Citation: Ravinder Kataria, Ravi Pratap Singh, Jatinder Kumar. An experimental study on ultrasonic machining of Tungsten carbide-cobalt composite materials[J]. AIMS Materials Science, 2016, 3(4): 1391-1409. doi: 10.3934/matersci.2016.4.1391
[1] | Hüseyin Budak, Abd-Allah Hyder . Enhanced bounds for Riemann-Liouville fractional integrals: Novel variations of Milne inequalities. AIMS Mathematics, 2023, 8(12): 30760-30776. doi: 10.3934/math.20231572 |
[2] | Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan . Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232 |
[3] | Areej A. Almoneef, Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat . Fractional Milne-type inequalities for twice differentiable functions. AIMS Mathematics, 2024, 9(7): 19771-19785. doi: 10.3934/math.2024965 |
[4] | Hüseyin Budak, Ebru Pehlivan . Weighted Ostrowski, trapezoid and midpoint type inequalities for RiemannLiouville fractional integrals. AIMS Mathematics, 2020, 5(3): 1960-1984. doi: 10.3934/math.2020131 |
[5] | Iman Ben Othmane, Lamine Nisse, Thabet Abdeljawad . On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems. AIMS Mathematics, 2024, 9(6): 14106-14129. doi: 10.3934/math.2024686 |
[6] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
[7] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[8] | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217 |
[9] | Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094 |
[10] | Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat . Milne-Type inequalities via expanded fractional operators: A comparative study with different types of functions. AIMS Mathematics, 2024, 9(5): 11228-11246. doi: 10.3934/math.2024551 |
In this paper, we consider the 3D nonlinear damped micropolar equation
{ut+(u⋅∇)u−(ν+κ)Δu+σ|u|β−1u+∇p=2κ∇×ω+f1(x,t),ωt+(u⋅∇)ω+4κω−γΔω−μ∇∇⋅ω=2κ∇×u+f2(x,t),∇⋅u=0,u(x,t)|t=τ=uτ(x), ω(x,t)|t=τ=ωτ(x), | (1.1) |
where (x,t)∈Ω×[τ,+∞), τ∈R, Ω⊆R3 is a bounded domain, u=u(x,t) is the fluid velocity, ω=ω(x,t) is the angular velocity, σ is the damping coefficient, which is a positive constant, f1=f1(x,t) and f2=f2(x,t) represent external forces, ν, κ, γ, μ are all positive constants, γ and μ represent the angular viscosities.
Micropolar flow can describe a fluid with microstructure, that is, a fluid composed of randomly oriented particles suspended in a viscous medium without considering the deformation of fluid particles. Since Eringen first published his paper on the model equation of micropolar fluids in 1966 [5], the formation of modern theory of micropolar fluid dynamics has experienced more than 40 years of development. For the 2D case, many researchers have discussed the long time behavior of micropolar equations (such as [2,4,10,24]). It should be mentioned that some conclusions in the 2D case no longer hold for the 3D case due to different structures of the system. In the 3D case, the work of micropolar equations (1.1) with σ=0, f1=0, and f2=0 has attracted a lot of attention (see [6,14,19]). Galdi and Rionero [6] proved the existence and uniqueness of solutions of 3D incompressible micropolar equations. In a 3D bounded domain, for small initial data Yamaguchi [19] investigated the existence of a global solution to the initial boundary problem for the micropolar system. In [14], Silva and Cruz et al. studied the L2-decay of weak solutions for 3D micropolar equations in the whole space R3. When f1=f2=0, for the Cauchy problem of the 3D incompressible nonlinear damped micropolar equations, Ye [22] discussed the existence and uniqueness of global strong solutions when β=3 and 4σ(ν+κ)>1 or β>3. In [18], Wang and Long showed that strong solutions exist globally for any 1≤β≤3 when initial data satisfies some certain conditions. Based on [22], Yang and Liu [20] obtained uniform estimates of the solutions for 3D incompressible micropolar equations with damping, and then they proved the existence of global attractors for 3<β<5. In [7], Li and Xiao investigated the large time decay of the L2-norm of weak solutions when β>145, and considered the upper bounds of the derivatives of the strong solution when β>3. In [21], for 1≤β<73, Yang, Liu, and Sun proved the existence of trajectory attractors for 3D nonlinear damped micropolar fluids.
To the best of our knowledge, there are few results on uniform attractors for the three-dimensional micropolar equation with nonlinear damping term. The purpose of this paper is to consider the existence of uniform attractors of system (1.1). When ω=0,κ=0, system (1.1) is reduced to the Navier-Stokes equations with damping. In recent years, some scholars have studied the three-dimensional nonlinear damped Navier-Stokes equations (see [1,13,15,16,23,25]). In order to obtain the desired conclusion, we will use some proof techniques which have been used in the 3D nonlinear damped Navier Stokes equations. Note that, in [20], for the convenience of discussion the authors choose κ,μ=12,γ=1, and ν=32. In this work, we do not specify these parameters, but only require them to be positive real numbers. More importantly, we obtain the existence of uniform attractors in the case of β>3, which undoubtedly expands the range of β when the global attractor exists in [20], i.e., 3<β<5. For the convenience of discussion, similar to [3,8,9,11,16], we make some translational compactness assumption on the external forces term in this paper.
The organizational structure of this article is as follows: In Section 2, we give some basic definitions and properties of function spaces and process theory which will be used in this paper. In Section 3, using various Sobolev inequalities and Gronwall inequalities, we make some uniform estimates from the space with low regularity to high regularity on the solution of the equation. Based on these uniform estimates, in Section 4 we prove that the family of processes {U(f1,f2)(t,τ)}t≥τ corresponding to (1.1) has uniform attractors A1 in V1×V2 and A2 in H2(Ω)×H2(Ω), respectively. Furthermore, we prove A1=A2.
We define the usual functional spaces as follows:
V1={u∈(C∞0(Ω))3:divu=0,∫Ωudx=0},V2={ω∈(C∞0(Ω))3:∫Ωωdx=0},H1=the closure of V1 in (L2(Ω))3,H2=the closure of V2 in (L2(Ω))3,V1=the closure of V1 in (H1(Ω))3,V2=the closure of V2 in (H1(Ω))3. |
For H1 and H2 we have the inner product
(u,υ)=∫Ωu⋅υdx, ∀u,v∈H1,or u,v∈H2, |
and norm ‖⋅‖2=‖⋅‖22=(⋅,⋅). In this paper, Lp(Ω)=(Lp(Ω))3, and ‖⋅‖p represents the norm in Lp(Ω).
We define operators
Au=−PΔu=−Δu, Aω=−Δω, ∀(u,ω)∈H2×H2,B(u)=B(u,u)=P((u⋅∇)u), B(u,ω)=(u⋅∇)ω, ∀(u,ω)∈V1×V2,b(u,υ,ω)=⟨B(u,υ),ω⟩=3∑i,j=1∫Ωui(Diυj)ωjdx, ∀u∈V1,υ,ω∈V2, |
where P is the orthogonal projection from L2(Ω) onto H1. Hs(Ω)=(Hs(Ω))3 is the usual Sobolev space, and its norm is defined by ∥⋅∥Hs=∥As2⋅∥; as s=2, ∥⋅∥H2=∥A⋅∥.
Let us rewrite system (1.1) as
{ut+B(u)+(ν+κ)Au+G(u)=2κ∇×ω+f1(x,t),ωt+B(u,ω)+4κω+γAω−μ∇∇⋅ω=2κ∇×u+f2(x,t),∇⋅u=0,u(x,t)|t=τ=uτ(x), ω(x,t)|t=τ=ωτ(x), | (2.1) |
where we let G(u)=P(σ|u|β−1u).
The Poincarˊe inequality [17] gives
√λ1‖u‖≤‖∇u‖,√λ2‖ω‖≤‖∇ω‖,∀(u,ω)∈V1×V2, | (2.2) |
√λ1∥∇u∥≤∥Au∥, √λ2∥∇ω∥≤∥Aω∥,∀(u,ω)∈H2(Ω)×H2(Ω), | (2.3) |
where λ1 is the first eigenvalue of Au, and λ2 is the first eigenvalue of Aω. Let λ=min{λ1,λ2}. Then, we have
λ(‖u‖2+‖ω‖2)≤‖∇u‖2+‖∇ω‖2, ∀(u,ω)∈V1×V2,λ(‖∇u‖2+‖∇ω‖2)≤‖Au‖2+‖Aω‖2,∀(u,ω)∈H2(Ω)×H2(Ω). |
Agmon's inequality [17] gives
∥u∥∞≤d1∥∇u∥12∥Δu∥12, ∀u∈H2(Ω). |
The trilinear inequalities [12] give
|b(u,v,w)|≤∥u∥∞∥∇v∥∥w∥,∀u∈L∞(Ω),v∈V1 or V2,w∈H1 or H2, | (2.4) |
|b(u,v,w)|≤k∥u∥14∥∇u∥34∥∇v∥∥w∥14∥∇w∥34,∀u,v,w∈V1 or V2, | (2.5) |
|b(u,v,w)|≤k∥∇u∥∥∇v∥12∥Av∥12∥w∥,∀u∈V1 or V2,v∈H2,w∈H1 or H2. | (2.6) |
Recall that a function f(t) is translation bounded (tr.b.) in L2loc(R;L2(Ω)) if
∥f∥2L2b=∥f∥2L2b(R;L2(Ω))=supt∈R∫t+1t∥f(t)∥2dt<∞, |
where L2b(R;L2(Ω)) represents the collection of functions that are tr.b. in L2loc(R;L2(Ω)). We say that H(f0)=¯{f0(⋅+t):t∈R} is the shell of f0 in L2loc(R;L2(Ω)). If H(f0) is compact in L2loc(R;L2(Ω)), then we say that f0(x,t)∈L2loc(R;L2(Ω)) is translation compact (tr.c.). We use L2c(R;L2(Ω)) to express the collection of all translation compact functions in L2loc(R;L2(Ω)).
Next, we will provide the existence and uniqueness theorems of the solution of Eq (2.1).
Definition 2.1. A function pair (u,ω) is said to be a global strong solution to system (2.1) if it satisfies
(u,ω)∈L∞(τ,T;V1×V2)∩L2(τ,T;H2(Ω)×H2(Ω)), |
|u|β−12∇u∈L2(τ,T;L2(Ω)), ∇|u|β+12∈L2(τ,T;L2(Ω)), |
for any given T>τ.
Theorem 2.1. Suppose (uτ,ωτ)∈V1×V2 with ∇⋅uτ=0,f1,f2∈L2b(R;L2(Ω)). If β=3 and 4σ(ν+κ)>1 or β>3, then there exists a unique global strong solution of (2.1).
Proof. Since the proof method is similar to that of Theorem 1.2 in [22], we omit it here.
Let Σ be a metric space. X, Y are two Banach spaces, and Y⊂X is continuous. {Uσ(t,τ)}t≥τ, σ∈Σ is a family of processes in Banach space X, i.e., u(t)=Uσ(t,τ)uτ, Uσ(t,s)Uσ(s,τ)=Uσ(t,τ),∀t≥s≥τ,τ∈R,Uσ(τ,τ)=I, where σ∈Σ is a time symbol space. B(X) is the set of all bounded subsets of X. Rτ=[τ,+∞).
For the basic concepts of bi-space uniform absorbing set, uniform attracting set, uniform attractor, uniform compact, and uniform asymptotically compact of the family of processed {Uσ(t,τ)}t≥τ,σ∈Σ, one can refer to [9,16].
Let T(h) be a family of operators acting on Σ, satisfying: T(h)σ(s)=σ(s+h),∀s∈R. In this paper, we assume that Σ satisfies
(C1) T(h)Σ=Σ, ∀h∈R+;
(C2) translation identity:
Uσ(t+h,τ+h)=UT(h)σ(t,τ), ∀σ∈Σ,t≥τ,τ∈R,h≥0. |
Theorem 2.2. [3] If the family of processes {Uσ(t,τ)}t≥τ,σ∈Σ is (X,Y)-uniformly (w.r.t. σ∈Σ) asymptotically compact, then it has a (X,Y)-uniform (w.r.t. σ∈Σ) attractor AΣ, AΣ is compact in Y, and it attracts all bounded subsets of X in the topology of Y.
In this paper, the letter C represents a positive constant. It may represent different values in different lines, or even in the same line.
In this paper, we chose H(f01)×H(f02) as the symbol space. Obviously, T(t)(H((f01)×H(f02))=H(f01)×H(f02), for all t≥0. {T(t)}t≥0 is defined by
T(h)(f1(⋅),f2(⋅))=(f1(⋅+h),f2(⋅+h)), ∀h≥0,(f1,f2)∈H(f01)×H(f02), |
which is a translation semigroup and is continuous on H(f01)×H(f02).
Thanks to Theorem 2.1, when (uτ,ωτ)∈V1×V2, f1,f2∈L2loc(R;L2(Ω)), and β>3, we can define a process {U(f1,f2)(t,τ)}t≥τ in V1×V2 by
U(f1,f2)(t,τ)(uτ,ωτ)=(u(t),ω(t)), t≥τ, |
where (u(t),ω(t)) is the solution of Eq (1.1) with external forces f1,f2 and initial data (uτ,ωτ).
Next, let us assume that the external forces f01(x,t),f02(x,t) are tr.c. in L2loc(R;L2(Ω)). Then, f01,f02 are tr.b. in L2loc(R;L2(Ω)), and
∥f1∥2L2b=∥f1∥2L2b(R;L2(Ω))=supt∈R∫t+1t∥f1(s)∥2ds≤∥f01∥2L2b<+∞,∀f1∈H(f01), |
∥f2∥2L2b=∥f2∥2L2b(R;L2(Ω))=supt∈R∫t+1t∥f2(s)∥2ds≤∥f02∥2L2b<+∞,∀f2∈H(f02). |
Furthermore, we assume f01,f02 are uniformly bounded in L2(Ω), i.e., there exists a positive constant K, which satisfies
supt∈R∥f01(x,t)∥≤K, supt∈R∥f02(x,t)∥≤K. |
Meanwhile, we suppose the derivatives df01dt, df02dt, labeled as h1,h2, also belong to L2c(R;L2(Ω)).
Lemma 3.1. Suppose (uτ,ωτ)∈V1×V2 and (f1,f2)∈H(f01)×H(f02). If β>3 then there exists a time t0 and constants ρ1,I1 such that, for any t≥t0,
‖u(t)‖2+‖ω(t)‖2≤ρ1, | (3.1) |
∫t+1t[‖∇u(s)‖2+‖∇ω(s)‖2+‖u(s)‖β+1β+1+‖∇⋅ω(s)‖2]ds≤I1. | (3.2) |
Proof. Multiplying (1.1)1 and (1.1)2 with external forces f1∈H(f01), f2∈H(f02) by u and ω, respectively, and integrating the results equations on Ω, using H¨older's inequality, Young's inequality, and Poincarˊe's inequality, it yields
12ddt(‖u(t)‖2+‖ω(t)‖2)+(ν+κ)‖∇u‖2+γ‖∇ω‖2+4κ‖ω(t)‖2+σ‖u(t)‖β+1β+1+μ‖∇⋅ω‖2=4κ∫Ω∇×u⋅ωdx+(f1,u(t))+(f2,ω(t))≤κ∥∇u∥2+4κ∥ω∥2+νλ2∥u∥2+γλ2∥ω∥2+12νλ∥f1∥2+12γλ∥f2∥2≤(ν2+κ)‖∇u‖2+γ2‖∇ω‖2+4κ‖ω(t)‖2+12νλ∥f1∥2+12γλ∥f2∥2. | (3.3) |
So, we can obtain that
ddt(‖u(t)‖2+‖ω(t)‖2)+ν‖∇u‖2+γ‖∇ω‖2+2σ‖u(t)‖β+1β+1+2μ‖∇⋅ω‖2≤1νλ‖f1(t)‖2+1γλ‖f2(t)‖2, | (3.4) |
and by Poincarˊe's inequality, it yields
ddt(‖u(t)‖2+‖ω(t)‖2)+λα(‖u(t)‖2+‖ω(t)‖2)≤1λα(‖f1(t)‖2+‖f2(t)‖2), | (3.5) |
where α=min{ν,γ}. So, by Gronwall's inequality, we get
‖u(t)‖2+‖ω(t)‖2≤(‖uτ‖2+‖ωτ‖2)e−λα(t−τ)+1λα∫tτe−λα(t−s)(‖f1(s)‖2+‖f2(s)‖2)ds≤(‖uτ‖2+‖ωτ‖2)e−λα(t−τ)+1λα[∫tt−1e−λα(t−s)(‖f1(s)‖2+‖f2(s)‖2)ds+∫t−1t−2e−λα(t−s)(‖f1(s)‖2+‖f2(s)‖2)ds+...]≤(‖uτ‖2+‖ωτ‖2)e−λα(t−τ)+1λα[1+e−λα+e−2λα+...](‖f1‖2L2b+‖f2‖2L2b)≤(‖uτ‖2+‖ωτ‖2)e−λα(t−τ)+1λα(1−e−λα)−1(‖f1‖2L2b+‖f2‖2L2b)≤(‖uτ‖2+‖ωτ‖2)e−λα(t−τ)+1λα(1+1λα)(‖f1‖2L2b+‖f2‖2L2b), ∀t≥τ. |
Therefore, there must exists a time t0≥τ+1λαlnλ2α2(‖uτ‖2+‖ωτ‖2)(1+λα)(‖f1‖2L2b+‖f2‖2L2b), such that, ∀t≥t0,
‖u(t)‖2+‖ω(t)‖2≤2λα(1+1λα)(‖f1‖2L2b+‖f2‖2L2b)≡ρ1. | (3.6) |
Taking t≥t0, integrating (3.4) from t to t+1, and noticing (3.6), we get
∫t+1t[ν‖∇u(s)‖2+γ‖∇ω(s)‖2+2σ‖u(s)‖β+1β+1+2μ‖∇⋅ω(s)‖2]ds≤(‖u(t)‖2+‖ω(t)‖2)+1νλ∫t+1t‖f1(s)‖2ds+1γλ∫t+1t‖f2(s)‖2ds≤ρ1+1λα(‖f1‖2L2b+‖f2‖2L2b), ∀t≥t0. | (3.7) |
Letting δ1=min{ν,γ,2σ,2μ}, we have
δ1∫t+1t[‖∇u(s)‖2+‖∇ω(s)‖2+‖u(s)‖β+1β+1+‖∇⋅ω(s)‖2]ds≤ρ1+1λα(‖f1‖2L2b+‖f2‖2L2b), ∀t≥t0. |
Letting I1=1δ1(ρ1+1λα(‖f1‖2L2b+‖f2‖2L2b)), we have
∫t+1t[‖∇u(s)‖2+‖∇ω(s)‖2+‖u(s)‖β+1β+1+‖∇⋅ω(s)‖2]ds≤I1, ∀t≥t0. |
This completes the proof of Lemma 3.1.
Lemma 3.2. Assume β>3, (uτ,ωτ)∈V1×V2 and (f1,f2)∈H(f01)×H(f02). Then, there exists a time t2 and a constant ρ2 such that
‖∇u(t)‖2+‖∇ω(t)‖2+∫t+1t(‖Au(s)‖2+‖Aω(s)‖2+‖|u|β−12∇u‖2+‖∇|u|β+12‖2)ds≤ρ2, | (3.8) |
for any t≥t2.
Proof. Taking the inner product of −Δu in H1 with the first equation of (1.1), we obtain
12ddt‖∇u‖2+(ν+κ)‖Au‖2+σ‖|u|β−12∇u‖2+4σ(β−1)(β+1)2‖∇|u|β+12‖2=−b(u,u,Au)+2κ∫Ω∇×ω⋅Audx+(f1(t),Au). | (3.9) |
In [18], we find that, when β>3,
∫Ω(u⋅∇u)⋅Δudx≤ν+κ4∥Δu∥2+σ2∥|u|β−12∇u∥2+C1∥∇u∥2, | (3.10) |
where C1=N2ν+κ+N2(ν+κ)(Nβ−1+1), and N is sufficiently large such that
N≥(2β−3)1β−1 and N2(ν+κ)(Nβ−1+1)≤σ2. |
And, because
|2κ∫Ω∇×ω⋅Audx|≤ν+κ4∥Δu∥2+4κ2ν+κ∥∇ω∥2, | (3.11) |
|(f1(t),Au)|≤ν+κ4∥Δu∥2+∥f1(t)∥2ν+κ, | (3.12) |
so combining (3.10)–(3.12) with (3.9), we have
ddt‖∇u‖2+ν+κ2‖Au‖2+σ‖|u|β−12∇u‖2+8σ(β−1)(β+1)2‖∇|u|β+12‖2≤2C1‖∇u‖2+8κ2ν+κ∥∇ω∥2+2∥f1(t)∥2ν+κ≤C2(‖∇u‖2+‖∇ω‖2+‖f1(t)‖2), | (3.13) |
where C2=max{2C1,8κ2ν+κ,2ν+κ}.
Applying uniform Gronwall's inequality to (3.13), we obtaint, ∀t≥t0+1≡t1,
‖∇u(t)‖2+∫t+1t(ν+κ2‖Au(s)‖2+σ‖|u(s)|β−12∇u(s)‖2+8σ(β−1)(β+1)2‖∇|u(s)|β+12‖2)ds≤C3, | (3.14) |
where C3 is a positive constant dependent on C2, I1, and ∥f01∥2L2b.
Taking the inner product of −Δω in H2 with the second equation of (1.1), we get
12ddt‖∇ω‖2+4κ‖∇ω‖2+γ‖Aω‖2+μ‖∇∇⋅ω‖2=−b(u,ω,Aω)+2κ∫Ω∇×u⋅Aωdx+(f2(t),Aω)≤3γ4‖Aω‖2+d21γ‖∇u‖‖Au‖‖∇ω‖2+4κ2γ‖∇u‖2+1γ‖f2(t)‖2. | (3.15) |
In the last inequality of (3.15), we used Agmon's inequality and the trilinear inequality. Then,
ddt‖∇ω‖2+γ2‖Aω‖2+2μ‖∇∇⋅ω‖2≤C4(‖∇u‖‖Au‖‖∇ω‖2+‖∇u‖2+‖f2(t)‖2), | (3.16) |
where C4=max{2d21γ,8κ2γ,2γ}.
By the uniform Gronwall's inequality, we easily obtain that, for t≥t1+1≡t2,
‖∇ω(t)‖2+∫t+1t(γ2‖Aω(s)‖2+2μ‖∇∇⋅ω(s)‖2)ds≤C5, for t≥t1+1≡t2, | (3.17) |
where C5 is a positive constant dependent on C3,C4, and ∥f02∥2L2b.
Adding (3.14) with (3.17) yields
‖∇u(s)‖2+‖∇ω(s)‖2+∫t+1t(‖Au(s)‖2+‖Aω(s)‖2+‖|u(s)|β−12∇u(s)‖2+‖∇|u(s)|β+12‖2)ds≤C, |
for t≥t2. Hence, Lemma 3.2 is proved.
Lemma 3.3. Suppose that (uτ,ωτ)∈V1×V2 and (f1,f2)∈H(f01)×H(f02). Then, for β>3, there exists a time t3 and a constant ρ3 such that
‖u(t)‖β+1+‖∇⋅ω(t)‖2≤ρ3, | (3.18) |
for any t≥t3.
Proof. Multiplying (1.1)1 by ut, then integrating the equation over Ω, we have
‖ut‖2+ν+κ2ddt‖∇u‖2+σβ+1ddt‖u(t)‖β+1β+1=−b(u,u,ut)+2κ∫Ω∇×ω⋅utdx+(f1(t),ut)≤12‖ut‖2+3d212√λ1∥∇u∥2∥Au∥2+6κ2‖∇ω‖2+32‖f1(t)‖2. | (3.19) |
The trilinear inequality (2.4), Agmon's inequality, and Poincarˊe's inequality are used in the last inequality of (3.19).
Hence,
(ν+κ)ddt‖∇u‖2+2σβ+1ddt‖u(t)‖β+1β+1≤C6(∥∇u∥2∥Au∥2+‖∇ω‖2+‖f1(t)‖2), | (3.20) |
where C6=max{3d21√λ1,12κ2,3}.
By (3.20), using Lemmas 3.1 and 3.2 and the uniform Gronwall's inequality, we have
‖u(t)‖β+1≤C, ∀t≥t2+1≡t3. | (3.21) |
Similar to (3.19), multiplying (1.1)2 by ωt and integrating it over Ω, we get
‖ωt‖2+2κddt‖ω‖2+γ2ddt‖∇ω‖2+μ2ddt‖∇⋅ω‖2=−b(u,ω,ωt)+2κ∫Ω∇×u⋅ωtdx+(f2(t),ωt)≤12‖ωt‖2+3d212√λ1∥Au∥2∥∇ω∥2+6κ2‖∇u‖2+32‖f2(t)‖2. | (3.22) |
Hence,
4κddt∥ω∥2+γddt∥∇ω∥2+μddt∥∇⋅ω∥2≤C6(∥Au∥2∥∇ω∥2+∥∇u∥2+∥f2(t)∥2). | (3.23) |
By (3.23), using Lemma 3.2 and the uniform Gronwall's inequality, we infer that
‖∇⋅ω(t)‖2≤C, ∀t≥t3. | (3.24) |
The proof of Lemma 3.3 is finished.
Lemma 3.4. Suppose (uτ,ωτ)∈V1×V2 and (f1,f2)∈H(f01)×H(f02). If β>3, then there exists a time t4 and a constant ρ5, such that
‖ut(s)‖2+‖ωt(s)‖2≤ρ5, | (3.25) |
for any s≥t4.
Proof. Taking the inner products of ut and ωt with the first and second equations of (1.1), respectively, and using (3.19) and (3.22), we find
‖ut‖2+‖ωt‖2+ν+κ2ddt‖∇u‖2+γ2ddt‖∇ω‖2+2κddt‖ω(t)‖2+σβ+1ddt‖u(t)‖β+1β+1+μ2ddt‖∇⋅ω‖2=−b(u,u,ut)−b(u,ω,ωt)+2κ∫Ω∇×ω⋅utdx+2κ∫Ω∇×u⋅ωtdx+(f1(t),ut)+(f2(t),ωt)≤12(‖ut‖2+‖ωt‖2)+C7(‖f1(t)‖2+‖f2(t)‖2+‖∇u‖2+‖∇ω‖2+∥∇u∥2∥Au∥2+∥∇ω∥2∥Au∥2), | (3.26) |
where C7=max{3d212√λ1,6κ2,32}. The trilinear inequality (2.4), Agmon's inequality, and Poincarˊe's inequality are used in the last inequality of (3.26).
Integrating (3.26) over [t,t+1] and using Lemmas 3.1–3.3, we get
∫t+1t(‖ut(s)‖2+‖ωt(s)‖2)ds≤ρ4, ∀t≥t3, | (3.27) |
where ρ4 is a positive constant dependent on C7,ρ2,ρ3, ∥f01∥2L2b, and ∥f02∥2L2b.
We now differentiate (2.1)1 with respect to t, then take the inner product of ut with the resulting equation to obtain
12ddt∥ut∥2+(ν+κ)∥∇ut∥2=−b(ut,u,ut)−∫ΩG′(u)ut⋅utdx+2κ∫Ω∇×ωt⋅utdx+(f1t,ut). | (3.28) |
Then, we differentiate (2.1)2 with respect to t and take the inner product with ωt to obtain
12ddt∥ωt∥2+4κ∥ωt∥2+γ∥∇ωt∥2+μ∥∇⋅ωt∥2=−b(ut,ω,ωt)+2κ∫Ω∇×ut⋅ωtdx+(f2t,ωt). | (3.29) |
Adding (3.28) with (3.29), we have
12ddt(‖ut‖2+‖ωt‖2)+(ν+κ)‖∇ut‖2+γ‖∇ωt‖2+4κ‖ωt‖2+μ‖∇⋅ωt‖2≤|b(ut,u,ut)|+|b(ut,ω,ωt)|+2κ∫Ω∇×ωt⋅utdx+2κ∫Ω∇×ut⋅ωtdx+(f1t,ut)+(f2t,ωt)−∫ΩG′(u)ut⋅utdx:=7∑i=1Li. | (3.30) |
From Lemma 2.4 in [15], we know that G′(u) is positive definite, so
L7=−∫ΩG′(u)ut⋅utdx≤0. | (3.31) |
For L1, using the trilinear inequality (2.5) and Lemma 3.2, we have
L1≤k‖ut‖12‖∇ut‖32‖∇u‖≤ν+κ4‖∇ut‖2+C‖ut‖2‖∇u‖4≤ν+κ4‖∇ut‖2+C‖ut‖2, for t≥t2. | (3.32) |
For L2, by H¨older's inequality, Gagliardo-Nirenberg's inequality, and Young's inequality, we have
L2≤C‖ut‖4‖ωt‖4‖∇ω‖≤C‖ut‖14‖∇ut‖34‖ωt‖14‖∇ωt‖34‖∇ω‖≤ν+κ4‖∇ut‖2+γ4‖∇ωt‖2+C(‖ut‖2+‖ωt‖2), for t≥t2. | (3.33) |
L3+L4≤ν+κ4‖∇ut‖2+γ2‖∇ωt‖2+C(‖ut‖2+‖ωt‖2). | (3.34) |
By (3.30)–(3.34), we get
ddt(‖ut‖2+‖ωt‖2)≤C(‖ut‖2+‖ωt‖2)+(f1t,ut)+(f2t,ωt)≤C(‖ut‖2+‖ωt‖2)+‖f1t‖2+‖f2t‖2. | (3.35) |
Thanks to
∫t+1t∥f1t(s)∥2ds≤∥f1t∥2L2b≤∥h1∥2L2b,∫t+1t∥f2t(s)∥2ds≤∥f2t∥2L2b≤∥h2∥2L2b, |
and applying uniform Gronwall's inequality to (3.35), we have for any s≥t3+1≡t4,
‖ut(s)‖2+‖ωt(s)‖2≤C. | (3.36) |
Thus, Lemma 3.4 is proved.
Lemma 3.5. Suppose (uτ,ωτ)∈V1×V2 and (f1,f2)∈H(f01)×H(f02). Then, for β>3, there exists a constant ρ6 such that
‖Au(t)‖2+‖Aω(t)‖2≤ρ6, | (3.37) |
for any t≥t4.
Proof. Taking the inner product of −Δu in H1 with the first equation of (1.1), we have
(ν+κ)∥Au∥2+σ∥|u|β−12∇u∥2+4σ(β−1)(β+1)2∥∇|u|β+12∥2=−(ut,Au)−(B(u),Au)+2κ∫Ω∇×ω⋅Audx+(f1(t),Au)≤4(ν+κ)6∥Au∥2+32(ν+κ)∥ut∥2+32(ν+κ)∥B(u)∥2+6κ2ν+κ∥∇ω∥2+32(ν+κ)∥f1(t)∥2. | (3.38) |
Because
32(ν+κ)∥B(u)∥2≤32(ν+κ)∥u∥2∞∥∇u∥2≤3d212(ν+κ)∥∇u∥3∥Δu∥≤ν+κ6∥Au∥2+C∥∇u∥6, | (3.39) |
combining (3.39) with (3.38), we obtain
ν+κ6∥Au∥2≤32(ν+κ)∥ut∥2+C∥∇u∥6+6κ2ν+κ∥∇ω∥2+32(ν+κ)∥f1(t)∥2. | (3.40) |
From the assumption of f01(t), we can easily get
supt∈R∥f1(t)∥≤supt∈R∥f01(t)∥≤K,∀f1∈H(f01). | (3.41) |
By Lemmas 3.2 and 3.4, we obtain
‖Au(t)‖≤C, for any t≥t4. | (3.42) |
Taking the inner product of Aω with (2.1)2, we get
γ‖Aω‖2+4κ∥∇ω∥2+μ∥∇∇⋅ω∥2=−(ωt,Aω)−(B(u,ω),Aω)+2κ(∇×u,Aω)+(f2(t),Aω)≤γ2∥Aω∥2+C(∥ωt∥2+∥B(u,ω)∥2+∥∇u∥2+∥f2(t)∥2). | (3.43) |
And, by Agmon's inequality,
‖B(u,ω)‖2≤C‖u‖2∞‖∇ω‖2≤C‖∇u‖‖Δu‖‖∇ω‖2≤‖Au‖2+C∥∇u∥2∥∇ω∥4. | (3.44) |
From the assumption on f02(t), we can easily obtain
supt∈R∥f2(t)∥≤supt∈R∥f02(t)∥≤K,∀f2∈H(f02). | (3.45) |
By Lemma 3.2, Lemma 3.4, (3.42), (3.43), (3.44), and (3.45), we get
‖Aω(t)‖≤C, for any t≥t4. | (3.46) |
By (3.42) and (3.46), Lemma 3.5 is proved for all t≥t4.
Lemma 3.6. Suppose (uτ,ωτ)∈V1×V2 and (f1,f2)∈H(f01)×H(f02). Then, for β>3, there exists a time t5 and a constant ρ7 satisfying
‖∇ut(t)‖2+‖∇ωt(t)‖2≤ρ7,∀t≥t5. | (3.47) |
Proof. In the proof of Lemma 3.4, from (3.30)–(3.34) we can also get
ddt(∥ut∥2+∥ωt∥2)+ν+κ2∥∇ut∥2+γ2∥∇ωt∥2+2μ∥∇⋅ωt∥2≤C(∥ut∥2+∥ωt∥2)+∥f1(t)∥2+∥f2(t)∥2. | (3.48) |
Integrating (3.48) from t to t+1, and according to Lemma 3.4, we have
∫t+1t(‖∇ut(s)‖2+‖∇ωt(s)‖2+‖∇⋅ωt(s)‖2)ds≤C(‖ut(t)‖2+‖ωt(t)‖2+∫t+1t(‖ut(s)‖2+‖ωt(s)‖2)ds+∫t+1t‖f1t(s)‖2ds+∫t+1t‖f2t(s)‖2ds)≤C+‖h1‖2L2b+‖h2‖2L2b≤C, ∀t≥t4. | (3.49) |
By Lemma 3.5, we get
‖u(t)‖H2+‖ω(t)‖H2≤C,∀t≥t4. | (3.50) |
So, by Lemma 3.2, applying Agmon's inequality, we get
‖u(t)‖∞+‖ω(t)‖∞≤C,∀t≥t4. | (3.51) |
Taking the derivative of (2.1)1 and (2.1)2 with respect to t, then multiplying by Aut and Aωt, respectively, and integrating the resulting equations over Ω, we then have
12ddt(‖∇ut‖2+‖∇ωt‖2)+(ν+κ)‖Aut‖2+γ‖Aωt‖2+4κ‖∇ωt‖2+μ∥∇∇⋅ωt∥2≤|b(ut,u,Aut)|+|b(u,ut,Aut)|+|b(u,ωt,Aωt)|+|b(ut,ω,Aωt)| +2κ∫Ω|∇×ωt⋅Aut|dx+2κ∫Ω|∇×ut⋅Aωt|dx+|∫ΩG′(u)ut⋅Autdx| +(f1t,Aut)+(f2t,Aωt):=9∑i=1Ji. | (3.52) |
For J1, J2, using (2.6) and Lemmas 3.2 and 3.5, we have
J1≤k‖∇ut‖‖∇u‖12‖Au‖12‖Aut‖≤ν+κ5‖Aut‖2+C‖∇ut‖2, ∀t≥t4, | (3.53) |
and
J2≤k‖∇u‖‖∇ut‖12‖Aut‖12‖Aut‖≤k‖∇u‖‖∇ut‖12‖Aut‖32≤ν+κ5‖Aut‖2+C‖∇ut‖2, ∀t≥t4. | (3.54) |
For J3 and J4, similar to (3.53) and (3.54), we get
J3≤k‖∇u‖‖∇ωt‖12‖Aωt‖12‖Aωt‖≤γ4‖Aωt‖2+C‖∇ωt‖2, ∀t≥t4, | (3.55) |
J4≤k‖∇ut‖‖∇ω‖12‖Aω‖12‖Aωt‖≤γ4‖Aωt‖2+C‖∇ut‖2, ∀t≥t4. | (3.56) |
For J5, J6, and J7, applying Hölder's inequality and Young's inequality, we have
J5+J6≤ν+κ5‖Aut‖2+γ4‖Aωt‖2+C(‖∇ut‖2+‖∇ωt‖2), | (3.57) |
and thanks to (3.51),
J7≤C‖u‖β−1∞‖ut‖‖Aut‖≤ν+κ5‖Aut‖2+C‖ut‖2, ∀t≥t4. | (3.58) |
For J8 and J9, we have
J8≤ν+κ5‖Aut‖2+C‖f1t‖2, | (3.59) |
J9≤γ4‖Aωt‖2+C‖f2t‖2. | (3.60) |
By (3.52)–(3.60), we obtain
ddt(‖∇ut‖2+‖∇ωt‖2)≤C(‖∇ut‖2+‖∇ωt‖2)+C‖ut‖2+C(‖f1t‖2+‖f2t‖2). | (3.61) |
Then, by (3.27), (3.49), and using the uniform Gronwall's lemma, we get
‖∇ut(s)‖2+‖∇ωt(s)‖2≤C, ∀s≥t4+1≡t5. | (3.62) |
Thus, Lemma 3.6 is proved.
In this section, we consider the existence of the (V1×V2,V1×V2)-uniform (w.r.t. (f1,f2)∈H(f01)×H(f02)) attractor and the (V1×V2,H2(Ω)×H2(Ω))-uniform attractor for {U(f1,f2)(t,τ)}t≥τ,f1×f2∈H(f01)×H(f02).
Lemma 4.1. Suppose β>3. The family of processes {U(f1,f2)(t,τ)}t≥τ, f1×f2∈H(f01)×H(f02), corresponding to (2.1) is ((V1×V2)×(H(f01)×H(f02)),V1×V2)-continuous for τ≥t5.
Proof. Let τn⊂[τ,+∞) be a time sequence, U(f(n)1,f(n)2)(t,τ)(uτn,ωτn)=(u(n)(t),ω(n)(t)), U(f1,f2)(t,τ)(uτ,ωτ)=(u(t),ω(t)) and
(ˉu(n)(t),ˉω(n)(t))=(u(t)−u(n)(t),ω(t)−ω(n)(t))=U(f1,f2)(t,τ)(uτ,ωτ)−U(f(n)1,f(n)2)(t,τ)(uτn,ωτn). |
It is evident that ˉu(n)(t) is the solution of
∂ˉu(n)(t)∂t+B(u)−B(u(n)(t))+(ν+κ)Aˉu(n)+G(u)−G(u(n))=2κ∇×ˉω(n)+(f1−f(n)1), | (4.1) |
and ˉω(n)(t) is the solution of the following system
∂ˉω(n)(t)∂t+B(u,ω)−B(u(n),ω(n))+4κˉω(n)+γAˉω(n)−μ∇∇⋅ˉω(n)=2κ∇×ˉu(n)+(f2−f(n)2), | (4.2) |
for each n.
Taking the inner product of (4.1) with Aˉu(n) in H1, we get
12ddt‖∇ˉu(n)‖2+b(u,u,Aˉu(n))−b(u(n),u(n),Aˉu(n))+(ν+κ)∥Aˉu(n)∥2+(G(u)−G(u(n)),Aˉu(n))=2κ(∇×ˉω(n),Aˉu(n))+(f1−f(n)1,Aˉu(n)). | (4.3) |
Taking the inner product of (4.2) with Aˉω(n) in H2, we have
12ddt‖∇ˉω(n)‖2+b(u,ω,Aˉω(n))−b(u(n),ω(n),Aˉω(n))+4κ‖∇ˉω(n)‖2+γ∥Aˉω(n)∥2+μ∥∇∇⋅ˉω(n)∥2=2κ(∇×ˉu(n),Aˉω(n))+(f2−f(n)2,Aˉω(n)). | (4.4) |
Combining (4.3) with (4.4), we get
12ddt(‖∇ˉu(n)‖2+‖∇ˉω(n)‖2)+b(u,u,Aˉu(n))−b(u(n),u(n),Aˉu(n))+(ν+κ)‖Aˉu(n)‖2+(G(u)−G(u(n)),Aˉu(n))+b(u,ω,Aˉω(n))−b(u(n),ω(n),Aˉω(n))+4κ∥∇ˉω(n)∥2+γ∥Aˉω(n)∥2+μ∥∇∇⋅ˉω(n)∥2=2κ(∇×ˉω(n),Aˉu(n))+2κ(∇×ˉu(n),Aˉω(n))+(f1−f(n)1,Aˉu(n))+(f2−f(n)2,Aˉω(n)). | (4.5) |
Due to
b(u,u,Aˉu(n))−b(u(n),u(n),Aˉu(n))=b(ˉu(n),u,Aˉu(n))+b(u(n),ˉu(n),Aˉu(n)), | (4.6) |
\begin{align} b(u,\omega,A\bar{\omega}^{(n)})-b(u^{(n)},\omega^{(n)},A\bar{\omega}^{(n)})& = b(\bar{u}^{(n)},\omega,A\bar{\omega}^{(n)})+b(u^{(n)},\bar{\omega}^{(n)},A\bar{\omega}^{(n)}), \end{align} | (4.7) |
and
\begin{align} |b(\bar{u}^{(n)},u,A\bar{u}^{(n)})|&\leq k\|\nabla\bar{u}^{(n)}\|\|\nabla u\|^{\frac{1}{2}}\|Au\|^{\frac{1}{2}}\|A\bar{u}^{(n)}\|\\&\leq\frac{\nu+k}{5}\|A\bar{u}^{(n)}\|^{2}+C\|\nabla\bar{u}^{(n)}\|^{2}\|\nabla u\|\|Au\|, \end{align} | (4.8) |
\begin{align} |b({u}^{(n)},\bar{u}^{(n)},A\bar{u}^{(n)})|&\leq k\|\nabla{u}^{(n)}\|\|\nabla\bar{u}^{(n)}\|^{\frac{1}{2}}\|A\bar{u}^{(n)}\|^{\frac{1}{2}}\|A\bar{u}^{(n)}\|\\ &\leq\frac{\nu+k}{5}\|A\bar{u}^{(n)}\|^{2}+C\|\nabla{u}^{(n)}\|^{4}\|\nabla\bar{u}^{(n)}\|^{2}, \end{align} | (4.9) |
\begin{align} b(\bar{u}^{(n)},\omega,A\bar{\omega}^{(n)})&\leq k\|\nabla\bar{u}^{(n)}\|\|\nabla\omega\|^{\frac{1}{2}}\|A\omega\parallel^{\frac{1}{2}}\|A\bar{\omega}^{(n)}\|\\ &\leq\frac{\gamma}{4}\|A\bar{\omega}^{(n)}\|^{2}+C\|\nabla\bar{u}^{(n)}\|^{2}\|\nabla\omega\|\|A\omega\|, \end{align} | (4.10) |
\begin{align} b(u^{(n)},\bar{\omega}^{(n)},A\bar{\omega}^{(n)})&\leq k\|\nabla u^{(n)}\|\|\nabla\bar{\omega}^{(n)}\|^{\frac{1}{2}}\|A\bar{\omega}^{(n)}\|^{\frac{1}{2}}\|A\bar{\omega}^{(n)}\|\\ &\leq\frac{\gamma}{4}\|A\bar{\omega}^{(n)}\|^{2}+C\parallel\nabla u^{(n)}\parallel^4\parallel\nabla\bar{\omega}^{(n)}\parallel^2, \end{align} | (4.11) |
\begin{align} 2\kappa|(\nabla\times\bar{\omega}^{(n)},A\bar{u}^{(n)})|&\leq 2\kappa\|A\bar{u}^{(n)}\|\|\nabla\bar{\omega}^{(n)}\|\\ &\leq\frac{\nu+k}{5}\|A\bar{u}^{(n)}\|^{2}+C\|\nabla\bar{\omega}^{(n)}\|^{2}, \end{align} | (4.12) |
\begin{align} 2\kappa|(\nabla\times\bar{u}^{(n)},A\bar{\omega}^{(n)})\|&\leq 2\kappa\parallel A\bar{\omega}^{(n)}\|\|\nabla\bar{u}^{(n)}\|\\ &\leq\frac{\gamma}{4}\|A\bar{\omega}^{(n)}\|^{2}+C\|\nabla\bar{u}^{(n)}\|^{2}, \end{align} | (4.13) |
\begin{align} |(f_{1}-f_{1}^{(n)},A\bar{u}^{(n)})|&\leq\frac{\nu+k}{5}\|A\bar{u}^{(n)}\|^{2}+\frac{5}{4(\nu+\kappa)}\|f_{1}-f_{1}^{(n)}\|^{2}, \end{align} | (4.14) |
\begin{align} |(f_{2}-f_{2}^{(n)},A\bar{\omega}^{(n)})|&\leq\frac{\gamma}{4}\|A\bar{\omega}^{(n)}\|^{2}+\frac{1}{\gamma}\|f_{2}-f_{2}^{(n)}\|^{2}, \end{align} | (4.15) |
\begin{align} \|G(u)-G(u^{(n)})\|^{2}& = \int_\Omega \big|\sigma|u|^{\beta-1}u-\sigma|u^{(n)}|^{\beta-1}u^{(n)}\big|^2dx\\ &\leq C\int_\Omega [|u|^{\beta-1}|\bar{u}^{(n)}|+\big||u|^{\beta-1}-|u^{(n)}|^{\beta-1}\big|\cdot|u^{(n)}|]^2dx\\ &\leq C\int_\Omega |u|^{2(\beta-1)}|\bar{u}^{(n)}|^2dx+C\int_\Omega[|u|^{\beta-2}+|u^{(n)}|^{\beta-2}]^2|u^{(n)}|^2|\bar{u}^{(n)}|^2dx\\ &\leq C[\parallel u\parallel_\infty^{2(\beta-1)}+(\parallel u\parallel_\infty^{2(\beta-2)}+\parallel u^{(n)}\parallel_{\infty}^{2(\beta-2)})\parallel u^{(n)}\parallel_\infty^2]\parallel\nabla \bar{u}^{(n)}\parallel^2, \end{align} | (4.16) |
where \bar{u}^{(n)}(t) = u(t)-u^{n}(t) . In the above inequality, we used the fact that
|x^p-y^p|\leq cp(|x|^{p-1}+|y|^{p-1})|x-y| |
for any x, y\geq 0 , where c is an absolute constant.
Therefore,
\begin{align} (G(u)-G(u^{(n)}),A\bar{u}^{(n)})&\leq\frac{\nu+\kappa}{5}\|A\bar{u}^{(n)}\|^{2}+\frac{5}{4(\nu+\kappa)}\|G(u)-G(u^{(n)})\|^{2}\\ &\leq C[\parallel u\parallel_\infty^{2(\beta-1)}+(\parallel u\parallel_\infty^{2(\beta-2)}+\parallel u^{(n)}\parallel_{\infty}^{2(\beta-2)})\parallel u^{(n)}\parallel_\infty^2]\parallel\nabla \bar{u}^{(n)}\parallel^2\\ &\quad+\frac{\nu+k}{5}\parallel A\bar{u}^{(n)}\parallel^2. \end{align} | (4.17) |
By (4.5)–(4.15) and (4.17), we obtain
\begin{align} \frac{d}{dt}(\|\nabla\bar{u}^{(n)}\|^{2}+\|\nabla\bar{\omega}^{(n)}\|^{2})&\leq C[\parallel u\parallel_\infty^{2(\beta-1)}+(\parallel u\parallel_\infty^{2(\beta-2)}+\parallel u^{(n)}\parallel_{\infty}^{2(\beta-2)})\parallel u^{(n)}\parallel_\infty^2\\ &\quad+\|\nabla u\|\|Au\|+\|\nabla u^{(n)}\|^{4}+\|\nabla\omega\|\|A\omega\|+1]\\ &\quad \cdot(\|\nabla\bar{u}^{(n)}\|^{2}+\|\nabla\bar{\omega}^{(n)}\|^{2})+\frac{5}{2(\nu+\kappa)}\|f_{1}-f_{1}^{(n)}\|^{2}\\ &\quad +\frac{2}{\gamma}\|f_{2}-f_{2}^{(n)}\|^{2}. \end{align} | (4.18) |
Using Gronwall's inequality in (4.18) yields
\begin{align} \|\nabla\bar{u}^{(n)}\|^{2}+\|\nabla\bar{\omega}^{(n)}\|^{2} &\leq\Big(\|\nabla\bar{u}_{\tau}^{(n)}\|^{2}+\|\nabla\bar{\omega}_{\tau}^{(n)}\|^{2}+\frac{5}{2(\nu+\kappa)}\int^{t}_{\tau}\|f_{1}-f_{1}^{(n)}\|^{2}ds\\ &\ \ \ \ +\frac{2}{\gamma}\int_\tau^t \|f_{2}-f_{2}^{(n)}\|^{2}ds\Big)\\ &\ \ \ \ \cdot\exp\Big\{C\int^{t}_{\tau}[\parallel u\parallel_\infty^{2(\beta-1)}+(\parallel u\parallel_\infty^{2(\beta-2)}+\parallel u^{(n)}\parallel_{\infty}^{2(\beta-2)})\parallel u^{(n)}\parallel_\infty^2\\ &\ \ \ \ +\|\nabla u\|\|Au\|+\|\nabla u^{(n)}\|^{4}+\|\nabla\omega\|\|A\omega\|+1]ds\Big\}. \end{align} | (4.19) |
From Lemmas 3.2 and 3.5, and using Agmon's inequality, we know that
\parallel u\parallel_\infty < C, \parallel u^{(n)}\parallel_\infty < C, \forall t\geq t_5. |
So, from Lemmas 3.2–3.5, we have
\begin{align*} &\exp\Big\{C\int^{t}_{\tau}[\parallel u\parallel_\infty^{2(\beta-1)}+(\parallel u\parallel_\infty^{2(\beta-2)}+\parallel u^{(n)}\parallel_{\infty}^{2(\beta-2)})\parallel u^{(n)}\parallel_\infty^2+\|\nabla u\|\|Au\|\nonumber\\ &+\|\nabla u^{(n)}\|^{4}+\|\nabla\omega\|\|A\omega\|+1]ds\Big\} < +\infty, \end{align*} |
for any given t and \tau , t\geq\tau , \tau\geq t_5 .
Thus, from (4.19), we have that \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) is ((V_{1}\times V_{2})\times(\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2})), V_{1}\times V_{2}) -continuous, for \tau\geq t_5 .
By Lemma 3.5, the fact of compact imbedding \mathbf{H}^2\times \mathbf{H}^2\hookrightarrow V_{1}\times V_{2} , and Theorem 3.1 in [16], we have the following theorems.
Theorem 4.1. Suppose \beta > 3 . The family of processes \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) with respect to problem (1.1) has a (V_1\times V_2, V_1\times V_2) uniform attractor \mathcal{A}_{1} . Moreover,
\begin{eqnarray} \mathcal{A}_{1} = \bigcup\limits_{(f_{1},f_{2})\in \mathcal{H}(f_1^0)\times\mathcal{H}(f_2^0)}\mathcal{K}_{(f_1,f_2)}(0), \end{eqnarray} | (4.20) |
where \mathcal{K}_{(f_{1}, f_{2})}(0) is the section at t = 0 of kernel \mathcal{K}_{(f_{1}, f_{2})} of the processes \{U_{(f_1, f_2)}(t, \tau)\}_{t\geq\tau} .
Theorem 4.2. Suppose \beta > 3 . The family of processes \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) with respect to problem (1.1) has a (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform attractor \mathcal{A}_{2} . \mathcal{A}_{2} is compact in \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega) , and it attracts every bounded subset of V_{1}\times V_{2} in the topology of \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega) .
Proof. By Theorem 2.2, we only need to prove that \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) acting on V_{1}\times V_{2} is (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform (w.r.t.\ \ f_{1}\times f_{2}\in \mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2})) asymptotically compact.
Thanks to Lemma 3.5, we know that B = \{(u\times\omega)\in \mathbf{H}^2\times \mathbf{H}^2: \|Au\|^{2}+\|A\omega\|^{2}\leq C\} is a bounded (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform absorbing set of \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} . Then, we just need to prove that, for any \tau_{n}\in\mathbb{R} , any t\rightarrow +\infty , and (u_{\tau_{n}}, \omega_{\tau_n})\in B , \{(u_{n}(t), \omega_{n}(t))\}_{n = 0}^{\infty} is precompact in \textbf{H}^{2}(\Omega)\times\textbf{H}^{2}(\Omega) , where (u_{n}(t), \omega_{n}(t)) = U_{(f_{1}, f_{2})}(t, \tau_{n})(u_{\tau_{n}}, \omega_{\tau_{n}}) .
Because V_1\hookrightarrow H_1, V_2\hookrightarrow H_2 are compact, from Lemma 3.6 we obtain that \{\frac{d}{dt}u_{n}(t)\}_{n = 0}^{\infty} , \{\frac{d}{dt}\omega_{n}(t)\}_{n = 0}^{\infty} are precompact in H_1 and H_2 , respectively.
Next, we will prove \{u_{n}(t)\}_{n = 0}^{\infty} , \{\omega_{n}(t)\}_{n = 0}^{\infty} are Cauchy sequences in \mathbf{H}^{2}(\Omega) . From (2.1), we have
\begin{align} &(\nu+\kappa)(Au_{n_k}(t)-Au_{n_j}(t)) = -\frac{d}{dt}u_{n_k}(t)+\frac{d}{dt}u_{n_j}(t)-B(u_{n_k}(t))+B(u_{n_j}(t))\\ &\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad-G(u_{n_k}(t))+G(u_{n_j}(t))+2\kappa\nabla\times\omega_{n_k}(t)-2\kappa\nabla\times\omega_{n_j}(t). \end{align} | (4.21) |
\begin{align} &\gamma(A\omega_{n_k}(t)-A\omega_{n_j}(t))-\mu\nabla\nabla\cdot\omega_{n_k}(t)+\mu\nabla\nabla\cdot\omega_{n_j}(t) = -\frac{d}{dt}\omega_{n_k}(t)+\frac{d}{dt}\omega_{n_j}(t)-B(u_{n_k}(t),\omega_{n_k}(t))\\&\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad+B(u_{n_j}(t),\omega_{n_j}(t))-4\kappa\omega_{n_k}(t)\\ &\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad+4\kappa\omega_{n_j}(t)+2\kappa\nabla\times u_{n_k}(t)-2\kappa\nabla\times u_{n_j}(t). \end{align} | (4.22) |
Multiplying (4.21) by Au_{n_k}(t)-Au_{n_j}(t) , we obtain
\begin{align*} (\nu+\kappa)\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel^2&\leq\parallel\frac{d}{dt}u_{n_k}(t)-\frac{d}{dt}u_{n_j}(t)\parallel\cdot\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel+\parallel B(u_{n_k}(t))-B(u_{n_j}(t))\parallel\nonumber\\ & \cdot\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel+\parallel G(u_{n_k}(t))-G(u_{n_j}(t))\parallel\cdot\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel\nonumber\\ &\ \ \ +2\kappa\parallel\nabla\omega_{n_k}(t)-\nabla\omega_{n_j}(t)\parallel\cdot\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel\nonumber\\ &\leq\frac{4(\nu+\kappa)}{5}\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel^2+\frac{5}{4(\nu+\kappa)}\parallel\frac{d}{dt}u_{n_k}(t)-\frac{d}{dt}u_{n_j}(t)\parallel^2\nonumber\\ &\ \ \ +\frac{5}{4(\nu+\kappa)}\parallel B(u_{n_k}(t))-B(u_{n_j}(t))\parallel^2+\frac{5}{4(\nu+\kappa)}\parallel G(u_{n_k}(t))-G(u_{n_j}(t))\parallel^2\nonumber\\ &\ \ \ +\frac{5\kappa^2}{\nu+\kappa}\parallel\nabla\omega_{n_k}(t)-\nabla\omega_{n_j}(t)\parallel^2, \end{align*} |
so we have
\begin{align} \frac{\nu+\kappa}{5}\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel^2 &\leq\frac{5}{4(\nu+\kappa)}\parallel\frac{d}{dt}u_{n_k}(t)-\frac{d}{dt}u_{n_j}(t)\parallel^2\\&\ \ \ +\frac{5}{4(\nu+\kappa)}\parallel B(u_{n_k}(t))-B(u_{n_j}(t))\parallel^2\\ &\ \ \ +\frac{5}{4(\nu+\kappa)}\parallel G(u_{n_k}(t))-G(u_{n_j}(t))\parallel^2\\&\ \ \ +\frac{5\kappa^2}{\nu+\kappa}\parallel\nabla\omega_{n_k}(t)-\nabla\omega_{n_j}(t)\parallel^2. \end{align} | (4.23) |
Multiplying (4.22) by A\omega_{n_k}(t)-A\omega_{n_j}(t) we obtain
\begin{align*} &\quad\gamma\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel^2+\mu\parallel\nabla\nabla\cdot(\omega_{n_k}(t)-\omega_{n_j}(t))\parallel^2\nonumber\\ &\leq \parallel\frac{d}{dt}\omega_{n_k}(t)-\frac{d}{dt}\omega_{n_j}(t)\parallel\cdot\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel+\parallel B(u_{n_k}(t),\omega_{n_k}(t))-B(u_{n_j}(t),\omega_{n_j}(t))\parallel\nonumber\\ &\ \ \ \cdot\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel+4\kappa\parallel\omega_{n_k}(t)-\omega_{n_j}(t)\parallel\cdot\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel\nonumber\\ &\ \ \ +2\kappa\parallel\nabla u_{n_k}(t)-\nabla u_{n_j}(t)\parallel\cdot\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel\nonumber\\ &\leq\frac{4\gamma}{5}\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel^2+\frac{5}{4\gamma}\parallel\frac{d}{dt}\omega_{n_k}(t)-\frac{d}{dt}\omega_{n_j}(t)\parallel^2\nonumber\\ &\ \ \ +\frac{5}{4\gamma}\parallel B(u_{n_k}(t),\omega_{n_k}(t))-B(u_{n_j}(t),\omega_{n_j}(t))\parallel^2+\frac{20\kappa^2}{\gamma}\parallel\omega_{n_k}(t)-\omega_{n_j}(t))\parallel^2\nonumber\\ &\ \ \ +\frac{5\kappa^2}{\gamma}\parallel\nabla u_{n_k}(t)-\nabla u_{n_j}(t)\parallel^2, \end{align*} |
so we get
\begin{align} &\ \ \ \frac{\gamma}{5}\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel^2+\mu\parallel\nabla\nabla\cdot(\omega_{n_k}(t)-\omega_{n_j}(t))\parallel^2\\ &\leq\frac{5}{4\gamma}\parallel\frac{d}{dt}\omega_{n_k}(t)-\frac{d}{dt}\omega_{n_j}(t)\parallel^2+\frac{5}{4\gamma}\parallel B(u_{n_k}(t),\omega_{n_k}(t))-B(u_{n_j}(t),\omega_{n_j}(t))\parallel^2\\ &\ \ \ +\frac{20\kappa^2}{\gamma}\parallel\omega_{n_k}(t)-\omega_{n_j}(t)\parallel^2+\frac{5\kappa^2}{\gamma}\parallel\nabla u_{n_k}(t)-\nabla u_{n_j}(t)\parallel^2. \end{align} | (4.24) |
Combining (4.23) with (4.24), we have
\begin{align} &\ \ \ \frac{\nu+\kappa}{5}\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel^2+\frac{\gamma}{5}\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel^2\\ &\leq \frac{5}{4(\nu+\kappa)}\parallel\frac{d}{dt}u_{n_k}(t)-\frac{d}{dt}u_{n_j}(t)\parallel^2+\frac{5}{4(\nu+\kappa)}\parallel B(u_{n_k}(t))-B(u_{n_j}(t))\parallel^2\\ &\ \ \ +\frac{5}{4(\nu+\kappa)}\parallel G(u_{n_k}(t))-G(u_{n_j}(t))\parallel^2+\frac{5\kappa^2}{\nu+\kappa}\parallel\nabla\omega_{n_k}(t)-\nabla\omega_{n_j}(t)\parallel^2\\ &\ \ \ +\frac{5}{4\gamma}\parallel\frac{d}{dt}\omega_{n_k}(t)-\frac{d}{dt}\omega_{n_j}(t)\parallel^2+\frac{5}{4\gamma}\parallel B(u_{n_k}(t),\omega_{n_k}(t))-B(u_{n_j}(t),\omega_{n_j}(t))\parallel^2\\ &\ \ \ +\frac{20\kappa^2}{\gamma}\parallel\omega_{n_k}(t)-\omega_{n_j}(t)\parallel^2+\frac{5\kappa^2}{\gamma}\parallel\nabla u_{n_k}(t)-\nabla u_{n_j}(t)\parallel^2. \end{align} | (4.25) |
Because V_2\hookrightarrow H_2 is compact, from Lemma 3.2 we know that \{\omega_n(t)\}_{n = 0}^\infty is precompact in H_2 . And, using the compactness of embedding \mathbf{H}^2(\Omega)\hookrightarrow V_1, \mathbf{H}^2(\Omega)\hookrightarrow V_2 and Lemma 3.5, we have that \{u_{n}(t)\}_{n = 0}^\infty, \{\omega_n(t)\}_{n = 0}^\infty are precompact in V_1 and V_2 , respectively. Considering V_1\hookrightarrow H_1, V_2\hookrightarrow H_2 are compact, from Lemma 3.6 we know that \{\frac{d}{dt}u_n(t)\}_{n = 0}^\infty , \{\frac{d}{dt}\omega_n(t)\}_{n = 0}^\infty are precompact in H_1 and H_2 , respectively.
Using (2.6), we have
\begin{align} &\ \ \ \parallel B(u_{n_k}(t))-B(u_{n_j}(t))\parallel^2\\ &\leq C(\parallel B(u_{n_k}(t),u_{n_k}(t)-u_{n_j}(t))\parallel^2+\parallel B(u_{n_k}(t)-u_{n_j}(t),u_{n_j}(t))\parallel^2)\\ &\leq C(\parallel\nabla u_{n_k}(t)\parallel^2\parallel\nabla(u_{n_k}(t)-u_{n_j}(t))\parallel\parallel A(u_{n_k}(t)-u_{n_j}(t))\parallel\\ &\ \ \ \ +\parallel\nabla(u_{n_k}(t)-u_{n_j}(t))\parallel^2\parallel\nabla u_{n_j}(t)\parallel\parallel Au_{n_j}(t)\parallel)\rightarrow 0, \text {as}\ k,j\rightarrow +\infty, \end{align} | (4.26) |
and
\begin{align} &\ \ \ \ \parallel B(u_{n_k}(t),\omega_{n_k}(t))-B(u_{n_j}(t),\omega_{n_j}(t))\parallel^2\\ &\leq C(\parallel B(u_{n_k}(t),\omega_{n_k}(t)-\omega_{n_j}(t))\parallel^2+\parallel B(u_{n_k}(t)-u_{n_j}(t),\omega_{n_j}(t))\parallel^2)\\ &\leq C(\parallel\nabla u_{n_k}(t)\parallel^2\parallel\nabla(\omega_{n_k}(t)-\omega_{n_j}(t))\parallel\parallel A(\omega_{n_k(t)}-\omega_{n_j}(t))\parallel\\ &\ \ \ \ +\parallel\nabla(u_{n_k}(t)-u_{n_j}(t))\parallel^2\parallel\nabla\omega_{n_j}(t)\parallel\parallel A\omega_{n_j}(t)\parallel)\rightarrow 0,\ \text{as}\ k,j\rightarrow +\infty. \end{align} | (4.27) |
From the proof of Lemma 4.2 in [15], we have
\begin{equation} \parallel G(u_{n_k}(t))-G(u_{n_j}(t))\parallel^2\leq C\parallel u_{n_k}(t)-u_{n_j}(t)\parallel^2\rightarrow 0,\ \text{as}\ k,j\rightarrow +\infty. \end{equation} | (4.28) |
Taking into account (4.25)–(4.28), we have
\begin{equation} \frac{\nu+\kappa}{5}\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel^2+\frac{\gamma}{5}\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel^2\rightarrow 0,\ \text{as}\ k,j\rightarrow +\infty. \end{equation} | (4.29) |
(4.29) indicates that the processes \{U_{(f_1, f_2)}(t, \tau)\}_{t\geq\tau} are uniformly asymptotically compact in \mathbf{H}^2(\Omega)\times\mathbf{H}^2(\Omega) . So, by Theorem 2.2, it has a (V_1\times V_2, \mathbf{H}^2(\Omega)\times \mathbf{H}^2(\Omega)) -uniform attractor \mathcal{A}_2 .
Theorem 4.3. Suppose \beta > 3 . The (V_{1}\times V_{2}, V_{1}\times V_{2}) -uniform attractor \mathcal{A}_{1} of the family of processes \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) is actually the (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform attractor \mathcal{A}_{2} , i.e., \mathcal{A}_{1} = \mathcal{A}_{2} .
Proof. First, we will prove \mathcal{A}_{1}\subset\mathcal{A}_{2} . Because \mathcal{A}_{2} is bounded in \mathbf{H}^2(\Omega)\times \mathbf{\mathbf{H}}^2(\Omega) , and the embedding \mathbf{H}^2(\Omega)\times \mathbf{\mathbf{H}}^2(\Omega)\hookrightarrow V_{1}\times V_{2} is continuous, \mathcal{A}_{2} is bounded in V_{1}\times V_{2} . From Theorem 4.2, we know that \mathcal{A}_{2} attracts uniformly all bounded subsets of V_{1}\times V_{2} , so \mathcal{A}_{2} is a bounded uniform attracting set of \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) in V_{1}\times V_{2} . By the minimality of \mathcal{A}_{1} , we have \mathcal{A}_{1}\subset\mathcal{A}_{2} .
Now, we will prove \mathcal{A}_{2}\subset\mathcal{A}_{1} . First, we will prove \mathcal{A}_{1} is a (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniformly attracting set of \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) . That is to say, we will prove
\begin{equation} \lim\limits_{t\rightarrow +\infty}( \sup\limits_{(f_{1},f_{2})\in\mathcal{H}(f^{0}_{1})\times\mathcal{H}(f^{0}_{2})} \mathrm{dist}_{\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)}(U_{(f_{1},f_{2})}(t,\tau)B,\mathcal{A}_{1})) = 0, \end{equation} | (4.30) |
for any \tau\in\mathbb{R} and B\in \mathcal{B}(V_{1}\times V_{2}) .
If we suppose (4.30) is not valid, then there must exist some \tau\in\mathbb{R} , B\in \mathcal{B}(V_{1}\times V_{2}) , \varepsilon_{0} > 0 , (f_{1}^{(n)}, f_{2}^{(n)})\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) , and t_{n}\rightarrow +\infty , when n\rightarrow +\infty , such that, for all n\geq 1 ,
\begin{equation} \mathrm{dis t}_{\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)}(U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)B,\mathcal{A}_{1})\geq 2\varepsilon_{0}. \end{equation} | (4.31) |
This shows that there exists (u_{n}, \omega_{n})\in B such that
\begin{eqnarray} \mathrm{dis t}_{\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)}(U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n}) ,\mathcal{A}_{1})\geq \varepsilon_{0}. \end{eqnarray} | (4.32) |
In the light of Theorem 4.2, \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) has a (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform attractor \mathcal{A}_{2} which attracts any bounded subset of V_{1}\times V_{2} in the topology of \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega) . Therefore, there exists (\zeta, \eta)\in\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega) and a subsequence of U_{(f_{1}^{(n)}, f_{2}^{(n)})}(t_{n}, \tau)(u_{n}, \omega_{n}) such that
\begin{eqnarray} U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n})\rightarrow (\zeta,\eta )\quad\text{strongly in}\ \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega). \end{eqnarray} | (4.33) |
On the other side, the processes \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) have a (V_{1}\times V_{2}, V_1\times V_2) -uniform attractor \mathcal{A}_{1} , which attracts uniformly any bounded subsets of V_{1}\times V_{2} in the topology of V_{1}\times V_{2} . So, there exists (u, \omega)\in V_{1}\times V_{2} and a subsequence of U_{(f_{1}^{(n)}, f_{2}^{(n)})}(t_{n}, \tau)(u_n, \omega_n) such that
\begin{eqnarray} U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n}) \rightarrow (u,\omega)\ \text{strongly in}\ V_{1}\times V_{2}. \end{eqnarray} | (4.34) |
From (4.33) and (4.34), we have (u, \omega) = (\zeta, \eta) , so (4.33) can also be written as
\begin{eqnarray} U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n})\rightarrow (u,\omega)\ \text{strongly in}\ \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega). \end{eqnarray} | (4.35) |
And, from Theorem 4.1, we know that \mathcal{A}_{1} attracts B , so
\begin{eqnarray} \lim\limits_{n\rightarrow +\infty}\mathrm{dist}_{V_{1}\times V_{2}}(U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n}) ,\mathcal{A}_{1}) = 0. \end{eqnarray} | (4.36) |
By (4.34), (4.36), and the compactness of \mathcal{A}_{1} in V_{1}\times V_{2} , we have (u, \omega)\in\mathcal{A}_{1} . Considering (4.35), we have
\begin{eqnarray*} &\quad \lim\limits_{n\rightarrow +\infty}\mathrm{dist}_{\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)}(U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n}), \mathcal{A}_{1})\nonumber\\ &\leq \lim\limits_{n\rightarrow +\infty}\mathrm{dist}_{\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)}(U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n}), (u,\omega))\nonumber\\ & = 0, \end{eqnarray*} |
which contradicts (4.32). Therefore, \mathcal{A}_{1} is a (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform attractor of \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) , and by the minimality of \mathcal{A}_{2} , we have \mathcal{A}_{2}\subset\mathcal{A}_{1} .
In this paper, we discussed the existence of uniform attractors of strong solutions for 3D incompressible micropolar equations with nonlinear damping. Based on some translation-compactness assumption on the external forces, and when \beta > 3 , we made a series of uniform estimates on the solutions in various functional spaces. According to these uniform estimates, we proved the existence of uniform attractors for the process operators corresponding to the solution of the equation in V_1\times V_2 and \mathbf{H}^2\times\mathbf{H}^2 , and verified that the uniform attractors in V_1\times V_2 and \mathbf{H}^2\times\mathbf{H}^2 are actually the same.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors are thankful to the editors and the anonymous reviewers for their valuable suggestions and comments on the manuscript. This work is supported by National Natural Science Foundation of China (Nos. 11601417, 12001420).
The authors declare no conflict of interest in this paper.
[1] | Kataria R, Kumar J (2015) Machining of WC-Co composites—A review. Mater Sci Forum 808: 51–64. |
[2] | Janmanee P, Muttamara A (2011) Optimization of electrical discharge machining of composite 90WC-10Co base on Taguchi approach. Eur J Sci Res 64: 426–436. |
[3] | Assarzadeh S, Ghoreishi M (2013) Statistical modeling and optimization of process parameters in electro-discharge machining of cobalt-bonded tungsten carbide composite (WC/6%Co). Procedia Cirp 6: 464–469. |
[4] |
Singh GK, Yadav V, Kumar R (2010) Diamond face grinding of WC-Co composite with spark assistance: Experimental study and parameter optimization. Int J Precis Eng Man 11: 509–518. doi: 10.1007/s12541-010-0059-3
![]() |
[5] |
Muthuraman V, Ramakrishnan R (2012) Multi parametric optimization of WC-Co composites using desirability approach. Procedia Eng 38: 3381–3390. doi: 10.1016/j.proeng.2012.06.391
![]() |
[6] |
Mahamat ATZ, Rani AMA, Husain P (2011) Machining of cemented tungsten carbide using EDM. J Appl Sci 11: 1784–1790. doi: 10.3923/jas.2011.1784.1790
![]() |
[7] |
Yadav SKS, Yadav V (2013) Experimental investigation to study electrical discharge diamond cutoff grinding (EDDCG) machinability of cemented carbide. Mater Manuf Process 28: 1077–1081. doi: 10.1080/10426914.2013.792414
![]() |
[8] |
Bhavsar SN, Aravindan S, Rao V (2012) Machinability study of cemented carbide using focused ion beam (FIB) milling. Mater Manuf Process 27: 1029–1034. doi: 10.1080/10426914.2011.654166
![]() |
[9] |
Mohanty A, Talla G, Gangopadhyay S (2014) Experimental investigation and analysis of EDM characteristics of Inconel 825. Mater Manuf Process 29: 540–549. doi: 10.1080/10426914.2014.901536
![]() |
[10] | Singh RP, Kumar J, Kataria R, et al. (2015) Investigation of the machinability of commercially pure titanium in ultrasonic machining using graph theory and matrix method. J Eng Res 3: 75–94. |
[11] | Kumar J, Khamba JS, Mohapatra SK (2008) An investigation into the machining characteristics of titanium using ultrasonic machining. Int J Mach Mach Mater 3: 143–161. |
[12] |
Kataria R, Kumar J, Pabla BS (2016) Experimental investigation of surface quality in ultrasonic machining of WC-Co composites through Taguchi method. AIMS Mater Sci 3: 1222–1235. doi: 10.3934/matersci.2016.3.1222
![]() |
[13] | Kataria R, Kumar J, Pabla BS (2016) Ultrasonic machining of WC-Co composite material: Experimental investigation and optimization using statistical technique. P I Mech Eng B-J Eng. |
[14] | Jadoun RS, Kumar P, Mishra BK, et al. (2006) Optimization of process parameters for ultrasonic drilling (USD) of advanced engineering ceramics using Taguchi approach. Eng Optimiz 38: 771–787. |
[15] |
Hocheng H, Kuo KL, Lin JT (1999) Machinability of zirconia ceramic in ultrasonic drilling. Mater Manuf Process 14: 713–724. doi: 10.1080/10426919908914864
![]() |
[16] |
Komaraiah M, Reddy PN (1993) A study on the influence of workpiece properties in ultrasonic machining. Int J Mach Tool Manu 33: 495–505. doi: 10.1016/0890-6955(93)90055-Y
![]() |
[17] |
Jianxin D, Taichiu L (2002) Ultrasonic machining of alumina based ceramic composites. J Eur Ceram Soc 22: 1235–1241. doi: 10.1016/S0955-2219(01)00437-X
![]() |
[18] | Kumar J, Khamba JS (2009) An investigation into the effect of work material properties, tool geometry and abrasive properties on performance indices of ultrasonic machining. Int J Mach Mach Mater 5: 347–366. |
[19] |
Teimori R, Baseri H, Moharmi R (2015) Multi-responses optimization of ultrasonic machining process. J Intell Manuf 26: 745–753. doi: 10.1007/s10845-013-0831-1
![]() |
[20] |
Lalchhuanvela H, Doloi B, Battacharyya B (2012) Enabling and understanding ultrasonic machining of engineering ceramics using parametric analysis. Mater Manuf Process 27: 443–448. doi: 10.1080/10426914.2011.585497
![]() |
[21] |
Adithan M (1981) Tool wear characteristics in ultrasonic drilling. Tribol Int 14: 351–356. doi: 10.1016/0301-679X(81)90103-1
![]() |
[22] |
Kataria R, Kumar J, Pabla BS (2015) Experimental Investigation into the Hole Quality in Ultrasonic Machining of WC-Co Composite. Mater Manuf Process 30: 921–933. doi: 10.1080/10426914.2014.995052
![]() |
[23] | Jadoun RS, Kumar P, Mishra BK, et al. (2006) Manufacturing process optimization for tool wear rate in ultrasonic drilling of engineering ceramics using Taguchi method. Int J Mach Mach Mater 1: 94–114. |
[24] | Kumar J, Khamba JS (2008) An experimental study on ultrasonic machining of pure titanium using designed experiments. J Braz Soc Mech Sci 30: 231–238. |
[25] |
Kumar V, Khamba JS (2009) Parametric optimization of ultrasonic machining of co-based super alloy using the Taguchi multi-objective approach. Prod Eng Res Dev 3: 417–425. doi: 10.1007/s11740-009-0189-6
![]() |
[26] | Kumar V, Khamba JS (2006) Experimental investigation of ultrasonic machining of an Alumina-based ceramic composite. J Am Ceram Soc 89: 2413–2417. |
[27] |
Singh R, Khamba JS (2009) Mathematical modeling of tool wear rate in ultrasonic machining of titanium. Int J Adv Manuf Tech 43: 573–580. doi: 10.1007/s00170-008-1729-5
![]() |
[28] | Kumar V, Khamba, JS (2009) Statistical analysis of experimental parameters in ultrasonic machining of tungsten carbide the Taguchi approach. J Am Ceram Soc 91: 92–96. |
[29] | Ross PJ (1996) Taguchi techniques for quality engineering. New York: McGraw–Hill. |
[30] | Kumar J, Kumar V (2011) Evaluating the tool wear rate in ultrasonic machining of titanium using design of experiments approach. World Acad Sci Eng Tech 81: 803–808. |
[31] |
Kataria R, Kumar J, Pabla BS (2016) Experimental investigation and optimization of machining characteristics in ultrasonic machining of WC-Co composite using GRA method. Mater Manuf Process 31: 685–693. doi: 10.1080/10426914.2015.1037910
![]() |
[32] | Singh RP, Singhal S (2016) Investigation of Machining Characteristics in Rotary Ultrasonic Machining of Alumina Ceramic. Mater Manuf Process. |
[33] | Singh RP, Singhal S (2016) Experimental investigation of machining characteristics in rotary ultrasonic machining of quartz ceramic. P I Mech Eng L-J Mat. |
[34] | Kataria R, Kumar J (2014) A comparison of the different multiple response optimization techniques for turning operation of AISI O1 tool steel. J Eng Res 2: 161–184. |
[35] | Kumar J, Khamba JS, Mohapatra SK (2010) Modelling of the material removal rate in ultrasonic machining of titanium using dimensional analysis. Int J Adv Manuf Tech 48: 103–119. |
[36] |
Kang IS, Kim JS, Seo YW, et al. (2006) An experimental study on the ultrasonic machining characteristics of engineering ceramics. J Mem>ech Sci Technol 20: 227–233. doi: 10.1007/BF02915824
![]() |
[37] |
Kumar J, Khamba JS (2010) Multi-response optimization in ultrasonic machining of titanium using Taguchi’s approach and utility concept. Int J Manuf Res 5: 139–160. doi: 10.1504/IJMR.2010.031629
![]() |