. Ismail, Crank-Nicolson finite difference method for two-dimensional fractional sub-diffusion equation, J. Interpolation Approximation Sci. Comput., (2017), 18-29. |
[5] |
Y. Jiang, J. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235 (2011), 3285-3290. doi: 10.1016/j.cam.2011.01.011
![]() |
[6] |
M. H. Srivastava, H. Ahmad, I. Ahmad, P. Thounthong, N. M. Khan, Numerical simulation of three-dimensional fractional-order convection-diffusion PDEs by a local meshless method, Therm. Sci., 25 (2021), 347-358. doi: 10.2298/TSCI200225210S
![]() |
[7] |
P. Zhuang, F. Liu, Finite difference approximation for two-dimensional time fractional diffusion equation, J. Algorithms Comput. Technol., 1 (2007), 1-16. doi: 10.1260/174830107780122667
![]() |
[8] |
H. Ahmad, T. A. Khan, S. W. Yao, An efficient approach for the numerical solution of fifth order KdV equations, Open Math., 18 (2020), 738-748. doi: 10.1515/math-2020-0036
![]() |
[9] |
M. Cui, Compact alternating direction implicit method for two-dimensional time fractional diffusion equation, J. Comput. Phys., 231 (2012), 2621-2633. doi: 10.1016/j.jcp.2011.12.010
![]() |
[10] |
Y. Jiang, J. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235 (2011), 3285-3290. doi: 10.1016/j.cam.2011.01.011
![]() |
[11] |
U. Ali, F. A. Abdullah, Explicit Saul'yev finite difference approximation for two-dimensional fractional sub-diffusion equation, AIP Conference Proceedings, 1974 (2018), 020111. doi: 10.1063/1.5041642
![]() |
[12] | I. Ahmad, A. Abouelregal, H. Ahmad, P. Thounthong, M. Abdel-Aty, A new analyzing method for hyperbolic telegraph equation, Authorea, 2020. |
[13] |
A. T. Balasim, N. H. M. Ali, A comparative study of the point implicit schemes on solving the 2D time fractional cable equation, AIP Conference Proceedings, 1870 (2017), 040050. doi: 10.1063/1.4995882
![]() |
[14] |
A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos, Solitons Fractals, 114 (2018), 478-482. doi: 10.1016/j.chaos.2018.07.032
![]() |
[15] |
A. Akgül, S. Ahmad, A. Ullah, D. Baleanu, E. K. Akgül, A novel method for analysing the fractal fractional integrator circuit, Alexandria Eng. J., 60 (2021), 3721-3729. doi: 10.1016/j.aej.2021.01.061
![]() |
[16] |
A. Akgül, D. Baleanu, Analysis and applications of the proportional Caputo derivative, Adv. Differ. Equations, 2021 (2021), 1-12. doi: 10.1186/s13662-020-03162-2
![]() |
[17] | A. Akgül, Analysis and new applications of fractal fractional differential equations with power law kernel, Discrete Contin. Dyn. Syst.-S, 2020. |
[18] | N. Shang, B. Zheng, Exact solutions for three fractional partial differential equations by the (G'/G) method, Int. J. Appl. Math., 43 (2013), 114-119. |
[19] | A. Yokus, H. Durur, H. Ahmad, P. Thounthong, Y. F. Zhang, Construction of exact traveling wave solutions of the Bogoyavlenskii equation by (G'/G, 1/G)-expansion and (1/G')-expansion techniques, Results Phys., (2020), 103409. |
[20] | H. K. Barman, A. R. Seadawy, M. A. Akbar, D. Baleanu, Competent closed form soliton solutions to the Riemann wave equation and the Novikov-Veselov equation, Results Phys., (2020), 103-131. |
[21] | A. J. A. M. Jawad, M. D. Petković, A. Biswas, Modified simple equation method for nonlinear evolution equations, Appl. Math. Comput., 217 (2010), 869-877. |
[22] | Y. Zhang, Solving STO and KD equations with modified Riemann-Liouville derivative using improved (G'/G)-expansion function method, IAENG Int. J. Appl. Math., 45 (2015), 16-22. |
[23] |
T. Islam, M. A. Akbar, A. K. Azad, Traveling wave solutions to some nonlinear fractional partial differential equations through the rational (G'/G)-expansion method, J. Ocean Eng. Sci., 3 (2018), 76-81. doi: 10.1016/j.joes.2017.12.003
![]() |
[24] |
A. R. Seadawy, D. Yaro, D. Lu, Propagation of nonlinear waves with a weak dispersion via coupled (2+1)-dimensional Konopelchenko-Dubrovsky dynamical equation, Pramana, 94 (2020), 17. doi: 10.1007/s12043-019-1879-z
![]() |
[25] |
A. Başhan, N. M. Yağmurlu, Y. Uçar, A. Esen, Finite difference method combined with differential quadrature method for numerical computation of the modified equal width wave equation, Numer. Methods Partial Differ. Equations, 37 (2021), 690-706. doi: 10.1002/num.22547
![]() |
[26] |
A. Başhan, N. M. Yağmurlu, Y. Uçar, A. Esen, An effective approach to numerical soliton solutions for the Schrödinger equation via modified cubic B-spline differential quadrature method, Chaos, Solitons Fractals, 100 (2017), 45-56. doi: 10.1016/j.chaos.2017.04.038
![]() |
[27] | A. Başhan, N. M. Yağmurlu, Y. Uçar, A. Esen, A new perspective for the numerical solution of the modified equal width wave equation, Math. Methods Appl. Sci., 2021. |
[28] |
A. Başhan, A. Esen, Single soliton and double soliton solutions of the quadratic‐nonlinear Korteweg‐de Vries equation for small and long‐times, Numer. Methods Partial Differ. Equations, 37 (2021), 1561-1582. doi: 10.1002/num.22597
![]() |
[29] |
A. Başhan, Y. Uçar, N. M. Yağmurlu, A. Esen, A new perspective for quintic B-spline based Crank-Nicolson-differential quadrature method algorithm for numerical solutions of the nonlinear Schrödinger equation, Eur. Phys. J. Plus, 133 (2018), 1-15. doi: 10.1140/epjp/i2018-11804-8
![]() |
[30] |
A. Başhan, A mixed methods approach to Schrödinger equation: Finite difference method and quartic B-spline based differential quadrature method, Int. J. Optim. Control: Theor. Appl. (IJOCTA), 9 (2019), 223-235. doi: 10.11121/ijocta.01.2019.00709
![]() |
[31] | A. M. Wazwaz, The Hirota's direct method for multiple-soliton solutions for three model equations of shallow water waves, Appl. Math. Comput., 201 (2008), 489-503. |
[32] | K. Hosseini, A. R. Seadawy, M. Mirzazadeh, M. Eslami, S. Radmehr, D. Baleanu, Multiwave, multicomplexiton, and positive multicomplexiton solutions to a (3+1)-dimensional generalized breaking soliton equation, Alexandria Eng. J., 59 (2020), 3473-3479. |
[33] |
U. Ali, M. Sohail, F. A. Abdullah, An efficient numerical scheme for variable-order fractional sub-diffusion equation, Symmetry, 12 (2020), 1437. doi: 10.3390/sym12091437
![]() |
[34] |
W. G. Glöckle, T. F. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics, Biophys. J., 68 (1995), 46-53. doi: 10.1016/S0006-3495(95)80157-8
![]() |
[35] | H. Sun, A. Chang, Y. Zhang, W. Chen, A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods, and applications, Fractional Calculus Appl. Anal., 22 (2019), 27-59. |
[36] |
Y. Shekari, A. Tayebi, M. H. Heydari, A meshfree approach for solving 2D variable-order fractional nonlinear diffusion-wave equation, Comput. Methods Appl. Mech. Eng., 350 (2019), 154-168. doi: 10.1016/j.cma.2019.02.035
![]() |
[37] |
C. M. Chen, F. Liu, I. Turner, V. Anh, Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes' first problem for a heated generalized second grade fluid, Comput. Math. Appl., 62 (2011), 971-986. doi: 10.1016/j.camwa.2011.03.065
![]() |
[38] |
P. Zhuang, F. Liu, V. Anh, I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47 (2009), 1760-1781. doi: 10.1137/080730597
![]() |
[39] |
C. M. Chen, F. Liu, V. Anh, I. Turner, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. Scientific Comput., 32 (2010), 1740-1760. doi: 10.1137/090771715
![]() |
[40] | J. T. Katsikadelis, Numerical solution of variable order fractional differential equations, 2018. Available from: https: //arXiv.org/abs/1802.00519. |
[41] | H. Sun, A. Chang, Y. Zhang, W. Chen, A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications, Fractional Calculus Appl. Anal., 22 (2019), 27-59. |
[42] | U. Ali, Numerical solutions for two-dimensional time-fractional differential sub-diffusion equation, Ph.D. Thesis, University Sains Malaysia, Penang, Malaysia, 2019. |
[43] |
S. G. Samko, B. Ross, Integration and differentiation to a variable fractional order, Integr. Transforms Spec. Funct., 1 (1993), 277-300. doi: 10.1080/10652469308819027
![]() |
[44] | U. Ali, F. A. Abdullah, S. T. Mohyud-Din, Modified implicit fractional difference scheme for 2D modified anomalous fractional sub-diffusion equation, Adv. Differ. Equations, 2017 (2017), 1-14. |
[45] |
S. Bibi, S. T. Mohyud-Din, U. Khan, N. Ahmed, Khater method for nonlinear Sharma Tasso-Olever (STO) equation of fractional order, Results Phys., 7 (2017), 4440-4450. doi: 10.1016/j.rinp.2017.11.008
![]() |
[46] | A. Coronel-Escamilla, J. F. Gómez-Aguilar, L. Torres, R. F. Escobar-Jiménez, M. Valtierra-Rodríguez, Synchronization of chaotic systems involving fractional operators of Liouville-Caputo type with variable-order, Phys. A: Stat. Mech. Appl., 487 (2017), 1-21. |
[47] | J. F. Gómez-Aguilar, Chaos in a nonlinear Bloch system with Atangana-Baleanu fractional derivatives, Numer. Methods Partial Differ. Equations, 34 (2018), 1716-1738. |
[48] | C. J. Zúñiga-Aguilar, H. M. Romero-Ugalde, J. F. Gómez-Aguilar, R. F. Escobar-Jiménez, M. Valtierra-Rodríguez, Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networks, Chaos, Solitons Fractals, 103 (2017), 382-403. |
[49] | A. Coronel-Escamilla, J. F. Gómez-Aguilar, L. Torres, M. Valtierra-Rodriguez, R. F. Escobar-Jiménez, Design of a state observer to approximate signals by using the concept of fractional variable-order derivative, Digital Signal Process., 69 (2017), 127-139. |
[50] | K. D. Dwivedi, S. Das, J. F. Gomez-Aguilar, Finite difference/collocation method to solve multi term variable‐order fractional reaction-advection-diffusion equation in heterogeneous medium, Numer. Methods Partial Differ. Equations, 37 (2021), 2031-2045. |
[51] | C. J. Zúñiga-Aguilar, J. F. Gómez-Aguilar, H. M. Romero-Ugalde, R. F. Escobar-Jiménez, G. Fernández-Anaya, F. E. Alsaadi, Numerical solution of fractal-fractional Mittag-Leffler differential equations with variable-order using artificial neural networks, Eng. Comput., (2021), 1-14. |
[52] | J. F. Li, H. Jahanshahi, S. Kacar, Y. M. Chu, J. F. Gómez-Aguilar, N. D. Alotaibi, et al, On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control, Chaos, Solitons Fractals, 145 (2021), 110681. |
[53] |
A. H. Khater, D. K. Callebaut, W. Malfliet, A. R. Seadawy, Nonlinear dispersive Rayleigh-Taylor instabilities in magnetohydrodynamic flows, Phys. Scripta, 64 (2001), 533. doi: 10.1238/Physica.Regular.064a00533
![]() |
[54] |
A. H. Khater, D. K. Callebaut, A. R. Seadawy, Nonlinear dispersive instabilities in Kelvin-Helmholtz magnetohydrodynamic flows, Phys. Scr., 67 (2003), 340. doi: 10.1238/Physica.Regular.067a00340
![]() |
[55] |
M. A. Helal, A. R. Seadawy, Variational method for the derivative nonlinear Schrödinger equation with computational applications, Phys. Scr., 80 (2009), 035004. doi: 10.1088/0031-8949/80/03/035004
![]() |
[56] |
M. A. Helal, A. R. Seadawy, Exact soliton solutions of a D-dimensional nonlinear Schrödinger equation with damping and diffusive terms, Z. Angew. Math. Phys., 62 (2011), 839. doi: 10.1007/s00033-011-0117-4
![]() |
[57] |
R. Aly, Exact solutions of a two-dimensional nonlinear Schrödinger equation, Appl. Math. Lett., 25 (2012), 687-691. doi: 10.1016/j.aml.2011.09.030
![]() |
[58] |
A. R. Seadawy, Fractional solitary wave solutions of the nonlinear higher-order extended KdV equation in a stratified shear flow: Part I, Comput. Math. Appl., 70 (2015), 345-352. doi: 10.1016/j.camwa.2015.04.015
![]() |
[59] |
A. R. Seadawy, Approximation solutions of derivative nonlinear Schrödinger equation with computational applications by variational method, Eur. Phys. J. Plus, 130 (2015), 1-10. doi: 10.1140/epjp/i2015-15001-1
![]() |
[60] |
A. R. Seadawy, Three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma, Comput. Math. Appl., 71 (2016), 201-212. doi: 10.1016/j.camwa.2015.11.006
![]() |
[61] |
M. Bilal, A. R. Seadawy, M. Younis, S. T. R. Rizvi, K. El-Rashidy, S. F. Mahmoud, Analytical wave structures in plasma physics modelled by Gilson-Pickering equation by two integration norms, Results Phys., 23 (2021), 103959. doi: 10.1016/j.rinp.2021.103959
![]() |
[62] |
A. R. Seadawy, M. Bilal, M. Younis, S. T. R. Rizvi, S. Althobaiti, M. M. Makhlouf, Analytical mathematical approaches for the double-chain model of DNA by a novel computational technique, Chaos, Solitons Fractals, 144 (2021), 110669. doi: 10.1016/j.chaos.2021.110669
![]() |
[63] |
A. Ali, A. R. Seadawy, D. Lu, Dispersive analytical soliton solutions of some nonlinear waves dynamical models via modified mathematical methods, Adv. Differ. Equations, 2018 (2018), 1-20. doi: 10.1186/s13662-017-1452-3
![]() |
[64] |
M. Arshad, A. R. Seadawy, D. Lu, Bright-dark solitary wave solutions of generalized higher-order nonlinear Schrödinger equation and its applications in optics, J. Electromagn. Waves Appl., 31 (2017), 1711-1721. doi: 10.1080/09205071.2017.1362361
![]() |
[65] |
S. T. R. Rizvi, A. R. Seadawy, F. Ashraf, M. Younis, H. Iqbal, D. Baleanu, Lump and interaction solutions of a geophysical Korteweg-de Vries equation, Results Phys., 19 (2020), 103661. doi: 10.1016/j.rinp.2020.103661
![]() |
[66] |
A. R. Seadawy, D. Kumar, K. Hosseini, F. Samadani, The system of equations for the ion sound and Langmuir waves and its new exact solutions, Results Phys., 9 (2018), 1631-1634. doi: 10.1016/j.rinp.2018.04.064
![]() |
[67] |
N. Cheemaa, A. R. Seadawy, S. Chen, More general families of exact solitary wave solutions of the nonlinear Schrödinger equation with their applications in nonlinear optics, Eur. Phys. J. Plus, 133 (2018), 1-9. doi: 10.1140/epjp/i2018-11804-8
![]() |
[68] |
N. Cheemaa, A. R. Seadawy, S. Chen, Some new families of solitary wave solutions of the generalized Schamel equation and their applications in plasma physics, Eur. Phys. J. Plus, 134 (2019), 117. doi: 10.1140/epjp/i2019-12467-7
![]() |
[69] | Y. S. Özkan, E. Yaşar, A. R. Seadawy, On the multi-waves, interaction and Peregrine-like rational solutions of perturbed Radhakrishnan-Kundu-Lakshmanan equation, Phys. Scr., 95 (2020), 085205. |
[70] |
A. R. Seadawy, N. Cheemaa, Some new families of spiky solitary waves of one-dimensional higher-order K-dV equation with power law nonlinearity in plasma physics, Indian J. Phys., 94 (2020), 117-126. doi: 10.1007/s12648-019-01442-6
![]() |
[71] |
D. Lu, A. R. Seadawy, A. Ali, Dispersive traveling wave solutions of the equal-width and modified equal-width equations via mathematical methods and its applications, Results Phys., 9 (2018), 313-320. doi: 10.1016/j.rinp.2018.02.036
![]() |
1. | Sunisa Theswan, Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon, Existence Results for Nonlinear Coupled Hilfer Fractional Differential Equations with Nonlocal Riemann–Liouville and Hadamard-Type Iterated Integral Boundary Conditions, 2022, 14, 2073-8994, 1948, 10.3390/sym14091948 |