This paper introduces fractional-order into a mathematical model of HIV infection of CD4$ ^{+} $ T-cells combining with the rate of multiply uninfected CD4$ ^{+} $ T-cells through mitosis and stem cell therapy. The paper shows the theoretical studies including positivity and stability of the solution. In addition, the numerical solutions are obtained and illustrated. The results show that the stem cell's therapy increases the quality of a HIV patient's life only for short time. This results are consistent with medical case studies.
Citation: Noufe H. Aljahdaly, R. A. Alharbey. Fractional numerical simulation of mathematical model of HIV-1 infection with stem cell therapy[J]. AIMS Mathematics, 2021, 6(7): 6715-6725. doi: 10.3934/math.2021394
This paper introduces fractional-order into a mathematical model of HIV infection of CD4$ ^{+} $ T-cells combining with the rate of multiply uninfected CD4$ ^{+} $ T-cells through mitosis and stem cell therapy. The paper shows the theoretical studies including positivity and stability of the solution. In addition, the numerical solutions are obtained and illustrated. The results show that the stem cell's therapy increases the quality of a HIV patient's life only for short time. This results are consistent with medical case studies.
[1] | R. M. Ribeiro, Dynamics of CD4$^{+}$ T cells in HIV-1 infection, Immunol. Cell Biol., 85 (2007), 287–294. doi: 10.1038/sj.icb.7100056 |
[2] | S. B. Mannheimer, J. Matts, E. Telzak, M. Chesney, C. Child, A. W. Wu, et al., Quality of life in HIV-infected individuals receiving antiretroviral therapy is related to adherence, AIDS Care, 1 (2005), 10–22. |
[3] | J. P. Chávez, B. Gürbüz, C. M. A. Pinto, The effect of aggressive chemotherapy in a model for HIV/AIDS-cancer dynamics, Commun. Nonlinear Sci. Numer. Simul., 75 (2019), 109–120. doi: 10.1016/j.cnsns.2019.03.021 |
[4] | A. Ammassari, R. Murri, P. Pezzotti, M. P. Trotta, L. Ravasio, P. De Caputo, et al., Self-reported symptoms and medication side effects influence adherence to highly active antiretroviral therapy in persons with HIV infection, J. Acquired Immune Defic. Syndr., 28 (2001), 445–449. doi: 10.1097/00042560-200112150-00006 |
[5] | T. J. Henrich, E. Hanhauser, F. M. Marty, M. N. Sirignano, S. Keating, T. H. Lee, et al., Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: Report of 2 cases, Ann. Intern. Med., 161 (2014), 319–327. doi: 10.7326/M14-1027 |
[6] | M. Warren, Second patient free of HIV after stem-cell therapy, Nature, 567 (2019), 7749. |
[7] | A. S. Perelson, D. E. Kirschner, R. De Boer, Dynamics of HIV infection of CD4$^{+}$ T cells, Math. Biosci., 114 (1993), 81–125. doi: 10.1016/0025-5564(93)90043-A |
[8] | R. P. Duffin, R. H. Tullis, Mathematical models of the complete course of HIV infection and AIDS, J. Theor. Med., 4 (2002), 215–221. doi: 10.1080/1027366021000051772 |
[9] | R. V. Culshaw, S. Ruan, A delay-differential equation model of HIV infection of CD4$^{+}$ T-cells, Math. Biosci., 165 (2000), 27–39. doi: 10.1016/S0025-5564(00)00006-7 |
[10] | D. Kirschner, Using mathematics to understand HIV immune dynamics, Not. AMS, 43 (1996), 191–202. |
[11] | A. S. Perelson, P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3–44. doi: 10.1137/S0036144598335107 |
[12] | P. W. Nelson, A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179 (2002), 73–94. doi: 10.1016/S0025-5564(02)00099-8 |
[13] | M. A. Alqudah, S. A. Zarea, S. A. Kallel-jallouli, Mathematical modeling to study multistage stem cell transplantation in HIV-1 patients, Discrete Dyn. Nat. Soc., 2019 (2019), 6379142. |
[14] | M. A. Alqudah, N. H. Aljahdaly, Global stability and numerical simulation of a mathematical model of stem cells therapy of HIV-1 infection, J. Comput. Sci., 45 (2020), 101176. doi: 10.1016/j.jocs.2020.101176 |
[15] | L. Wang, M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4$^{+}$ T cells, Math. Biosci., 200 (2006), 44–57. doi: 10.1016/j.mbs.2005.12.026 |
[16] | A. H. Salas, S. A. El-Tantawy, N. H. Aljahdaly, An exact solution to the quadratic damping strong nonlinearity Duffing oscillator, Math. Probl. Eng., 2021 (2021), 8875589. |
[17] | N. H. Aljahdaly, S. A. El-Tantawy, On the multistage differential transformation method for analyzing damping Duffing oscillator and its applications to plasma physics, Mathematics, 9 (2021), 432. doi: 10.3390/math9040432 |
[18] | N. H. Aljahdaly, Some applications of the modified $(\frac{G^{\prime}}{G^2})$-expansion method in mathematical physics, Results Phys., 13 (2019), 102272. doi: 10.1016/j.rinp.2019.102272 |
[19] | N. H. Aljahdaly, S. A. El-Tantawy, Simulation study on nonlinear structures in nonlinear dispersive media, Chaos, 30 (2020), 053117. doi: 10.1063/1.5132557 |
[20] | H. A. Ashi, N. H. Aljahdaly, Breather and solitons waves in optical fibers via exponential time differencing method, Commun. Nonlinear Sci. Numer. Simul., 85 (2020), 105237. doi: 10.1016/j.cnsns.2020.105237 |
[21] | N. H. Aljahdaly, A. R Seadawy, W. A Albarakati, Applications of dispersive analytical wave solutions of nonlinear seventh order Lax and Kaup-Kupershmidt dynamical wave equations, Results Phys., 14 (2019), 102372. doi: 10.1016/j.rinp.2019.102372 |
[22] | W. A. Albarakati, A. R. Seadaw, N. H. Aljahdaly, Application of mathematical methods for the non-linear seventh order Sawada-Kotera-Ito dynamical wave equation, Therm. Sci., 23 (2019), S2081–S2093. doi: 10.2298/TSCI190705373A |
[23] | N. H. Aljahdaly, A. R Seadawy, W. A Albarakati, Analytical wave solution for the generalized nonlinear seventh-order KdV dynamical equations arising in shallow water waves, Mod. Phys. Lett. B, 34 (2020), 2050279. |
[24] | K. S. Cole, Electric Conductance of Biological Systems, Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor Laboratory Press, 1 (1993), 107–116. |
[25] | Y. Ding, H. Ye, A fractional-order differential equation model of HIV infection of CD4$^{+}$ T-cells, Math. Comput. Modell., 50 (2009), 386–392. doi: 10.1016/j.mcm.2009.04.019 |
[26] | W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709–726. doi: 10.1016/j.jmaa.2006.10.040 |
[27] | M. Caputo, Linear models of dissipation whose Q is almost frequency independent–II, Geophys. J. Int., 13 (1967), 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x |
[28] | S. S. Hassan, H. A. Batarfi, R. A. Alharbey, H. M. Malaikah, Transient switching in some biological models: Fractional critical slowing down, Ital. J. Pure Appl. Math., 2021. |
[29] | Z. M. Odibat, S. Momani, An algorithm for the numerical solution of differential equations of fractional order, J. Appl. Math. Inf., 26 (2008), 15–27. |
[30] | V. K. Srivastava, M. K. Awasthi, S. Kumar, Numerical approximation for HIV infection of CD4$^{+}$ T cells mathematical model, Ain Shams Eng. J., 5 (2014), 625–629. doi: 10.1016/j.asej.2013.12.012 |