In this paper, we consider the following Kirchhoff-type equation:
$ -\left(a+b\int_{ \mathbb{R}^3}|\nabla u|^2dx\right)\Delta u+u = |u|^{p-1}u,\quad {\rm{in }}\; \mathbb{R}^3, $
where $ a $, $ b > 0 $, $ p \in (1, 5) $. By considering a minimization problem on a special constraint set, we prove that the above problem has at least one sign-changing solution for any $ p \in (1, 5) $. Our results (especially $ p \in (1, 3] $) can be regarded as an improvement on the existing results.
Citation: Ting Xiao, Yaolan Tang, Qiongfen Zhang. The existence of sign-changing solutions for Schrödinger-Kirchhoff problems in $ \mathbb{R}^3 $[J]. AIMS Mathematics, 2021, 6(7): 6726-6733. doi: 10.3934/math.2021395
In this paper, we consider the following Kirchhoff-type equation:
$ -\left(a+b\int_{ \mathbb{R}^3}|\nabla u|^2dx\right)\Delta u+u = |u|^{p-1}u,\quad {\rm{in }}\; \mathbb{R}^3, $
where $ a $, $ b > 0 $, $ p \in (1, 5) $. By considering a minimization problem on a special constraint set, we prove that the above problem has at least one sign-changing solution for any $ p \in (1, 5) $. Our results (especially $ p \in (1, 3] $) can be regarded as an improvement on the existing results.
[1] | J. Sun, S. B. Liu, Nontrivial solutions of Kirchhoff type problems, Appl. Math. Lett., 25 (2012), 500–504. doi: 10.1016/j.aml.2011.09.045 |
[2] | Z. J. Guo, Ground states for Kirchhoff equations without compact condition, J. Differ. Equations, 259 (2015), 2884–2902. doi: 10.1016/j.jde.2015.04.005 |
[3] | Q. Q. Li, K. M. Teng, X. Wu, Ground states for Kirchhoff-type equations with critical or supercritical growth, Math. Method. Appl. Sci., 40 (2017), 6732–6746. doi: 10.1002/mma.4485 |
[4] | W. Chen, Z. W. Fu, Y. Wu, Positive solutions for nonlinear Schrödinger-Kirchhoff equations in $ \mathbb{R}^3$, Appl. Math. Lett., 104 (2020), 106274. doi: 10.1016/j.aml.2020.106274 |
[5] | Q. L. Xie, Least energy nodal solution for Kirchhoff type problem with an asymptotically 4-linear nonlinearity, Appl. Math. Lett., 102 (2020), 106157. doi: 10.1016/j.aml.2019.106157 |
[6] | G. B. Li, H. Y. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $ \mathbb{R}^3$, J. Differ. Equations, 257 (2014), 566–600. doi: 10.1016/j.jde.2014.04.011 |
[7] | L. Wang, B. L. Zhang, K. Cheng K, Ground state sign-changing solutions for the Schödinger-Kirchhoff equation in $ \mathbb{R}^3$, J. Math. Anal. Appl., 466 (2018), 1545–1569. doi: 10.1016/j.jmaa.2018.06.071 |
[8] | X. T. Qian, Ground state sign-changing solutions for a class of nonlocal problem, J. Math. Anal. Appl., 2 (2021), 124753. |
[9] | S. T. Chen, Y. B. Li, X. H. Tang, Sign-changing solutions for asymptotically linear Schrödinger equation in bounded domains, Electron. J. Differ. Eq., 317 (2016), 1–9. |
[10] | G. Q. Chai, W. M. Liu, Least energy sign-changing solutions for Kirchhoff-Poisson systems, Bound. Value Probl., 2019 (2019), 1–25. doi: 10.1186/s13661-018-1115-7 |
[11] | G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. |