Research article

Almost primes in Piatetski-Shapiro sequences

  • Received: 01 June 2021 Accepted: 22 June 2021 Published: 24 June 2021
  • MSC : 11B83, 11L07

  • The Piatetski-Shapiro sequences are sequences of the form $ (\left\lfloor {{n^c}} \right\rfloor)_{n = 1}^\infty $ for $ c > 1 $ and $ c \not\in \mathbb{N} $. It is conjectured that there are infinitely many primes in Piatetski-Shapiro sequences for $ c \in (1, 2) $. For every $ R \ge 1 $, we say that a natural number is an $ R $-almost prime if it has at most $ R $ prime factors, counted with multiplicity. In this paper, we prove that there are infinitely many $ R $-almost primes in Piatetski-Shapiro sequences if $ c \in (1, c_R) $ and $ c_R $ is an explicit constant depending on $ R $.

    Citation: Victor Zhenyu Guo. Almost primes in Piatetski-Shapiro sequences[J]. AIMS Mathematics, 2021, 6(9): 9536-9546. doi: 10.3934/math.2021554

    Related Papers:

  • The Piatetski-Shapiro sequences are sequences of the form $ (\left\lfloor {{n^c}} \right\rfloor)_{n = 1}^\infty $ for $ c > 1 $ and $ c \not\in \mathbb{N} $. It is conjectured that there are infinitely many primes in Piatetski-Shapiro sequences for $ c \in (1, 2) $. For every $ R \ge 1 $, we say that a natural number is an $ R $-almost prime if it has at most $ R $ prime factors, counted with multiplicity. In this paper, we prove that there are infinitely many $ R $-almost primes in Piatetski-Shapiro sequences if $ c \in (1, c_R) $ and $ c_R $ is an explicit constant depending on $ R $.



    加载中


    [1] R. C. Baker, G. Harman, J. Rivat, Primes of the form $\left\lfloor {{n^c}} \right\rfloor$, J. Number Theory, 50 (1995), 261–277. doi: 10.1006/jnth.1995.1020
    [2] S. W. Graham, G. Kolesnik, Van der Corput's method of exponential sums, London Mathematical Society Lecture Note Series, 126. Cambridge University Press, Cambridge, 1991.
    [3] G. Greaves, Sieves in Number Theory, Results in Mathematics and Related Areas, Vol. 43, Springer-Verlag, Berlin, 2001.
    [4] D. R. Heath-Brown, The Pjateckiǐ-Šapiro prime number theorem, J. Number Theory, 16 (1983), 242–266. doi: 10.1016/0022-314X(83)90044-6
    [5] C. H. Jia, On Pjateckiǐ-Šapiro prime number theorem II, Sci. China Ser. A, 36 (1993), 913–926.
    [6] C. H. Jia, On Pjateckiǐ-Šapiro prime number theorem, Chin. Ann. Math. Ser. B, 15 (1994), 9–22.
    [7] G. A. Kolesnik, The distribution of primes in sequences of the form $\left\lfloor {{n^c}} \right\rfloor$, Mat. Zametki, 2 (1967), 117–128.
    [8] G. A. Kolesnik, Primes of the form $\left\lfloor {{n^c}} \right\rfloor$, Pacific J. Math., 118 (1985), 437–447. doi: 10.2140/pjm.1985.118.437
    [9] A. Kumchev, On the distribution of prime numbers of the form $\left\lfloor {{nc}} \right\rfloor$, Glasg. Math. J., 41 (1999), 85–102. doi: 10.1017/S0017089599970477
    [10] D. Leitmann, Abschätzung trigonometrischer Summen (German), J. Reine Angew. Math., 317 (1980), 209–219.
    [11] D. Leitmann, D. Wolke, Primzahlen der Gestalt $[f(n)]$ (German), Math. Z., 145 (1975), 81–92. doi: 10.1007/BF01214500
    [12] H. Q. Liu, J. Rivat, On the Pjateckiǐ-Šapiro prime number theorem, Bull. Lond. Math. Soc., 24 (1992), 143–147. doi: 10.1112/blms/24.2.143
    [13] I. I. Piatetski-Shapiro, On the distribution of prime numbers in the sequence of the form $\left\lfloor {{f(n)}} \right\rfloor$, Mat. Sb., 33 (1953), 559–566.
    [14] J. Rivat, Autour d'un theorem de Piatetski-Shapiro, Thesis, Université de Paris Sud, 1992.
    [15] J. Rivat, S. Sargos, Nombres premiers de la forme $\left\lfloor {{n^c}} \right\rfloor$, Canad. J. Math., 53 (2001), 414–433. doi: 10.4153/CJM-2001-017-0
    [16] J. Rivat, J. Wu, Prime numbers of the form $\left\lfloor {{n^c}} \right\rfloor$, Glasg. Math. J., 43 (2001), 237–254.
    [17] O. Robert, P. Sargos, A third derivative test for mean values of exponential sums with application to lattice point problems, Acta Arith., 106 (2003), 27–39. doi: 10.4064/aa106-1-2
    [18] J. D. Vaaler, Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc., 12 (1985), 183–216. doi: 10.1090/S0273-0979-1985-15349-2
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2210) PDF downloads(116) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog