Research article Special Issues

HIV dynamics in a periodic environment with general transmission rates

  • Received: 02 September 2024 Revised: 14 October 2024 Accepted: 29 October 2024 Published: 05 November 2024
  • MSC : 34K13, 34K20, 34D23

  • In the current study, we present a mathematical model for human immunodeficiency virus type-1 (HIV-1) transmission, incorporating Cytotoxic T-Lymphocyte immune impairment within a seasonal environment. The model divides the infected cell compartment into two sub-compartments: latently infected cells and productively infected cells. Additionally, we consider three possible routes of infection, allowing HIV to spread among susceptible cells via direct contact with the virus, latently infected cells, or productively infected cells. The system is analyzed, and the basic reproduction number is derived using an integral operator. We demonstrate that the HIV-free periodic trajectory is globally asymptotically stable if $ \mathcal{R}_0 < 1 $, while HIV persists when $ \mathcal{R}_0 > 1 $. Several numerical simulations are provided to validate the theoretical results.

    Citation: Mohammed H. Alharbi. HIV dynamics in a periodic environment with general transmission rates[J]. AIMS Mathematics, 2024, 9(11): 31393-31413. doi: 10.3934/math.20241512

    Related Papers:

  • In the current study, we present a mathematical model for human immunodeficiency virus type-1 (HIV-1) transmission, incorporating Cytotoxic T-Lymphocyte immune impairment within a seasonal environment. The model divides the infected cell compartment into two sub-compartments: latently infected cells and productively infected cells. Additionally, we consider three possible routes of infection, allowing HIV to spread among susceptible cells via direct contact with the virus, latently infected cells, or productively infected cells. The system is analyzed, and the basic reproduction number is derived using an integral operator. We demonstrate that the HIV-free periodic trajectory is globally asymptotically stable if $ \mathcal{R}_0 < 1 $, while HIV persists when $ \mathcal{R}_0 > 1 $. Several numerical simulations are provided to validate the theoretical results.



    加载中


    [1] Q. Liu, D. Jiang, Dynamical behavior of a higher order stochastically perturbed HIV/AIDS model with differential infectivity and amelioration, Chaos Soliton. Fract., 141 (2020), 110333. https://doi.org/10.1016/j.chaos.2020.110333 doi: 10.1016/j.chaos.2020.110333
    [2] P. A. Naik, K. M. Owolabi, M. Yavuz, J. Zu, Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, Chaos Soliton. Fract., 140 (2020), 110272. https://doi.org/10.1016/j.chaos.2020.110272 doi: 10.1016/j.chaos.2020.110272
    [3] M. Di Mascio, R. M. Ribeiro, M. Markowitz, D. D. Ho, A. S. Perelson, Modeling the long-term control of viremia in HIV-1 infected patients treated with antiretroviral therapy, Math. Biosci., 188 (2004), 47–62. https://doi.org/10.1016/j.mbs.2003.08.003 doi: 10.1016/j.mbs.2003.08.003
    [4] S. Kumar, R. Kumar, J. Singh, K. S. Nisar, D. Kumar, An efficient numerical scheme for fractional model of HIV-1 infection of $CD4^{+}$ T-cells with the effect of antiviral drug therapy, Alexandria Eng. J., 59 (2020), 2053–2064. https://doi.org/10.1016/j.aej.2019.12.046 doi: 10.1016/j.aej.2019.12.046
    [5] R. Ullah, R. Ellahi, S. M. Sait, S. T. Mohyud-Din, On the fractional-order model of HIV-1 infection of $CD4^{+}$ T-cells under the influence of antiviral drug treatment, J. Taibah Univ. Sci., 14 (2020), 50–59. https://doi.org/10.1080/16583655.2019.1700676 doi: 10.1080/16583655.2019.1700676
    [6] M. H. Alharbi, Global investigation for an "SIS" model for COVID-19 epidemic with asymptomatic infection, Math. Biosci. Eng., 20 (2023), 5298–5315. https://doi.org/10.3934/mbe.2023245 doi: 10.3934/mbe.2023245
    [7] F. K. Alalhareth, M. H. Alharbi, M. A. Ibrahim, Modeling typhoid fever dynamics: stability analysis and periodic solutions in epidemic model with partial susceptibility, Mathematics, 11 (2023), 3713. https://doi.org/10.3390/math11173713 doi: 10.3390/math11173713
    [8] M. H. Alharbi, F. K. Alalhareth, M. A. Ibrahim, Analyzing the dynamics of a periodic typhoid fever transmission model with imperfect vaccination, Mathematics, 11 (2023), 3298. https://doi.org/10.3390/math11153298 doi: 10.3390/math11153298
    [9] M. A. Ibrahim, A. Dénes, Stability and threshold dynamics in a seasonal mathematical model for measles outbreaks with double-dose vaccination, Mathematics, 11 (2023), 1791. https://doi.org/10.3390/math11081791 doi: 10.3390/math11081791
    [10] M. El Hajji, Periodic solutions for chikungunya virus dynamics in a seasonal environment with a general incidence rate, AIMS Math., 8 (2023), 24888–24913. https://doi.org/10.3934/math.202312699 doi: 10.3934/math.202312699
    [11] M. El Hajji, M. F. S. Aloufi, M. H. Alharbi, Influence of seasonality on Zika virus transmission, AIMS Math., 9 (2024), 19361–19384. https://doi.org/10.3934/math.2024943 doi: 10.3934/math.2024943
    [12] H. H. Almuashi, Mathematical analysis for the influence of seasonality on chikungunya virus dynamics, Int. J. Anal. Appl., 22 (2024), 86. https://doi.org/10.28924/2291-8639-22-2024-86 doi: 10.28924/2291-8639-22-2024-86
    [13] F. A. Al Najim, Mathematical analysis for a Zika virus dynamics in a seasonal environment, Int. J. Anal. Appl., 22 (2024), 71. https://doi.org/10.28924/2291-8639-22-2024-71 doi: 10.28924/2291-8639-22-2024-71
    [14] M. El Hajji, N. S. Alharbi, M. H. Alharbi, Mathematical modeling for a CHIKV transmission under the influence of periodic environment, Int. J. Anal. Appl., 22 (2024), 6. https://doi.org/10.28924/2291-8639-22-2024-6 doi: 10.28924/2291-8639-22-2024-6
    [15] X. Wang, X. Song, Global stability and periodic solution of a model for HIV infection of $CD4^{+}$ T cells, Appl. Math. Comput., 189 (2007), 1331–1340. https://doi.org/10.1016/j.amc.2006.12.044 doi: 10.1016/j.amc.2006.12.044
    [16] M. El Hajji, R. M. Alnjrani, Periodic trajectories for HIV dynamics in a seasonal environment with a general incidence rate, Int. J. Anal. Appl., 21 (2023), 96. https://doi.org/10.28924/2291-8639-21-2023-96 doi: 10.28924/2291-8639-21-2023-96
    [17] M. El Hajji, R. M. Alnjrani, Periodic behaviour of HIV dynamics with three infection routes, Mathematics, 12 (2024), 123. https://doi.org/10.3390/math12010123 doi: 10.3390/math12010123
    [18] V. G. Frobenius, Über matrizen aus nicht negativen elementen, Sitzung Phys.-Math., 23 (1912), 456–477.
    [19] F. Zhang, X. Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496–516. https://doi.org/10.1016/j.jmaa.2006.01.085 doi: 10.1016/j.jmaa.2006.01.085
    [20] W. Wang, X. Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environmentss, J. Dyn. Differ. Equat., 20 (2008), 699–717. https://doi.org/10.1007/s10884-008-9111-8 doi: 10.1007/s10884-008-9111-8
    [21] X. Q. Zhao, Dynamical systems in population biology, 1 Ed., New York: Springer-Verlag, 2003. https://doi.org/10.1007/978-0-387-21761-1
    [22] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $\mathcal{R}_0$ in models for infectious diseases in heterogeneous populations, J. Math. Bio., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [23] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(130) PDF downloads(29) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog