In this paper, the Hermite-Hadamard inequality for $ s $-convex functions in the third sense is provided. In addition, some integral inequalities for them are presented. Also, the new functions based on the integral and double integral of $ s $-convex functions in the third sense are defined and under certain conditions, the third sense $ s $-convexity of these functions are shown and some inequality relations for these are expressed.
Citation: Sevda Sezer. The Hermite-Hadamard inequality for $ s $-Convex functions in the third sense[J]. AIMS Mathematics, 2021, 6(7): 7719-7732. doi: 10.3934/math.2021448
In this paper, the Hermite-Hadamard inequality for $ s $-convex functions in the third sense is provided. In addition, some integral inequalities for them are presented. Also, the new functions based on the integral and double integral of $ s $-convex functions in the third sense are defined and under certain conditions, the third sense $ s $-convexity of these functions are shown and some inequality relations for these are expressed.
[1] | G. R. Adilov, S. Kemali, Abstract convexity and Hermite-Hadamard type inequalities, J. Inequal. Appl., 2009 (2009), 943534. doi: 10.1155/2009/943534 |
[2] | G. R. Adilov, S. Kemali, Hermite-Hadamard-type inequalities for increasing positively homogeneous functions, J. Inequal. Appl., 2007 (2007), 021430. |
[3] | M. Alomari, M. Darus, Hadamard-Type Inequalities for s-Convex Functions, Int. Math. Forum, 3 (2008), 1965-1975. |
[4] | J. Bastero, J. Bernués, A. Peña, The theorems of Caratheodory and Gluskin for $ 0 < p < 1$, Proc. Am. Math. Soc., 123 (1995), 141-144. |
[5] | A. Bayoumi, Foundation of complex analysis in non locally convex spaces, In: North Holland, mathematics studies, Amsterdam: Elsevier Science, 193 (2003). |
[6] | W. W. Breckner, Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Raumen, Publ. I. Math.-Beograd, 23 (1978), 13-20. |
[7] | F. X. Chen, S. H. Wu, Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 705-716. doi: 10.22436/jnsa.009.02.32 |
[8] | S. S. Dragomir, C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Science Direct Working Paper No S1574-0358(04)70845-X, Available from: https://ssrn.com/abstract = 3158351. |
[9] | S. S. Dragomir, S. Fitzpatrick, Hadamard's inequality for s-convex functions in the first sense and applications, Demonstratio Mathematica, 31 (1998), 633-642. |
[10] | S. S. Dragomir, S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Mathematica, 32 (1999), 687-696. |
[11] | S. S. Dragomir, R. P. Agarwal, N. S. Barnett. Inequalities for Beta and Gamma functions via some classical and new integral inequalities, J. Inequal. Appl., 5 (2000), 103-165. |
[12] | T. S. Du, M. U. Awan, A. Kashuri, S. S. Zhao, Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m, h)-preinvexity, Appl. Anal., 100 (2021), 642-662. doi: 10.1080/00036811.2019.1616083 |
[13] | T. S. Du, H. Wang, M. A. Khan, Y. Zhang, Certain integral inequalities considering generalized m-convexity on fractal sets and their applications, Fractals, 27 (2019), 1950117. doi: 10.1142/S0218348X19501172 |
[14] | S. Hussain, M. I. Bhatti, M. Iqbal, Hadamard-Type Inequalities for s-Convex Functions I, Punjab Uni. J. Math., 41 (2009), 51-60. |
[15] | İ. İşcan, Hermite-Hadamard type inequalities for harmonically $(\alpha, m)$-convex functions, Hacet. J. Math. Stat., 45 (2016), 381-390. |
[16] | S. Kemali, G. Tinaztepe, G. Adilov, New type inequalities for B-convex functions involving hadamard fractional integral, Facta Univ.-series: Math. informa., 33 (2018), 697-704. |
[17] | S. Kemali, S. Sezer, G. Tınaztepe, G. Adilov, $s$-Convex function in the third sense, Akademik Veri Yönetim Sistemi, Available from: http://aves.akdeniz.edu.tr/sevdasezer/dokumanlar. |
[18] | M. A. Khan, Y. M. Chu, T. U. Khan, J. Khan, Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Math., 15 (2017), 1414-1430. doi: 10.1515/math-2017-0121 |
[19] | U. S. Kirmaci, B. K. Bakula, M. E. Özdemir, J. Pečarić, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput., 193 (2007), 26-35. |
[20] | N. Mehreen, M. Anwar, Hermite-Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the second sense with applications, J. Inequal. Appl., 2019 (2019), 92. doi: 10.1186/s13660-019-2047-1 |
[21] | H. X. Mo, X. Sui, D. Y. Yu, Generalized $s$-convex functions on fractal sets, Abstr. Appl. Anal. 2014 (2014), 636751. |
[22] | P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595. doi: 10.3390/sym12040595 |
[23] | S. Özcan, İ. İşcan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl. 2019 (2019), 201. |
[24] | F. Qi, P. O. Mohammed, J. C. Yao, Y. H. Yao, Generalized fractional integral inequalities of Hermite-Hadamard type for$ (\alpha, m)$-convex functions, J. Inequal. Appl., 2019 (2019), 135. doi: 10.1186/s13660-019-2079-6 |
[25] | M. Z. Sarikaya, M. E. Kiris, Some new inequalities of Hermite-Hadamard type for s-convex functions, Miskolc Math. Notes, 16 (2015), 491-501. doi: 10.18514/MMN.2015.1099 |
[26] | S. Sezer, Z. Eken, G. Tınaztepe, G. Adilov, $p$-convex functions and some of their properties, Numeri. Func. Anal. Opt., 2021. DOI: 10.1080/01630563.2021.1884876. |
[27] | B. Y. Xi, F. Qi, Some Hermite-Hadamard type inequalities for differentiable convex functions and applications, Hacet. J. Math. Stat., 42 (2013), 243-257. |
[28] | I. Yeşilce, G. Adilov, Hermite-Hadamard inequalities for $ \mathbb{B} $-convex and $ \mathbb{B}^{-1} $-convex functions, Int. J. Nonlinear Anal. Appl., 8 (2017), 225-233. |
[29] | I. Yesilce, G. Adilov, Hermite-Hadamard type inequalities for B-1-convex functions involving generalized fractional integral operators, Filomat, 32 (2018), 6457-6464. doi: 10.2298/FIL1818457Y |
[30] | I. Yesilce, G. Adilov, Hermite-Hadamard Inequalities for L (j)-convex Functions and S (j)-convex Functions, Malaya J. Mat., 3 (2015), 346-359. |
[31] | I. Yeşilce, Inequalities for B-convex functions via generalized fractional integral, J. Inequal. Appl., 2019 (2019), 194. doi: 10.1186/s13660-019-2150-3 |