In this paper, we study the $ k $-error linear complexity of binary sequences with periods $ p^n $, which are derived from new generalized cyclotomic classes modulo a power of an odd prime $ p $. We establish a recursive relation and then estimate the $ k $-error linear complexity of the binary sequences with periods $ p^n $, the results extend the case $ p^2 $ that has been studied in an earlier work of Wu et al. at 2019. Our results show that the $ k $-error linear complexity of these sequences does not decrease dramatically for $ k < (p^{n}-p^{n-1})/2 $.
Citation: Vladimir Edemskiy, Chenhuang Wu. On the $ k $-error linear complexity of binary sequences of periods $ p^n $ from new cyclotomy[J]. AIMS Mathematics, 2022, 7(5): 7997-8011. doi: 10.3934/math.2022446
In this paper, we study the $ k $-error linear complexity of binary sequences with periods $ p^n $, which are derived from new generalized cyclotomic classes modulo a power of an odd prime $ p $. We establish a recursive relation and then estimate the $ k $-error linear complexity of the binary sequences with periods $ p^n $, the results extend the case $ p^2 $ that has been studied in an earlier work of Wu et al. at 2019. Our results show that the $ k $-error linear complexity of these sequences does not decrease dramatically for $ k < (p^{n}-p^{n-1})/2 $.
[1] | T. W. Cusick, C. Ding, A. R. Renvall, Stream ciphers and number theory, Amsterdam: Elsevier, 2004. |
[2] | C. S. Ding, T. Helleseth, New generalized cyclotomy and its applications, Finite Fields Appl., 4 (1998), 140–166. https://doi.org/10.1006/ffta.1998.0207 doi: 10.1006/ffta.1998.0207 |
[3] | Z. B. Xiao, X. Y. Zeng, C. L. Li, T. Helleseth, New generalized cyclotomic binary sequences of period $p^2$, Des. Codes Cryptogr., 86 (2018), 1483–1497. https://doi.org/10.1007/s10623-017-0408-7 doi: 10.1007/s10623-017-0408-7 |
[4] | Y. Ouyang, X. H. Xie, Linear complexity of generalized cyclotomic sequences of period $2p^m$, Des. Codes Cryptogr., 87 (2019), 2585–2596. https://doi.org/10.1007/s10623-019-00638-5 doi: 10.1007/s10623-019-00638-5 |
[5] | X. Y. Zeng, H. Cai, X. H. Tang, Y. Yang, Optimal frequency hopping sequences of odd length, IEEE T. Inform. Theory, 59 (2013), 3237–3248. https://doi.org/10.1109/TIT.2013.2237754 doi: 10.1109/TIT.2013.2237754 |
[6] | H. N. Liu, X. Liu, On the properties of generalized cyclotomic binary sequences of period $2p^m$, Des. Codes Cryptogr., 89 (2021), 1691–1712. https://doi.org/10.1007/s10623-021-00887-3 doi: 10.1007/s10623-021-00887-3 |
[7] | V. Edemskiy, C. L. Li, X. Y. Zeng, T. Helleseth, The linear complexity of generalized cyclotomic binary sequences of period $p^n$, Des. Codes Cryptogr., 87 (2019), 1183–1197. https://doi.org/10.1007/s10623-018-0513-2 doi: 10.1007/s10623-018-0513-2 |
[8] | Z. F. Ye, P. H. Ke, C. H. Wu, A further study of the linear complexity of new binary cyclotomic sequence of length $p^n$, AAECC, 30 (2019), 217–231. https://doi.org/10.1007/s00200-018-0368-9 doi: 10.1007/s00200-018-0368-9 |
[9] | S. Golomb, Shift register sequences, California: Aegean Park Press, 1967. |
[10] | M. Stamp, C. F. Martin, An algorithm for the $k$-error linear complexity of binary sequences with period $2^n$, IEEE T. Inform. Theory, 39 (1993), 1398–1401. https://doi.org/10.1109/18.243455 doi: 10.1109/18.243455 |
[11] | C. H. Wu, C. X. Xu, Z. X. Chen, P. H. Ke, On error linear complexity of new generalized cyclotomic binary sequences of period $p^2$, Inform. Process. Lett., 144 (2019), 9–15. https://doi.org/10.1016/j.ipl.2018.08.006 doi: 10.1016/j.ipl.2018.08.006 |
[12] | Z. X. Chen, V. Edemskiy, P. H. Ke, C. H. Wu, On k-error linear complexity of pseudorandom binary sequences derived from Euler quotients, Adv. Math. Commun., 12 (2018), 805–816. https://doi.org/10.3934/amc.2018047 doi: 10.3934/amc.2018047 |
[13] | Z. X. Chen, Trace representations and linear complexity of binary sequences derived from Fermat quotients, Sci. China Inf. Sci., 57 (2014), 1–10. https://doi.org/10.1007/s11432-014-5092-x doi: 10.1007/s11432-014-5092-x |
[14] | Z. X. Chen, X. N. Du, On the linear complexity of binary threshold sequences derived from Fermat quotients, Des. Codes Cryptogr., 67 (2013), 317–323. https://doi.org/10.1007/s10623-012-9608-3 doi: 10.1007/s10623-012-9608-3 |
[15] | Z. X. Chen, A. Ostafe, A. Winterhof, Structure of pseudorandom numbers derived from Fermat quotients, In: WAIFI 2010: Arithmetic of finite fields, Berlin, Heidelberg: Springer, 2010, 73–85. https://doi.org/10.1007/978-3-642-13797-6_6 |
[16] | Z. X. Chen, Z. H. Niu, C. H. Wu, On the k-error linear complexity of binary sequences derived from polynomial quotients, Sci. China Inf. Sci., 58 (2015), 1–15. https://doi.org/10.1007/s11432-014-5220-7 doi: 10.1007/s11432-014-5220-7 |
[17] | Z. Chen, X. Du, R. Marzouk, Trace representation of pseudorandom binary sequences derived from Euler quotients, AAECC, 26 (2015), 555–570. https://doi.org/10.1007/s00200-015-0265-4 doi: 10.1007/s00200-015-0265-4 |
[18] | Z. F. Ye, P. H. Ke, Z. X. Chen, Linear complexity of $d$-ary sequence derived from Euler quotients over $GF(q)$, Chinese J. Electron., 28 (2019), 529–534. https://doi.org/10.1049/cje.2019.02.004 doi: 10.1049/cje.2019.02.004 |
[19] | C. Zhao, W. P. Ma, T. J. Yan, Y. H. Sun, Linear complexity of least significant bit of polynomial quotients, Chinese J. Electron., 26 (2017), 573–578. https://doi.org/10.1049/cje.2016.10.008 doi: 10.1049/cje.2016.10.008 |
[20] | R. Lidl, H. Niederreiter, Finite fields, Cambridge: Cambridge University Press, 1997. |
[21] | K. Ireland, M. Rosen, A classical introduction to modern number theory, New York: Springer, 1990. |
[22] | V. Edemskiy, N. Sokolovskiy, The estimate of the linear complexity of generalized cyclotomic binary and quaternary sequences with periods $p^n$ and $2p^n$, Cryptogr. Commun., 2021. https://doi.org/10.1007/s12095-021-00534-7 doi: 10.1007/s12095-021-00534-7 |