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Abstract: In the current study, we present a mathematical model for human immunodeficiency virus
type-1 (HIV-1) transmission, incorporating Cytotoxic T-Lymphocyte immune impairment within a
seasonal environment. The model divides the infected cell compartment into two sub-compartments:
latently infected cells and productively infected cells. Additionally, we consider three possible routes
of infection, allowing HIV to spread among susceptible cells via direct contact with the virus, latently
infected cells, or productively infected cells. The system is analyzed, and the basic reproduction
number is derived using an integral operator. We demonstrate that the HIV-free periodic trajectory
is globally asymptotically stable if R0 < 1, while HIV persists when R0 > 1. Several numerical
simulations are provided to validate the theoretical results.
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1. Introduction

Human immunodeficiency virus (HIV) gradually destroys various types of blood cells, significantly
weakening the immune system. Although antiretroviral drugs exist, their effectiveness is often limited,
and without treatment, the virus can progress to acquired immunodeficiency syndrome (AIDS). HIV
infections are caused by one of two retroviruses: HIV-1 or HIV-2. HIV-1 is the predominant cause
of HIV infections globally, while HIV-2 is more common in West Africa. Another retrovirus, human
T-lymphotropic virus (HTLV), although less prevalent, can also cause severe illness. HIV primarily
targets and gradually depletes CD4+ lymphocytes, a type of white blood cell critical to the body’s
defense against foreign cells, infections, and cancer. As HIV reduces these cells, the immune
system becomes increasingly vulnerable to a wide range of opportunistic infections. Consequently,
the majority of complications associated with HIV, including mortality, result from these secondary
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infections rather than the HIV infection itself.
Mathematical modeling plays a crucial role in understanding infectious diseases like HIV and

predicting their long-term behavior. By simulating the evolution of key variables, these models
provide valuable insights into the dynamics of the disease. In this context, the model serves as a
complementary tool, augmenting our understanding of the complex interactions within the system
rather than attempting to replace real-world observations. A significant body of research has focused
on the mathematical modeling of HIV dynamics, particularly the interaction between HIV and T-
lymphocytes. These models often employ nonlinear ordinary differential equations to capture the
complexity of the system. In [1], Liu and Jiang studied the dynamics of a higher-order stochastically
perturbed HIV/AIDS model with differential infectivity and amelioration. In [2], Naik et al. studied a
dynamical fractional-order HIV-1 model by considering the chaotic behavior. In [3], Di Mascio et al.
proposed and analyzed a mathematical model for the long-term control of viremia in HIV-1 infected
patients treated with antiretroviral therapy. In [4], Kumar et al. studied a fractional model of HIV-1
infection with the effect of antiviral drug therapy. In [5], Ullah et al. proposed a fractional-order model
describing HIV-1 transmission under the influence of antiviral drug treatment.

Seasonality is known to have a profound impact on the dynamics of several epidemics, with many
displaying periodic behavior. This periodicity can be attributed to factors such as varying contact
rates between uninfected and infected individuals, or it may occur autonomously [6–9]. Several
studies [10–14] have explored the impact of seasonality on various epidemics, including HIV and
chikungunya virus transmission. Recently, there has been a growing emphasis on studying HIV models
from a within-host perspective to obtain a deeper understanding of HIV infections, not only in the time-
fixed models that gained traction, but also in those considering periodic/seasonal effects. The intricate
dynamics of viral infections within host organisms present a compelling area of study, particularly
when examining the interplay between various biological and environmental factors that can influence
infection outcomes. These factors, which include periodic effects and periodic treatments, can
significantly impact the replication of viruses and their interactions with the host, ultimately shaping
the course of the infection. While circadian rhythms, the natural cycles of biological processes that
occur roughly every 24 hours, serve as a prime example of how timing can regulate physiological
functions such as immune responses, other periodic phenomena, such as seasonal variations in contact
rates or vaccination programs, can also play a crucial role in disease transmission dynamics. In [15],
Wang and Song studied a mathematical model for HIV infection with periodic solutions. In [16], the
authors examined the influence of periodic variations on HIV transmission while in [17], the authors
focused on HIV infection dynamics with three routes of transmission with linear transmission rates in
a periodic environment.

In this study, we refine the modeling of HIV dynamics by incorporating three distinct routes of
transmission and adopting general nonlinear transmission rates within a seasonal environment, thereby
introducing greater realism into the model. The basic reproduction number R0 is derived using an
integral operator. Our analysis reveals that the virus-free periodic trajectory remains globally stable
when R0 < 1, whereas the virus persists periodically when R0 > 1. These theoretical results
are substantiated by comprehensive numerical simulations. The paper is structured as follows: In
Section 2, we introduce a system of nonlinear ordinary differential equations that models the dynamics
of HIV transmission through three distinct routes in a seasonal environment, where the transmission
rates are expressed in general nonlinear forms. We demonstrate that the virus-free periodic solution is
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globally asymptotically stable whenR0 < 1, and that the virus persists whenR0 > 1. Section 3 provides
several numerical examples that support our theoretical findings. Finally, the concluding remarks of
our study are presented in Section 4.

2. Mathematical model development

The mathematical model proposed here is a generalization of the one presented in [17], which
is a compartmental model describing the transfer between different compartments. We consider the
variables S , L, and P to represent the numbers of susceptible, latently infected, and productively
infected cells, respectively. Similarly, the variables V and C denote the numbers of free virions (HIV-1
particles) and T-lymphocytes, respectively. The infected cells are subdivided into two compartments
based on their status: L or P. The variation in the number of infected cells depends on the number of
target cells and the incidence rates. The three routes of infection are given by σ1ϕ1(V)S , σ2ϕ2(L)S ,
and σ3ϕ3(P)S , corresponding to infection from free virions, latently infected cells, and productively
infected cells, respectively.

Ṡ (t) = ds(t)Λ(t) − ds(t)S (t) − [σ1(t)ϕ1(V(t)) + σ2(t)ϕ2(L(t)) + σ3(t)ϕ3(P(t))]S (t),
L̇(t) = [σ1(t)ϕ1(V(t)) + σ2(t)ϕ2(L(t)) + σ3(t)ϕ3(P(t))]S (t) − (η1(t) + dl(t))L(t),
Ṗ(t) = η1(t)L(t) − dp(t)P(t) − σ4(t)ϕ4(P(t))C(t),
V̇(t) = η2(t)P(t) − dv(t)V(t),
Ċ(t) = η3(t)P(t) − dc(t)C(t) − σ5(t)ϕ5(P(t))C(t),

(2.1)

given an initial condition with non-negative values (S 0, L0, P0,V0,C0) ∈ R5
+ . The significance of the

model’s parameters are given in Table 1.
Note that the incidence rates (ϕ1(V), ϕ2(L), and ϕ3(P)), the neutralization rate (ϕ4(P)) and the T-

Lymphocyte impairment rate (ϕ5(P)) are all continuous, increasing functions that pass through the
origin. Thus, we assume that these functions (ϕ1(V), ϕ2(L), ϕ3(P), ϕ4(P), and ϕ5(P)) satisfy certain
assumptions. Furthermore, we assume that the death rates of the cells are distinct and depend on the
cell status.

Assumption 2.1. • All the model’s parameters are ω-periodic nonnegative functions.
• ϕ1, ϕ2, ϕ3, ϕ4, and ϕ5 are continuous increasing functions such that

ϕ1(0) = ϕ2(0) = ϕ3(0) = ϕ4(0) = ϕ5(0) = 0.

• ds(t) ≤ dl(t) ≤ dp(t), ∀ t ∈ R+.

Let C(t) be a continuous, n × n matrix function, ω-periodic, irreducible, and cooperative. Let ξC(t)
be the solution of

ξ̇(t) = C(t)ξ(t), (2.2)

and r(ξC(ω)) the spectral radius of ξC(ω) having positive elements ∀t > 0. By applying the famous
theory of Perron-Frobenius [18], one can deduce that ξC(ω) has the principal eigenvalue r(ξC(ω)).
Therefore, we need to use the following lemma several times.
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Table 1. Description of variables and parameters.

Note Significance
S Susceptible cells
L Latently infected cells
P Productively infected cells
V HIV-1 particles
C T-lymphocytes
ϕ1(V) Infection rate from V
ϕ2(L) Infection rate from L
ϕ3(P) Infection rate from P
ϕ4(P) Neutralization rate of P
ϕ5(P) T-lymphocytes impairment rate
η1 Conversion rate from the L to P
η3 T-lymphocyte immune rate
σ1 Periodic contact rate between S and V
σ2 Periodic contact rate of S and L
σ3 Periodic contact rate of S and P
σ4 Periodic neutralization contact rate
σ5 T-lymphocyte impairment contact rate
ds Death rate of S
dl Death rate of L
dp Death rate of P
dv Death rate of V
dc Death rate of C
η2 Generation rate of HIV particles
Λ Generation rate of susceptible cells S

Lemma 2.2 ( [19]). The ordinary differential equation (2.2) admits the solution ξ(t) = x(t)e`t where

` =
1
ω

ln(r(ξC(ω))) and the function x(t) is positive and ω-periodic.

Consider the one-dimensional equation

Ṡ (t) = ds(t)(Λ(t) − S (t)), (2.3)

such that the initial condition S 0 ∈ R+. Equation (2.3) has a unique ω-periodic globally attractive
solution denoted by Λ∗(t) satisfying Λ∗(t) > 0 for all t > 0. As a result, model (2.1) allows for a unique
virus-free periodic trajectory denotedA0(t) = (Λ∗(t), 0, 0, 0, 0).

For any continuous ω-periodic variable ϕ(t), we denote ϕu = max
t∈[0,ω)

ϕ(t), ϕl = min
t∈[0,ω)

ϕ(t), and d(t) =

min
t≥0

(dv(t), dc(t)).

Proposition 2.3. Ωu =

{
(S , L, P,V,C) ∈ R5

+ / S + L + P ≤ Λu; V + C ≤ (ηu
2 + ηu

3)
Λu

dl

}
is compact,
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positive, invariant, and an attractor of every solution of system (2.1) such that we have

lim
t→∞

S (t) + L(t) + P(t) − Λ∗(t) = 0. (2.4)

Proof. By summing the first three equations of system (2.1), we obtain

Ṡ (t) + L̇(t) + Ṗ(t) ≤ ds(t)
(
Λ(t) − (S (t) + L(t) + P(t))

)
≤ 0, if (S (t) + L(t) + P(t)) ≥ Λu,

and

V̇(t) + Ċ(t) = (η2(t) + η3(t))P(t) − dv(t)V(t) − dc(t)C(t) − σ5(t)ϕ5(P(t))C(t)
≤ (η2(t) + η3(t))P(t) − dv(t)V(t) − dc(t)C(t)
≤ (ηu

2 + ηu
3)Λu − d(t)(V(t) + C(t))

≤ 0, if d(t)(V(t) + C(t)) ≥ (ηu
2 + ηu

3)Λu.

�

2.1. Disease-free periodic trajectory

By using the theory of Wang and Zhao [20], we can define the basic reproduction number R0 by
rewriting system (2.1) in the following suitable form: Let

X(t) =
(
L(t), P(t),V(t), S (t),C(t)

)T
,

Z(t, X(t)) =
(
(σ1(t)ϕ1(V(t)) + σ2(t)ϕ2(L(t)) + σ3(t)ϕ3(P(t)))S (t), η1(t)L(t), η2(t)P(t), 0, 0

)T
,

W−(t, X(t)) =
(
(η1(t) + dl(t))L(t), dp(t)P(t) + σ4(t)ϕ4(P(t))C(t), dv(t)V(t),

(ds(t) + σ1(t)ϕ1(V(t)) + σ2(t)ϕ2(L(t))

+ σ3(t)ϕ3(P(t)))S (t), dc(t)C(t) + σ5(t)ϕ5(P(t))C(t)
)T

and
W+(t, X(t)) =

(
0, 0, 0, ds(t)Λ(t), η3(t)P(t)

)T
.

Our goal is to satisfy Assumptions (A1)–(A7) of [20]. Through the new variables’ order, (2.1) will be
written as

Ẋ(t) = Z(t, X(t)) −W(t, X(t)) = Z(t, X(t)) −W−(t, X(t)) +W+(t, X(t)). (2.5)

Therefore, Assumptions (A1)–(A5) in [20] are already satisfied. (2.5) admits a virus-free periodic
trajectory X∗(t) = (0, 0, 0,Λ∗(t), 0)T . Let

h(t, X(t)) = Z(t, X(t)) −W−(t, X(t)) +W+(t, X(t))

and

M(t) =

(
∂ϕi(t, X∗(t))

∂X j

)
4≤i, j≤5

,

where hi(t, X(t)) and Xi(t) are the i-th components of h(t, X(t)) and X(t), respectively. We can easily
obtain that

M(t) =

(
−ds(t) 0

0 −dc(t)

)
.
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Then, r(φM(ω)) < 1. Then, the disease-free trajectory X∗(t) is asymptotically stable inside Ωs, where

Ωs =
{
(0, 0, 0, S , 0) ∈ R5

+

}
,

and then Assumption (A6) of [20] is also verified.
Let us define the matrix functions Z(t) and W(t) given by

Z(t) =

(
∂Zi(t, X∗(t))

∂X j

)
1≤i, j≤3

and

W(t) =

(
∂Wi(t, X∗(t))

∂X j

)
1≤i, j≤3

such thatZi(t, X(t)) andWi(t, X(t)) are the i-th components ofZ(t, X(t)) andW(t, X(t)), respectively.
By a simple calculation, we obtain

Z(t) =


σ2(t)ϕ′2(0)Λ∗(t) σ3(t)ϕ′3(0)Λ∗(t) σ1(t)ϕ′1(0)Λ∗(t)

η1(t) 0 0
0 η2(t) 0


and

W(t) =


η1(t) + dl(t) 0 0

0 dp(t) 0
0 0 dv(t)

 .
The expression

d
dt

H(t1, t2) = −W(t1)H(t1, t2) with t1 ≥ t2 and H(t1, t1) = I3 admits a 3 × 3 matrix
solution denoted by H(t1, t2). Then, Assumption (A7) of [20] is also verified.

Let us define the linear operator K : Cω → Cω as

(Kφ)(p) =

∫ ∞

0
H(p, p − s)Z(p − s)φ(p − s)ds, ∀p ∈ R, φ ∈ Cω (2.6)

where Cω is the Banach space of ω-periodic functions R 7→ R3, equipped with ‖.‖∞ as its norm.
Therefore, the basic reproduction number R0 is expressed as the spectral radius of the operator K:

R0 = r(K).

Furthermore, according to the theory in [20, Theorem 2.2], we have the following results.

Theorem 2.4. [20, Theorem 2.2]

• R0 < 1 ⇔ r(φZ−W(ω)) < 1.
• R0 = 1 ⇔ r(φZ−W(ω)) = 1.
• R0 > 1 ⇔ r(φZ−W(ω)) > 1.

Thus, the local asymptotic stability ofA0(t) is conditional to the satisfaction of the condition where
R0 < 1; else, it will be unstable if R0 > 1.
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Theorem 2.5. The global asymptotic stability of the disease-free solution, A0(t), is conditional to the
satisfaction of the condition where R0 < 1, and it will be unstable if R0 > 1.

Proof. According to Theorem 2.4, the local asymptotic stability of A0(t) is conditional to R0 < 1.
Therefore, we have to show that A0(t) is a globally attractive solution for the case where R0 < 1. By
reference to the limit (2.4) in Lemma 2.3, ∀ ς1 > 0, ∃T1 > 0 satisfying S (t) + L(t) + P(t) ≤ Λ∗(t) + ς1,
∀ t > T1. Then, S (t) ≤ Λ∗(t) + ς1, and

L̇(t) ≤ [σ1(t)ϕ1(V(t)) + σ2(t)ϕ2(L(t)) + σ3(t)ϕ3(P(t))](Λ∗(t) + ς1) − (η1(t) + dl(t))L(t),
Ṗ(t) = η1(t)L(t) − dp(t)P(t) − σ4(t)ϕ4(P(t))C(t),
V̇(t) = η2(t)P(t) − dv(t)V(t),

(2.7)

∀ t > T1. Let us consider the matrix

M2(t) =


σ2(t)ϕ′2(0) σ3(t)ϕ′3(0) σ1(t)ϕ′1(0)

0 0 0
0 0 0

 . (2.8)

By using Theorem 2.4, we have r(ϕZ−W(ω)) < 1, and then we can choose ς1 > 0 small enough to
satisfy r(ϕZ−W+ς1 M2(ω)) < 1, and we consider the following system:

˙̄Yl(t) = [σ1(t)ϕ1(V̄(t)) + σ2(t)ϕ2(L̄(t)) + σ3(t)ϕ3(P̄(t))](Λ∗(t) + ς1) − (η1(t) + dl(t))L̄(t),
˙̄Yi(t) = η1(t)L(t) − dp(t)P̄(t) − σ4(t)ϕ4(P̄(t))C̄(t),
˙̄Yv(t) = η2(t)P̄(t) − dv(t)V̄(t).

(2.9)

According to Lemma 2.2 and the comparison principle, we can prove that ∃ y(t), an ω-periodic positive
function y1(t) that satisfies x(t) ≤ y(t)ek1t, where

x(t) = (L(t), P(t),V(t))

and
k1 =

1
ω

ln
(
r(ϕZ−W+ς1 M2(ω)

)
< 0.

Hence, lim
t→∞

L(t) = lim
t→∞

P(t) = lim
t→∞

V(t) = 0, and then lim
t→∞

C(t) = 0. Furthermore, according to Eq (2.4),
we deduce that lim

t→∞
(S (t) − Λ∗(t)) = 0. We conclude the global attractivity of A0(t), enabling us to

finalize the proof. �

2.2. HIV-infected periodic trajectory

Consider the Poincaré map Q : R5
+ → R

5
+ applied to system (2.1) where Y0 7→ w(ω,Y0) and w(t,Y0)

is a trajectory of system (2.1) such that w(0,Y0) = Y0 ∈ R4
+ is the initial condition. Let us define the

sets Γ =
{
(S , L, P,V,C) ∈ R5

+

}
, Γ0 = Int(R5

+), and ∂Γ0 = Γ \ Γ0. By using Lemma 2.3, it is easy to see
that Γ and Γ0 are positively invariant and that Q is point dissipative. Let us consider

M∂ =
{
(S 0, L0, P0,V0,C0) ∈ ∂Γ0 : Qn(S 0, L0, P0,V0,C0) ∈ ∂Γ0, ∀ n ≥ 0

}
.

Before applying the uniform persistence theory [19, 21], we have to demonstrate that

M∂ = {(S , 0, 0, 0, 0), S ≥ 0} . (2.10)
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On the one hand, we have M∂ ⊇ {(S , 0, 0, 0, 0), S ≥ 0}, and it remains to be shown that M∂ \

{(S , 0, 0, 0, 0), S ≥ 0} = ∅. Let

(S 0, L0, P0,V0,C0) ∈ M∂ \ {(S , 0, 0, 0, 0), S ≥ 0} .

Once P0 = 0 and 0 < L0, L(t) > 0, ∀ t > 0. Therefore, we obtain Ṗ(t)|t=0 = η1(0)L0 > 0. Once P0 > 0
and L0 = 0, P(t) > 0 and S (t) > 0, ∀ t > 0. Then, ∀ t > 0, one has

L(t) =
[
L0 +

∫ t

0
[σ1(θ)ϕ1(V(θ)) + σ2(θ)ϕ2(L(θ))

+σ3(θ)ϕ3(P(θ))]S (θ)e

∫ θ

0
(η1(s) + dl(s))ds

dθ
]
e
−

∫ t

0
(η1(s) + dl(s))ds

> 0

∀ t > 0, which means that (S (t), L(t), P(t),V(t),C(t)) < ∂Γ0 for 0 < t. Eq (2.10) follows directly since
Γ0 is positively invariant, as established in Proposition 2.3. Subsequently, ∃ (Λ∗(0), 0, 0, 0, 0), a unique
fixed point of Q in M∂, and the HIV will persist.

Theorem 2.6. If R0 > 1, then (2.1) admits at least a positive periodic solution. Furthermore, ∃ % > 0
that satisfies ∀ (S 0, L0, P0,V0,C0) ∈ R+ × Int(R5

+),

lim inf
t→∞

P(t) ≥ % > 0.

Proof. We aim in this proof to use the theory in reference [21, Theorem 3.1.1] to demonstrate the
uniform persistence of the Poincaré map Q respecting (Γ0, ∂Γ0), which allows us to prove the uniform
persistence of the trajectories of system (2.1) respecting (Γ0, ∂Γ0). Note that r(ϕZ−W(ω)) > 1 according
to Theorem 2.4. Then, we can choose a constant ς2 > 0 such that r(ϕZ−W−ς2 M2(ω)) > 1. Consider the
perturbed dynamics

Ṡ α(t) = ds(t)Λ(t) − ds(t)S α(t) − [σ1(t)ϕ1(α) + σ2(t)ϕ2(α) + σ3(t)ϕ3(α)]S α(t). (2.11)

The Poincaré map Q admits a unique fixed point S̄ 0
α that is continuous with respect to α. Thus, one

can choose α > 0 satisfying S̄ α(t) > S̄ (t) − ς2, ∀ t > 0. Let us denote M1 = (S̄ 0, 0, 0, 0, 0). Since
each solution of the dynamics is continuous with respect to the initial condition, then ∃α∗ satisfies
∀ (S 0, L0, P0,V0,C0) ∈ Γ0 with ‖(S 0, L0, P0,V0,C0) − M1‖ ≤ α

∗, and we obtain that

‖w(t, (S 0, L0, P0,V0,C0)) − w(t,M1)‖ < α for 0 ≤ t ≤ ω.

By using the contradiction process, we will demonstrate that

lim sup
n→∞

d(Qn(S 0, L0, P0,V0,C0),M1) ≥ α∗ for any (S 0, L0, P0,V0,C0) ∈ Γ0. (2.12)

Assume that lim sup
n→∞

d(Qn(S 0, L0, P0,V0,C0),M1) < α∗ for some (S 0, L0, P0,V0,C0) ∈ Γ0. In particular,

assume that d(Qn(S 0, L0, P0,V0,C0),M1) < α∗, ∀n > 0. Therefore, we get

‖w(t,Qn(S 0, L0, P0,V0,C0)) − w(t,M1)‖ < α
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for all n > 0 and 0 ≤ t ≤ ω. For any t ≥ 0, assume that t = nω + t1, where t1 ∈ [0, ω) and n ≤
t
ω

is the

greatest integer of
t
ω

. Then, we get

‖w(t, (S 0, L0, P0,V0,C0)) − w(t,M1)‖ = ‖w(t1,Qn(S 0, L0, P0,V0,C0)) − w(t1,M1)‖ < α, ∀ t ≥ 0.

Let
(S (t), L(t), P(t),V(t),C(t)) = w(t, (S 0, L0, P0,V0,C0)).

Then, 0 ≤ L(t), P(t),V(t) ≤ α, ∀ t ≥ 0, and

Ṡ (t) ≥ ds(t)Λ(t) − ds(t)S (t) − (σ1(t)ϕ1(α) + σ2(t)ϕ2(α) + σ3(t)ϕ3(α))S (t). (2.13)

The Poincaré map Q has a fixed point S̄ 0
α which is globally attractive such that S̄ α(t) > S̄ (t)− ς2. Then,

there exists a constant T2 > 0 satisfying

S̄ (t) > S̄ (t) − ς2, ∀ t > T2.

Therefore, ∀ t > T2,
L̇(t) ≥ [σ1(t)ϕ1(V(t)) + σ2(t)ϕ2(L(t)) + σ3(t)ϕ3(P(t))](S̄ (t) − ζ) − (η1(t) + dl(t))L(t),
Ṗ(t) = η1(t)L(t) − dp(t)P(t) − σ4(t)ϕ4(P(t))C(t),
V̇(t) = η2(t)P(t) − dv(t)V(t).

(2.14)

As r(ϕZ−W−ς2 M2(ω)) > 1, there exists an ω-periodic solution y(t) that satisfies J(t) ≥ ek2ty(t) and

k2 =
1
ω

ln r
(
ϕZ−W−ς2 M2(ω)

)
> 0.

Then, lim
t→∞

P(t) = ∞, and this is impossible since the trajectory is bounded, and so (2.12) is satisfied.
The weak uniform persistence of Q is verified with respect to (Γ0, ∂Γ0). According to Proposition 2.3,
the map Q admits a global attractor, and then M1 = (S̄ 0, 0, 0, 0, 0) is invariant in Γ and W s(M1) ∩
Γ0 = ∅. All solutions inside M∂ tend towards M1, which is acyclic in M∂. By using the results
in [21, Theorem 1.3.1], we deduce that the map Q is uniformly persistent with respect to (Γ0, ∂Γ0).
Furthermore, when using [21, Theorem 1.3.6], the map Q has a fixed point (S̃ 0, L̃0, P̃0, Ṽ0, C̃0) ∈ Γ0

such that (S̃ 0, L̃0, P̃0, Ṽ0, C̃0) ∈ R+ × Int(R4
+). Our goal now is to demonstrate that S̃ 0 > 0. We shall use

the contradiction technique by assuming that S̃ 0 = 0. According to system (2.1), S̃ (t) fulfills

˙̃S (t) ≥ ds(t)Λ(t) − ds(t)S̃ (t) − (σ1(t)ϕ1(Ṽ(t)) + σ2(t)ϕ2(L̃(t)) + σ3(t)ϕ3(P̃(t)))S̃ (t), (2.15)

with S̃ 0 = S̃ (mω) = 0,m = 1, 2, 3, · · · . By using Lemma 2.3, ∀ ς3 > 0, ∃T3 > 0 satisfying

L̃(t), P̃(t), Ṽ(t) ≤ N̄ + ς3, t > T3.

Then, one gets

˙̃S (t) ≥ ds(t)Λ(t) − ds(t)S̃ (t) − (σ1(t)ϕ1((N̄ + ς3)) + σ2(t)ϕ2((N̄ + ς3)) + σ3(t)ϕ3((N̄ + ς3)))S̃ (t)
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for t ≥ T3. Therefore, ∃ m̄ satisfying mω > T3, ∀m > m̄. According to the comparison principle, one
obtains

S̃ (mω) = e
−

∫ mω

0
([σ1(u)ϕ1(N̄ + ς3) + σ2(u)ϕ2(N̄ + ς3) + σ3(u)ϕ3(N̄ + ς3)] + ds(u))du

[
S̃ 0 +

∫ mω

0
ds(θ)Λ(θ)e

∫ θ

0

(
[σ1(u)ϕ1(N̄ + ς3) + σ2(u)ϕ2(N̄ + ς3) + σ3(u)ϕ3(N̄ + ς3)] + ds(u)

)
du

dθ
]
.

S̃ (mω) > 0, ∀m > m̄ which contradicts the fact that S̃ (mω) = 0. Therefore, S̃ 0 should satisfy S̃ 0 > 0,
and (S̃ 0, L̃0, P̃0, Ṽ0, C̃0) is an ω-periodic solution of (2.1). �

3. Numerical investigation

The goal of this section is to give several numerical tests that confirm the obtained theoretical results.
The incidence rates were modeled by Monod-type functions as follows:

ϕi(X) =
ϕmax

i X
ki + X

,

where ϕmax
i and ki, i = 1, · · · , 5 are nonnegative constants. Note that ϕi, i = 1, · · · , 5 are continuous

and increasing functions. The ω-periodic functions were modeled by a well-known form given by

a(t) = a0(1 + a1 cos(2pπ(t + Θ))),

where a0 ≥ 0 is the baseline value, 0 < a1 ≤ 1 is the magnitude of the periodic variation, and 0 ≤ Θ ≤ 1
is the phase.



Λ(t) = Λ0(1 + Λ1 cos(2pπ(t + Θ))), ds(t) = ds0(1 + ds1 cos(2pπ(t + Θ))),
σ1(t) = σ10(1 + σ11 cos(2pπ(t + Θ))), dl(t) = dl0(1 + dl1 cos(2pπ(t + Θ))),
σ2(t) = σ20(1 + σ21 cos(2pπ(t + Θ))), dp(t) = di0(1 + di1 cos(2pπ(t + Θ))),
σ3(t) = σ30(1 + σ31 cos(2pπ(t + Θ))), dv(t) = dv0(1 + dv1 cos(2pπ(t + Θ))),
σ4(t) = σ40(1 + σ41 cos(2pπ(t + Θ))), dc(t) = dc0(1 + dc1 cos(2pπ(t + Θ))),
σ5(t) = σ50(1 + σ51 cos(2pπ(t + Θ))), η2(t) = η20(1 + η21 cos(2pπ(t + Θ))),
η1(t) = η10(1 + η11 cos(2pπ(t + Θ))), η3(t) = η30(1 + η31 cos(2pπ(t + Θ))).

(3.1)

The seasonal cycles frequencies Λ1, ds1, dl1, di1, dv1, dc1, σ11, σ21, σ31, σ41, σ51, η11, η21, and η31

satisfy |Λ1| < 1, |ds1| < 1, |dl1| < 1, |di1| < 1, |dv1| < 1, |dc1| < 1, |σ11| < 1, |σ21| < 1, |σ31| < 1,
|σ41| < 1, |σ51| < 1, |η11| < 1, |η21| < 1, and |η31| < 1. All fixed constants Λ0, ms0, dl0, dp0, dv0, dc0, σ10,
σ20, σ30, η10, σ40, σ50, η20, and η30 are provided in Table 2. Due to the absence of biological data for
our simulations, we have selected parameter values arbitrarily, and they do not possess any biological
meaning.
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Table 2. Parameters’ numerical values.

Λ0 ds0 dl0 dp0 dv0 dc0

10 0.8 0.7 2 0.5 1
Λ1 ds1 dl1 dp1 dv1 dc1

10 0.8 0.7 2 0.5 1
ϕmax

4
ϕmax

5
k4 k5 Θ p

10 0.8 0.7 2 4 1
σ10 σ20 σ30 η10

0.2 0.8 4 2
σ40 σ50 η20 η30

0.5 1 0.2 0.8
σ11 σ21 σ31 σ41

0.2 0.8 4 2
σ51 η11 η21 η31

0.5 1 0.2 0.8

Three environmental situations were considered. The first case involves all parameters being
constants. The second case considers only the transmission rates σ1(t), σ2(t), σ3(t), σ4(t), and σ5(t)
as ω-periodic functions. The third situation examines the scenario where all parameters are ω-periodic
functions.

3.1. Fixed parameters

In this first situation, we consider the case where all parameters are constant. Model (2.1) then takes
the form 

Ṡ (t) = ds0Λ0 − ds0S (t) − [σ10ϕ1(V(t)) + σ20ϕ2(L(t)) + σ30ϕ3(P(t))]S (t),
L̇(t) = [σ10ϕ1(V(t)) + σ20ϕ2(L(t)) + σ30ϕ3(P(t))]S (t) − (η10 + dl0)L(t),
Ṗ(t) = η10L(t) − di0(t)P(t) − σ40ϕ4(P(t))C(t),
V̇(t) = η20P(t) − dv0V(t),
Ċ(t) = η30P(t) − dc0C(t) − σ50ϕ5(P(t))C(t),

(3.2)

such that the positive initial condition (S 0, L0, P0,V0,C0) = (0.01, 4, 7, 3, 6) ∈ R5
+ . Let us denote byR0,

the basic reproduction number. It can be determined through the next-generation matrix method [22,
23]. Let

F =


σ20ϕ

′
2(0)Λ0 σ30ϕ

′
3(0)Λ0 σ10ϕ

′
1(0)Λ0

0 0 0
0 0 0

 ,

V =


η10 + dl0 0 0
−η10 dp0 0

0 −η20 dv0

 ,
AIMS Mathematics Volume 9, Issue 11, 31393–31413.
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and then

V−1 =



1
η10 + dl0

0 0

η10

dp0(η10 + dl0)
1

dp0
0

η10η20

dp0dv0(η10 + dl0)
η20

di0dv0

1
dv0


.

Therefore, the next-generation matrix FV−1 is given by

Λ0


η10η20σ10ϕ

′
1(0) + dp0dv0σ20ϕ

′
2(0) + η10dv0σ30ϕ

′
3(0)

dp0dv0(η10 + dl0)
η20σ10ϕ

′
1(0) + dv0σ30ϕ

′
3(0)

dp0dv0

σ10ϕ
′
1(0)

dv0

0 0 0
0 0 0

 .
Therefore, R0 is given by

R0 = Λ0
η10η20σ10ϕ

′
1(0) + dp0dv0σ20ϕ

′
2(0) + η10dv0σ30ϕ

′
3(0)

dp0dv0(η10 + dl0)
.

We provide several numerical examples to validate the obtained theoretical results. The behavior
of the trajectories of (3.2) with respect to time is shown in Figure 1 (right) and in LPV coordinates
in Figure 1 (left), which represent the main variables of the disease where R0 > 1. As can be seen,
the solution converges to the positive steady state, reflecting the persistence of HIV. To validate global
stability, we consider several initial conditions in Figure 2, and all trajectories converge to the same
steady state. In Figure 3 (left), the behavior of the trajectories of (3.2) in LPV coordinates and the
behavior of the trajectories with respect to time (Figure 3, right) are shown for R0 < 1. Once again,
the theoretical results are confirmed, as the solution converges to the HIV disease-free steady state
A0 = (Λ0, 0, 0, 0, 0), confirming the extinction of HIV. To further validate the global stability of the HIV
disease-free steady stateA0, several initial conditions were considered in Figure 4, and all trajectories
converge to the same disease-free steady state.

Figure 1. Dynamics of (3.2) for ϕmax
1 = 0.2, ϕmax

2 = 0.3, ϕmax
3 = 0.4, k1 = 1, k2 = 2, and

k3 = 3, whit R0 ≈ 7.15 > 1.
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Figure 2. Behavior of the trajectories of (3.2) for several initial conditions when ϕmax
1 = 0.2,

ϕmax
2 = 0.3, ϕmax

3 = 0.4, k1 = 1, k2 = 2, and k3 = 3, with R0 ≈ 7.15 > 1.).

Figure 3. Dynamics of (3.2) for ϕmax
1 = 0.1, ϕmax

2 = 0.2, ϕmax
3 = 0.3, k1 = 12, k2 = 12, and

k3 = 12, with R0 ≈ 0.58 < 1.
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Figure 4. Behavior of the trajectories of (3.2) for several initial conditions when ϕmax
1 = 0.1,

ϕmax
2 = 0.2, ϕmax

3 = 0.3, k1 = 12, k2 = 12, and k3 = 12 (R0 ≈ 0.58 < 1).

3.2. Periodic transmission rates

In the second situation, we perform numerical tests on (2.1), where only the incidence rates (σ1(t),
σ2(t), σ3(t)), the neutralization rate (σ4(t)), and the T-lymphocytes impairment rate (σ5(t)) depend on
time t, and are assumed to be ω-periodic functions. The model then takes the form

Ṡ (t) = ds0Λ0 − ds0S (t) − [σ1(t)ϕ1(V(t)) + σ2(t)ϕ2(L(t)) + σ3(t)ϕ3(P(t))]S (t),
L̇(t) = [σ1(t)ϕ1(V(t)) + σ2(t)ϕ2(L(t)) + σ3(t)ϕ3(P(t))]S (t) − (η10 + dl0)L(t),
Ṗ(t) = η10L(t) − di0(t)P(t) − σ4(t)ϕ4(P(t))C(t),
V̇(t) = η20P(t) − dv0V(t),
Ċ(t) = η30P(t) − dc0C(t) − σ5(t)ϕ5(P(t))C(t),

(3.3)

such that the positive initial condition (S 0, L0, P0,V0,C0) = (0.01, 4, 7, 3, 6) ∈ R5
+ . We used the time-

averaged system to approximate R0. The behavior of the trajectories of (3.3) with respect to time is
shown in Figure 5 (right), and in LPV coordinates in Figure 5 (left), where R0 > 1. As can be seen,
the solution converges to a periodic trajectory, confirming HIV persistence. Several initial conditions
were considered in Figure 6, and all trajectories converge to the same periodic solution. In Figure 7,
we display the behavior of the trajectories of (3.3) in LPV coordinates (left) and with respect to time
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(right) for R0 < 1. Again, the theoretical results are confirmed, as the solution converges to the HIV
disease-free steady state A0 = (Λ0, 0, 0, 0, 0), confirming HIV extinction. In Figure 8, several initial
conditions were considered, and all trajectories converge to the same disease-free steady state.

Figure 5. Dynamics of (3.3) for ϕmax
1 = 0.2, ϕmax

2 = 0.3, ϕmax
3 = 0.4, k1 = 1, k2 = 2, and

k3 = 3, with R0 ≈ 7.15 > 1.

Figure 6. Behavior of the trajectories of (3.3) for several initial conditions when ϕmax
1 = 0.2,

ϕmax
2 = 0.3, ϕmax

3 = 0.4, k1 = 1, k2 = 2, and k3 = 3 (R0 ≈ 7.15 > 1).
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Figure 7. Dynamics of (3.3) for ϕmax
1 = 0.1, ϕmax

2 = 0.2, ϕmax
3 = 0.3, k1 = 12, k2 = 12, and

k3 = 12, with R0 ≈ 0.58 < 1.

Figure 8. Behavior of the trajectories of (3.3) for several initial conditions when ϕmax
1 = 0.1,

ϕmax
2 = 0.2, ϕmax

3 = 0.3, k1 = 12, k2 = 12, and k3 = 12 (R0 ≈ 0.58 < 1).
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3.3. Totally periodic environment

In the third step, we assume that all parameters are ω-periodic functions, and the system is
expressed as



Ṡ (t) = ds(t)Λ(t) − ds(t)S (t) − [σ1(t)ϕ1(V(t)) + σ2(t)ϕ2(L(t)) + σ3(t)ϕ3(P(t))]S (t),
L̇(t) = [σ1(t)ϕ1(V(t)) + σ2(t)ϕ2(L(t)) + σ3(t)ϕ3(P(t))] f (S (t)) − (η1(t) + dl(t))L(t),
Ṗ(t) = η1(t)L(t) − dp(t)P(t) − σ4(t)ϕ4(P(t))C(t),
V̇(t) = η2(t)P(t) − dv(t)V(t),
Ċ(t) = η3(t)P(t) − dc(t)C(t) − σ5(t)ϕ5(P(t))C(t),

(3.4)

given an initial condition with non-negative values

(S 0, L0, P0,V0,C0) = (0.01, 4, 7, 3, 6) ∈ R5
+.

Again, as in the case of model (3.3), the time-averaged system was used to calculate R0. The behavior
of the trajectories of (3.4) with respect to time is shown in Figure 9 (right), and in LPV coordinates in
Figure 9 (left), whereR0 > 1. As can be seen, the solution converges to a periodic trajectory, confirming
HIV persistence. Several initial conditions were considered in Figure 10, and all trajectories converge
to the same periodic trajectory. In Figure 11, we display the behavior of the trajectories of (3.4) in LPV
coordinates (left) and the behavior of the trajectories with respect to time (right) for R0 < 1. Again, the
theoretical results are confirmed, as the solution converges to the HIV disease-free periodic solution
A0(t) = (Λ∗(t), 0, 0, 0, 0), confirming HIV extinction. Several initial conditions were considered in
Figure 12, and all trajectories converge to the same disease-free steady state.

Figure 9. Dynamics of (3.4) for ϕmax
1 = 0.2, ϕmax

2 = 0.3, ϕmax
3 = 0.4, k1 = 1, k2 = 2, and

k3 = 3 (R0 ≈ 7.15 > 1).

AIMS Mathematics Volume 9, Issue 11, 31393–31413.



31410

Figure 10. Dynamics of (3.4) for several initial conditions where ϕmax
1 = 0.2, ϕmax

2 = 0.3,
ϕmax

3 = 0.4, k1 = 1, k2 = 2, and k3 = 3 (R0 ≈ 7.15 > 1).

Figure 11. Dynamics of (3.4) for ϕmax
1 = 0.1, ϕmax

2 = 0.2, ϕmax
3 = 0.3, k1 = 12, k2 = 12, and

k3 = 12, with R0 ≈ 0.58 < 1.
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Figure 12. Dynamics of (3.4) for several initial conditions where ϕmax
1 = 0.1, ϕmax

2 = 0.2,
ϕmax

3 = 0.3, k1 = 12, k2 = 12, and k3 = 12 (R0 ≈ 0.58 < 1).

4. Conclusions

This paper extends the system studied in [17], which models HIV transmission in blood cells by
generalizing the infection, neutralization, and impairment rates. We defined the basic reproduction
number R0 as the spectral radius of an integral operator. It is demonstrated that the HIV-free periodic
solution A0(t) is globally asymptotically stable when R0 < 1, and that HIV persists when R0 > 1,
exhibiting asymptotic periodic behavior. We provide several numerical tests for three situations, fixed
parameters, periodic transmission rates, and a fully periodic environment, all of which confirm the
theoretical results, showing that the solution converges to a limit cycle.
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