
AIMS Materials Science, 3(4): 1391-1409. 

DOI: 10.3934/matersci.2016.4.1391 

Received: 09 September 2016 

Accepted: 08 October 2016 

Published: 19 October 2016 

http://www.aimspress.com/journal/Materials 

 

Research article 

An experimental study on ultrasonic machining of Tungsten carbide-

cobalt composite materials 

Ravinder Kataria *, Ravi Pratap Singh, and Jatinder Kumar 

Department of Mechanical Engineering, National Institute of Technology Kurukshetra, Haryana, 
India 

* Correspondence: Email: kataria.ravinder07@gmail.com; ravinder_1438@nitkkr.ac.in. 

Abstract: In current study, the effects of numerous process parameters such as properties of work 
material, profile of tool, grit size, tool feed rate and power rating on rate of material removal and tool 
wear have been investigated in ultrasonic machining of WC-Co composite material. Taguchi’s L-18 
orthogonal array has been utilized for planning the experiments. Analysis of variance (ANOVA) is 
also utilized to find the significant factors. Multi-response optimization has been done by using grey 
relation analysis (GRA) method. Tool with square type profile carries better performance for 
material removal rate. Significant effects are observed for process variables such as tool profile, 
abrasive grain size, power level and tool feed rate. Obtained results have been found to corroborate 
with confirmatory experimental results. 
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1. Introduction 

WC-Co composite is classed among the most important metal matrix composite materials 
manufactured by a process called as “powder metallurgy”. The several steps included in the 
production of WC-Co composite are; making of tungsten carbide powder, consolidation of the 
powder, sintering in the liquid phase followed by post-sintering operations. WC-Co composite 
materials are also known as cermets, hard metal and cemented carbide [1]. WC-Co composites are 
hard materials with high mechanical strength (excellent hardness, wear resistance) and better 
dimensional stability. Due to these superior properties, these have widespread applications in 
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industry, e.g., manufacturing of wear parts, die and punch manufacturing and cutting and drilling 
tools.  

WC-Co material has high strength, hardness, and superior wear resistance and it has high 
melting temperature. Due to these properties, it becomes quite difficult to process this material. 
Machining of WC-Co has been reported by using different processes (such as; turning, Electric 
discharge machining (EDM), Wire EDM and powder mixed EDM) by the different investigators 
which resulted in high cutting force, high surface roughness and surface defects (cracks, heat 
effected zone, recast layer). These defects result in decrease in corrosion resistance of machined 
surface, wear resistance, hardness and also affect the product quality [1–9]. A number of studies have 
also reported the application of contemporary machining practices such as EDM, wire EDM, etc. 
However, problems caused by the different physical characteristics of WC and Co (such as melting 
point, thermal conductivity) have been reported; mainly in terms of dislodging of WC grains, 
agglomeration of graphite (carbon) and WC grains. These problems usually lead to the loss of 
process stability and arcing phenomenon during machining. The topography and integrity of the 
surface generated after machining is also affected. 

Ultrasonic machining is a contemporary manufacturing method usually employed for 
processing materials with higher hardness/brittleness such as quartz, semiconductor materials, 
ceramics etc [10,11]. Kumar et al. [11] evaluated the machining characteristics in terms of surface 
roughness (SR), tool wear rate (TWR) and material removal rate (MRR) at different level of input 
parameters in ultrasonic machining of titanium. Results reported that, all parameters are significant 
for MRR and TWR, and SR was considerably influenced by grit size. Kataria et al. [12] investigated 
SR of machined surface of WC-Co and results shows that grit size was the most significant factor. 
Kataria et al. [13] reported that power rating and grit size are the factors of high significance which 
affect the cutting ratio, overcut and taper angle. Jadoun et al. [14] optimized the process parameter 
for cutting ratio in ultrasonic machining of alumina ceramic. Cutting ratio increases while increasing 
the power rating and decreasing the abrasive grit size.  

Hocheng et al. [15] reported the influence of amplitude and static load on machinability in 
ultrasonic drilling of ceramics (Zirconia based). Komaraiah and Reddy [16], Jianxin and Taichiu [17], 
and Kumar and Khamba [18] assessed the impact of work material properties on machining 
characteristics in ultrasonic machining. Results reported that work materials with higher fracture 
toughness and hardness tend to be machined at higher removal rates. Teimouri et al. [19] performed 
the multi response optimization using imperialist competitive algorithm (ICA).  
Lalchhuanvela et al. [20] explored the effect of USM process parameters on MRR and SR while 
machining alumina ceramic. Results reported that the maximum MRR could be attained at higher 
level of every input parameter and SR decreases with decrease in grit size and power rating.  
Adithan et al. [21] studied the tool wear characteristics and showed that the stainless steel tool had 
low tool wear as compared to tungsten carbide and mild steel. Table 1 presents an overview of the 
research content of previously reported studies on ultrasonic machining. 

Ultrasonic machining could be a potential solution for addressing the problems related to 
machinability of WC-Co material. The machined surface produced by USM does not carry any 
surface defects (cracks, recast layer, heat effected zone etc.) which is generally found in thermal 
based processes [22]. Therefore, an attempt has been made to further explore the machining 
efficiency in ultrasonic drilling of WC-Co composites. In the reported literature, very few 
investigators used the different types of tool profiles, tool feed rate as process parameters for their 
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investigation. Moreover, few studies were reported on multi-response optimization problem. Thus, 
the current article is aimed to study the effect of tool profile, tool feed rate on MRR and TWR, by 
coupling these parameters with other critical, unexplored variables such as content of Cobalt 
constituent (in work material), power rating and grit size. An appraisal of independent effects of the 
input variables has been made and optimal parametric settings are identified. Grey relation analysis 
has been utilized for devising the multi-response optimization. 

Table 1. An overview of different profiles of drilled hole and objectives considered in 
previous studies and present study. 

S. No. Author Work material 
Profile of 

drilled hole

Objective considered 
Optimization 

MRR TWR SR 

1. R. S. Jadoun,  

Pradeep Kumar, 

B. K. Mishra,  

R. C. S. Mehta [23] 

Ceramic 

composites 

  
 

 
 

 
 

SRO 

2. Deng Jianxin, 

Lee Taichiu [17] 

Alumina-based 

ceramic composites

  
 

 
 

 
 

SRO 

3. Jatinder Kumar, 

J.S. Khamba [24] 

Titanium 

(ASTM Grade I) 

  
 

 
 

 
 

SRO 

4. Vinod Kumar, 

J. S. Khamba [25] 

Stellite 6 

(Cobalt alloy) 

  
 

 
 

 
 

MRO 

5. Vinod Kumar, 

J. S. Khamba [26] 

Alumina-based  

ceramic composites

  
 

 
 

 
 

SRO 

6. H. Lalchhuanvela, 

Biswanath Doloi, 

B. Bhattacharyya [20] 

Alumina ceramic   
 

 
 

 
 

MRO 

7. Jatinder Kumar, 

J.S. Khamba [18] 

HCS, HSS 

Aluminium,  

Titanium, 

Carbide 

Glass 

  
 

 
 

 
 

SRO 

8. Rupinder Singh,  

J. S. Khamba [27] 

 

Titanium 

(ASTM Gr.2) 

and 

Titanium 

(ASTM Gr.5) 

  
 

 
 

 
 

SRO 

9 Vinod Kumar, 

J. S. Khamba [28] 

Tungsten carbide   
 

 
 

 
 

SRO 

10. Present study WC-6%Co 

and 

WC-24%Co 

  
 

 
 

 
 

MRO 

 = Considered,  = Not Considered,       = Round,        = Hexagonal,       = Square,      =Triangle, 

SRO = Single response optimization, MRO = Multi-response optimization. 
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2. Materials and Methods 

The fabrication of WC-Co composite includes several steps; production of tungsten metal 
powder, blending, ball milling, drying, powder compaction process. At last, sintering is performed 
for obtaining the machining samples in compact form.  

The scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) was also 
employed in a view to characterize WC-Co composite material. ASTM E3 standards were followed 
for preparation of composites samples. The microstructure of composite (with 6% cobalt) is depicted 
in Figure 1(A). The uniformly distribution of cobalt particles can be observed throughout the matrix. 
Figure 1(B) depicts the surface topography of the sample of composite with 24% Cobalt. The 
uniformly distribution of cobalt particles can be observed throughout the matrix. The EDX analysis 
confirmed about the composition of WC and Co grains in the machining samples, as shown in  
Figure 2.  

 

Figure 1. Microstructure of composite with 6%Co (1500×); (B) Microstructure of 
composite with 24%Co obtained by SEM (1000×). 

 

Figure 2. EDX spectrum (before machining) of WC-Co composites. 
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In the present study WC-Co composite material having 6% and 24% cobalt content has been 
taken as work material (diameter 20 mm and thickness 3 mm). The chemical and mechanical 
properties are shown in Table 2. The selection of tool profiles was made randomly. The composition 
was considered with a broad variation in cobalt content so as to obtain the effect of work material 
properties (such as fracture toughness, hardness) appropriately. The tool feed rate was selected on the 
basis of machine operating range (low, medium, and high). Grit size was selected as per the available 
literature. The range of power rating was selected on the basis of pilot experimentation results. Past 
literature shows that hollow tools gives better performance as compared to solid tools [18]. So, 
hollow tools were selected for present experimentation. These tools are having better inertia and 
efficient flow of abrasive slurry. Stainless steel material is selected as tool material with three 
different profiles; round, triangular, square having same cross-sectional area. Figure 3 shows the 
detailed drawing of round and square tool. Three types of grit sizes (200, 320 and 500) of boron 
carbide are used for preparation of abrasive slurry for the experimentation. Power rating and feed 
rate at three levels were selected for this work. Table 3 illustrates the different input parameters along 
with their levels. 

 

Figure 3. Detailed drawing of round and square tool. 

Table 2. Mechanical properties and chemical composition of WC-Co composites. 

  WC-6%Co WC-24%Co 

Chemical 

composition 

WC 94% 76% 

Co 6% 24% 

Mechanical 

properties 

Density (g/cm3) 14.9 12.9 

Hardness (HV30) 1580 780 

Elastic modulus (GPa) 630 470 

Fracture toughness (MPa√m) 9.6 14.5 

Thermal conductivity (W/mK) 80 50 

Thermal expansion of coefficient (10−6/K) 5.5 7.5 
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Table 3. Input factors and their levels (with coded units). 

Symbol Parameter Level 1 Level 2 Level 3 Units 

A Cobalt content 6% (+1) 24% (−1)   

B Profile of tool Round (−1) Triangular (0) Square (+1)  

C Grit size 200 (+1) 320 (0) 500 (−1) grit no. 

D Power rating 40% (−1) 60% (0) 80% (+1) watt 

E Tool feed rate 0.015 (+1) 0.018 (0) 0.021 (−1) mm/s 

Constant parameter 

Frequency of vibration 20 kHz Slurry flow rate 50  103 mm3/min 

Static load 1.63 kg Abrasive material Boron carbide 

Amplitude of vibration 25.3–25.8 µm Slurry medium Water 

Slurry concentration 25% Tool material Stainless steel 

Slurry temperature 24 oC    

The experiments were performed on an “AP-450 model” (Sonic-Mill, Albuquerque, USA). 
Figure 4 shows machining zone and pictorial view of tools used. Material removal rate is measured 
by taking the mass of the metal removed during machining, divided by time taken for machining to 
the required depth. Time taken for each experiment was recorded by stop watch. The weight was 
measured with an electronic balance whose least count was 0.0001 g. In same way, tool wear rate 
was calculated. 

 

Figure 4. Illustration of machining zone in USM and tool profiles (A: Round; B: Square). 

This study makes use of Taguchi’s L-18 OA for design of the experimental plan. It includes 
four factors with three levels and one factor has two levels. The total dof associated with five 
parameters is 9 × (1 × 1 + 2 × 4). Hence, L-18 OA was selected for the present study (with dof 17).  

Experiments were performed as per L-18 array (as shown in Table 4). Each trial was replicated 
twice. In order to reduce experimental error, all 54 trials were conducted in completely randomized 
fashion. The design matrix and experimental results are briefed in Table 4.  
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Table 4. Design matrix based on L-18 OA (in coded unit) and experimental results. 

Exp 

No. 
A B C D E 

Material removal 

rate 
Tool wear rate 

Normalized 

value 
GRC 

GRG
Average 

(g/min) 

S/N 

(dB) 

Average 

(g/min) 

S/N 

(dB)
MRR TWR MRR TWR

1 +1 −1 +1 −1 +1 0.0153 −36.39 0.0035 49.04 0.356 0.708 0.437 0.631 0.534

2 +1 −1 0 0 0 0.0214 −33.40 0.0048 46.04 0.495 0.559 0.497 0.532 0.515

3 +1 −1 −1 +1 −1 0.0330 −29.64 0.0073 42.64 0.670 0.391 0.602 0.451 0.527

4 +1 0 +1 −1 0 0.0145 −36.96 0.0029 50.51 0.329 0.780 0.427 0.695 0.561

5 +1 0 0 0 −1 0.0386 −28.27 0.0051 45.77 0.733 0.546 0.652 0.524 0.588

6 +1 0 −1 +1 +1 0.0353 −29.04 0.0071 42.83 0.697 0.400 0.623 0.455 0.539

7 +1 +1 +1 0 +1 0.0423 −27.47 0.0064 43.79 0.770 0.448 0.685 0.475 0.580

8 +1 +1 0 +1 0 0.0718 −22.88 0.0105 39.50 0.984 0.236 0.968 0.395 0.682

9 +1 +1 −1 −1 −1 0.0203 −33.87 0.0045 46.83 0.473 0.598 0.487 0.554 0.521

10 −1 −1 +1 +1 −1 0.0896 −20.94 0.0173 35.23 1.074 0.025 1.172 0.339 0.756

11 −1 −1 0 −1 +1 0.0080 −42.05 0.0018 54.64 0.093 0.984 0.355 0.970 0.663

12 −1 −1 −1 0 0 0.0121 −38.44 0.0024 52.06 0.261 0.857 0.403 0.778 0.591

13 −1 0 +1 0 −1 0.0293 −30.71 0.0062 44.08 0.620 0.462 0.568 0.482 0.525

14 −1 0 0 +1 +1 0.0235 −32.56 0.0051 45.61 0.534 0.538 0.518 0.520 0.519

15 −1 0 −1 −1 0 0.0064 −44.05 0.0017 54.95 0.000 1.000 0.333 1.000 0.667

16 −1 +1 +1 +1 0 0.0748 −22.53 0.0183 34.73 1.000 0.000 1.000 0.333 0.667

17 −1 +1 0 −1 −1 0.0185 −34.74 0.0043 47.18 0.433 0.616 0.468 0.565 0.517

18 −1 +1 −1 0 +1 0.0072 −42.92 0.0022 52.72 0.053 0.890 0.345 0.819 0.582

3. Experimentation and Data Collection 

In Taguchi method, the variation inherent in performance characteristic is represented by S/N 
ratio. The terms “signal” and “noise” represents desirable (mean) and undesirable value (standard 
deviation) respectively. In accordance to Taguchi, the response variables are categorized into two 
different types, e.g. larger the best (LTB) and smaller the best (STB) [29]. Following relations are 
utilized for assessment of the S/N ratio; 

Larger the best 

 N
S

LB = −10log ( 


R

jR 1

1 ଵ

௬ೕ
మ)       (1) 

Smaller the best 

 N
S

SB = −10log ( 


R

jR 1

1
ݕ 
ଶ)        (2) 

where ݕ
	  is the response value recorded in jth observation. Here, for MRR, “larger the best” and for 

TWR, “smaller the best” type S/N ratio were computed. Minitab-16 software has been utilized for 
analyzing the results. 
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4. Results and Discussions 

MRR and TWR have been studied under the influence of each parameter. Figure 5 illustrates 
the normal probability plots of residuals for MRR and TWR. Normal distribution of errors has also 
been revealed as almost all of the residual values are observed to fall on the fitted curve. Hence, 
Model assumptions are being validated for analysis of variance (ANOVA) test. 
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Figure 5. Normal probability plot for MRR and TWR. 

4.1. Material Removal Rate 

Figure 6 shows that increase in cobalt content results in lower value of MRR. It happens 
because as cobalt content increases, the fracture toughness increases. Hence the crack propagation 
and intersection become difficult and requires more energy which results in reduced MRR. Tool 
profiles have significant effect on the MRR. Square tool profile gives higher MRR as compared to 
round and triangular tool profiles. This may be related to the efficient flow of slurry particles under 
the square shaped tool. 

 

Figure 6. Mean effect plots for MRR. 
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As coarseness of the abrasive grains increases, MRR also increases. There are mainly two wear 
mechanisms (hammering action and throwing action) given for the USM process, as reported in 
literature. Hammering of the grains on the surface is considered as primary wear mechanism. 
Increasing the grit size causes the reduction in surface density of abrasive particles, which further 
results into an immense growth of the resultant stress due to action of each grit particle. This results 
into increase of material removal rate. As grit size increases, the mass of the particles also increases, 
which results into greater impact force (per unit area). Thus, in both cases, the effective stress on the 
surface of the work sample is increased with the grit size, which accelerates the micro-chipping and 
hence the material removal. These results are found consistent with the findings of the other 
researchers [11,18,20]. Power rating is also a significant process parameter in ultrasonic machining 
of WC-Co composite. An increment in power rating produces a significant improvement in 
machining rate. Increased power rating results in increase of amplitude of vibration, thereby 
increasing the abrasive grit particles momentum before making impact. Higher energy of abrasive 
particles results into the removal of larger lumps from surface of work material, which is responsible 
for the increasing MRR. Similar results were reported in previously published investigations [18,24]. 
Tool feed rate also affects the material removal rate. Rate of increase in MRR is higher for feed rate 
from 0.015 to 0.018, while it is slower for feed rate value from 0.018 to 0.021. Overall increase in 
tool feed rate gradually increases the MRR. The S/N ratio is found to be highest at these levels, 
which signals the maximization of the desired value of the response with minimum impact of noise. 

ANOVA test is also performed for raw data and S/N ratio data in order to evaluate the 
significant parameters that contribute to the variation in MRR and also to evaluate the percentage 
wise contribution. Tables 5 and 6 show the ANOVA results for raw data and S/N data respectively. 
Results from ANOVA test (raw data) depict that the descending order of various factors as per their 
significance for MRR as-power rating (52.06%), grit size (18.70%), tool feed rate (8.20%), and tool 
profile (6.34%). However the contribution of process parameters from the ANOVA test (S/N ratio 
data) is as follows; power rating (52.51%), grit size (19.24%), tool feed rate (11.01%), cobalt content 
(6.60%) and tool profile (3.92%). 

MRR is “larger the best” type response. Thus, the higher value of MRR is considered as 
desirable. As described in Figure 6, the optimal process setting for MRR is as; first level of cobalt 
content (A1), profile of tool at third level (B3), grit size at first level (C1), power rating at third level 
(D3), and third level of tool feed rate (E3). 

Table 5. ANOVA for MRR (raw data). 

Source dof Seq. SS Adj. SS Adj. MS F P 

A 1 0.0001 0.0001 0.0001 0.87 0.356 

B 2 0.0019 0.0019 0.0009 9.68 0.000 

C 2 0.0057 0.0057 0.0028 28.55 0.000 

D 2 0.0160 0.0160 0.0080 79.51 0.000 

E 2 0.0025 0.0025 0.0012 12.53 0.000 

Error 44 0.0044 0.0044 0.0001   

Total 53 0.0307     

A—cobalt content, B—profile of tool, C—grit size, D—power rating, E—feed rate 
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Table 6. ANOVA for MRR (S/N data). 

Source dof Seq. SS Adj. SS Adj. MS F P 

A 1 53.4 53.4 53.4 8.0 0.022 

B 2 31.5 31.5 15.7 2.3 0.157 

C 2 154.5 154.5 77.2 11.5 0.004 

D 2 421.8 421.8 210.9 31.5 0.000 

E 2 88.4 88.4 44.2 6.6 0.020 

Error 8 53.4 53.4 6.6   

Total 17 803.2     

4.2. Tool Wear Rate 

Figure 7 depicts that tool wear rate is not affected by cobalt content significantly. Tool with 
square profile exhibit more TWR as compared to round and triangular type profiles; as observed 
from raw data and S/N ratio data. Abrasive grit size also has significant effect on TWR. TWR 
increases as abrasive grit size increases. Use of grains of larger diameter results in large micro 
cavities on the surface of the tool, which is responsible for higher tool wear rate. These results are 
found to be consistent with previously reported researches [18,30]. It is also observed that, TWR is 
higher at that combination of grit size and power level which yields higher MRR.  

It is observed that an increase in power rating results into higher TWR. As power rating 
increases, high energy abrasive grit particles strike the surface of tool which creates hasty cracking in 
the tool surface, thus encouraging tool wear rate. Similar results also suggested by Jadoun, et al. [23] 
and, Kumar and Kumar [30]. Tool feed rate is also significant for TWR. Increase in tool feed rate 
corresponds to increase in tool wear rate. Rate of increase in TWR is higher for feed rate ranges from 
0.015 to 0.018, while it is slower for feed rate value from 0.018 to 0.021. In other words, TWR 
gradually increases with an increase in tool feed rate. When considering S/N response, the highest 
value signals the optimal level of each parameter, which corroborates the results of mean response. 
However, cobalt content in work material is following a different trend as compared to other 
variables.  

 

Figure 7. Mean effect plots for TWR. 
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ANOVA test was also performed to evaluate significant factors for TWR and also to evaluate 
the percentage wise contribution. ANOVA results for raw data and S/N data are presented in  
Tables 7 and 8. Results from ANOVA test (raw data) show that the descending order of various 
factors as per their significance for TWR as-power rating (52.98%), grit size (19.82%), tool feed rate 
(8.01%), and tool profile (6.87%). However, the contribution of process parameters from the 
ANOVA test (S/N ratio data) is as follows; power rating (58.98%), grit size (17.46%), tool feed rate 
(10.47%), tool profile (5.71%), and cobalt content (1.93%).  

Table 7. ANOVA for TWR (raw data). 

Source dof Seq. SS Adj. SS Adj. MS F P 

A 1 0.00001 0.00001 0.00001 2.8 0.100 

B 2 0.00008 0.00008 0.00004 13.1 0.000 

C 2 0.00023 0.00023 0.00011 37.7 0.000 

D 2 0.00062 0.00062 0.00031 100.7 0.000 

E 2 0.00009 0.00009 0.00004 15.2 0.000 

Error 44 0.00013 0.00013 0.00000   

Total 53 0.00118     

Table 8. ANOVA for TWR (S/N data). 

Source dof Seq. SS Adj. SS Adj. MS F P 

A 1 11.3 11.3 11.3 2.8 0.130 

B 2 33.3 33.3 16.6 4.2 0.057 

C 2 101.9 101.9 50.9 12.8 0.003 

D 2 344.2 344.2 172.1 43.3 0.000 

E 2 61.1 61.1 30.5 7.7 0.014 

Error 8 31.8 31.8 3.9   

Total 17 583.6     

TWR is “smaller the best” type response. So, the lowest value of TWR is considered as 
desirable. As described in Figure 7, the optimal process setting for TWR is as; cobalt content at first 
level (A1), second level of tool profile (B2), grit size at third level (C3), power rating at first level 
(D1), and first level of tool feed rate (E1). Percentage contribution of different factors on MRR (raw 
data) and TWR (raw data) is depicted in Figure 8. 

 

Figure 8. Percentage wise contribution of factors on (A) MRR; (B) TWR. 
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Table 9 shows the macro-model for MRR and TWR. The macro-model is generated by the 
application of Taguchi’s single response optimization. 

Table 9. Macro-model for MRR and TWR. 

For MRR 

Work material 6% cobalt content 

Tool profile Square 

Grit size 200 mesh 

Power rating 80% 

Tool feed rate 0.021 mm/s 

For TWR 

Work material 6% cobalt content 

Tool profile Triangular 

Grit size 500 mesh 

Power rating 40% 

Tool feed rate 0.015 mm/s 

4.3. Prediction of Mean 

The prediction of optimal performance and depiction of confidence interval has been achieved 
by employing Taguchi approach. The results obtained from confirmatory experiments must lie in the 
confidence interval (α = 0.05). 

Following equation has been used to compute CICE and CIPOP [29]. 

CICE =	ටܽܨሺ1, ݂݁ሻܸ݁ ቒ
ଵ


 ଵ

ோ
ቓ        (3) 

CIPOP =	ටܽܨሺ1, ݂݁ሻܸ݁ ቒ
ଵ


ቓ         (4) 

Where ܽܨሺ1, ݂݁ሻ = the F ratio at a confidence level of against dof 1, and error dof fe; 

neff = 
ே

ଵାሾ்௧	ைி	௦௦௧ௗ		௧	௦௧௧		௧	ሿ
; 

N = Total number of results;  

R = No. of replications;  

Ve = Error variance 

Table 10 represents the predicted values, experimental results at optimized setting.  
The correlation of MRR and TWR has been established through quadratic regression. The best 

fitting line for prediction of tool wear rate (over a range of material removal rate) was revealed using 
MINITAB 16 software (as shown in Figure 9). The quadratic regression equation from the least 
squares line is:  

TWR= 0.001258+0.1278 MRR+0.6320 MRR2      (5) 
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Using this equation, tool wear rate can be estimated for a given value of MRR. The value of R-
sq is close to unity (.909); hence the degree of correlation among the two response variables (MRR, 
TWR) is high. In another words, higher MRR cannot be obtained without accepting a higher 
magnitude of TWR. Hence, the higher productivity is obtained at the cost of machining economy. 

Table 10. Predicted and experimental results at optimized setting. 

Performance 

characteristic 

Optimized 

setting 

Predicted 

Values (g/min)

Experimental 

Results (g/min) 
 Confidence intervals 

MRR A1B3C1D3E3 0.0418 0.0335 g/min 
CICE 0.0273 < µMRR < 0.0563

CIPOP 0.0331 < µMRR < 0.0563

TWR A1B2C3D1E1 0.0044 0.0052 g/min 
CICE 0.0019 < µTWR < 0.0070

CIPOP 0.0029 < µTWR < 0.0060

0.090.080.070.060.050.040.030.020.010.00

0.020

0.015

0.010

0.005

0.000

MRR

TW
R

S 0.0015361
R-Sq 90.9%
R-Sq(adj) 89.7%

Fitted Line Plot
TWR =  0.001258 + 0.1278 MRR

+ 0.6320 MRR**2

 

Figure 9. Correlation between MRR and TWR. 

4.4. Multi-response Optimization using GRA Method 

Grey relation analysis is an effective method used for solving the multi response optimization 
problems. GRA method can also be used for solving the complicated interrelationship among the 
data when the trends of their development are either homogeneous or heterogeneous. The major 
advantages of GRA method are; results based on real data, computations are simpler and apparent, 
and it is also one of the excellent techniques employed to build decisions in manufacturing  
milieu [31]. The simultaneous optimization of the investigated machining responses makes the 
process applicability more meaningful while tackling real life industrial problems [32,33]. This 
method includes the evaluation of multi-response based on grey relational grade (GRG). Therefore, a 
multiple response optimization can be performed by converting it into single response optimization 
by using GRG. The multi-response optimization is done by treating GRG as an overall evaluation of 
experimental data. Optimize value of a process parameter is related to GRG at highest level. The 
procedure for computation of GRG value for different trials and depiction of optimized process 
situation can be illustrated as follows [34]: 

Step 1: Values of SN ratio are computed for each objective for all the trials using Eqns. (1)–(2). 
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Step 2: Values of SN ratio are normalized for all the process objectives employing Eqn.  

Zjys = 
୨୷୧	–୫୧୬୷୧

୫ୟ୶୷୧ି୫୧୬୷୧
          (6) 

where min Zyi = min {Z1yi, Z2yi, …….., Zmyi}and max Zyi = max {Z1yi, Z2yi, …….., Zmyi} 
Step 3: Calculate grey relational coefficients (GRC) of each response for all trials.  
The GRC ( γjy ) for yth response in jth trial can be calculated as below: 

Δy
min + ξ Δy

max 
γjy =                 (7) 

Δjy + ξ Δy
max 

where Δjy = │1 − Zjys │, Δy
min = min{Δ1y, Δ2y, ..., Δmy}, Δy

max = max{Δ1y, Δ2y, ..., Δmy} and ξ is the 
distinguishing coefficient (ξ  ∈ [0,1], it is set equal to 0.5). 

Step 4: GRGj corresponding to jth trial calculated as; 

GRGj ൌ ∑ Wy୮
୷ୀଵ γjy          (8) 

The weights for MRR and TWR considered as 0.5 and 0.5 respectively to perform the 
calculations for multi-response optimization.  

Step 5: Utilize arithmetic mean to compute the parameters effects on GRG value and then 
optimal combination is decided by considering higher-the-better factor effects. 

Figure 10 shows the main effects plot for GRG, in which optimized setting is found as cobalt 
content (25%), profile of tool (round), grit size (200), power rating (80%), and feed rate (0.018). 

 

Figure 10. Effects of process variables on grey relational grade. 

In case of single response optimization, the predicted S/N ratio for MRR and TWR was found 
as −18.46 and 55.79 respectively and for multi response optimization these were −22.41 and 38.75 
respectively as illustrated in Table 11. 
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Table 11. Predicted SN ratios for single and multi-response optimization methods. 

Optimization Method 
Performance 

characteristics 
Optimized Setting 

Predicted SN ratio 

MRR(dB) TWR(dB)

Single response optimization 

using Taguchi method 

MRR A1B3C1D3E3 −18.46 --- 

TWR A1B2C3D1E1 --- 55.79 

Multi response optimization 

using GRA method 
GRG A2B1C1D3E2 −22.41 38.75 

Table 12 illustrates a comparison of results obtained for ultrasonic machining of different 
materials selected by various investigators in past research work. It is revealed that from the 
literature that there is a vast range of materials that can be machined with USM. It can also be 
concluded that most of the responses in USM processes are well affected with the proper selection of 
process variables. The results presented in current article are somehow differ from past investigations 
and this can be considered due to the incorporation of some parameters i.e. profile of tool, feed rate 
etc. which were almost omitted in past literature. Table 13 represents the results obtained in the 
machining of WC-Co composites with various processes. It is revealed that with USM machined 
surface is found to be free from any defects such as; heat affected zone, recast layer etc. which are 
usually occurs in thermal based processes. 

Table 12. A comparative presentation of results obtained for different materials 
machined with USM. 

S. no. Author Input parameters and range Work material Results at optimized setting

1. Present Study Cobalt content (6% and 24%) 

Tool profile (Round, triangular, 

square) 

Grit size (200–500 mesh size) 

Power rating (40%–80%) 

Tool feed rate (0.015–0.021 mm/s) 

WC-6%Co 

and 

WC-24%Co 

MRR: 0.0335 g/min 

TWR: 0.0052 g/min 

Tool profile has significant 

effect on the MRR and 

TWR 

2. Jatinder Kumar, 

Vinod Kumar [30] 

Tool (HCS, HSS, Titanium, Ti 

alloy, Carbide) 

Abrasive (Al2O3, SiC, B4C) 

Grit size (220–500 mesh size) 

Power rating (100–400 W) 

Titanium 

(ASTM Grade I)

TWR: 0.45 mg/min 

Tool material was most 

significant factor for TWR. 

3. Vinod Kumar, 

J. S. Khamba [25] 

Tool (Titan12, Titan15, Titan31) 

Abrasive (Al2O3, SiC, B4C) 

Slurry conc. (20–30%) 

Grit size (220–500meahsize) 

Power rating (25–75%) 

Stellite 6 

(Cobalt alloy) 

MRR: 0.185 mm3/min 

TWR: 0.064 mm3/min  

4. Rupinder Singh,  

J. S. Khamba [27] 

Tool (SS, HSS, Diamond, Titanium, 

Carbide, HCS) 

Abrasive (Al2O3, SiC, B4C) 

Slurry conc. (15–25%) 

Grit size (220–500 mesh size) 

Power rating (30–90%) 

Titanium 

(ASTM Gr.2) 

and 

Titanium 

(ASTM Gr.5) 

TWR: 8.94  10−3 g/min 

Tool material, power rating, 

and slurry grit size 

significantly affects TWR 
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Slurry temperature (10–60 °C) 

5. Jatinder Kumar, 

J. S. Khamba, 

S.K. Mohapatra [35] 

Tool (HCS, HSS, Titanium, Ti 

alloy, Carbide) 

Abrasive (Al2O3, SiC, B4C) 

Grit size (220–500 mesh size) 

Power rating (100–400 W) 

Titanium 

(ASTM Grade I)

 

MRR: 1.69 mm3/min 

6. Ik Soo Kang, 

Jeong Suk Kim, 

Yong Wie Seo, 

Jeon Ha Kim [36] 

Tool Cross-section  

Grit size(240–600 mesh size) 

Slurry concentration (1:1–1:5) 

Static Pressure (2–3 kg/cm2) 

Alumina (Al2O3)

ceramic 

MRR: 18.97 mm3/min 

SR: 0.76 µm 

MRR increased with 

increase in Slurry conc. 

For SR grit size is more 

significant than static 

pressure. 

7. Jatinder Kumar &  

J. S. Khamba [37] 

Tool (HCS, HSS, Titanium, Ti 

alloy, Carbide) 

Abrasive (Al2O3, SiC, B4C) 

Grit size (220–500 mesh size) 

Power rating (100–400W) 

Titanium 

(ASTM Grade I)

 

MRR: 1.67 mm3/min 

TWR: 0.04 mm3/min 

SR: 0.31 µm 

Table 13. A comparative presentation of machining performance of present study and 
other previously reported studies 

S. no. Author Work Material composition Process Results at optimized setting 

1. Present study WC-6%Co 

and 

WC-24%Co 

Ultrasonic 

Machining 

MRR: 0.0335 g/min 

TWR: 0.0052 g/min 

OR 

MRR: 2.248 mm3 /min 

TWR: .647 mm3/min 

2. S. Assarzadeh,  

M. Ghoreishi [3] 

WC-6%Co Electrical Discharge 

Machining 

MRR: 0.187 mm3/min 

TWR: 0.0381 mm3/min 

SR: 2.48 µm 

3. V.Muthuraman, 

R. Ramakrishnan [5] 

WC-10%Co 

and 

WC-20%Co 

Wire-Electrical 

Discharge 

Machining 

MRR: 21.24 mm3/min 

SR: 1.90 µm 

4. A.T.Z Mahamat, 

A.M.A Rani, 

P. Husain [6] 

WC-6%Co Electrical Discharge 

Machining 

MRR: 0.007243 g/min 

EW: 0.0003474 g/min 

TWR: 0.165370% 

SR: 3.6 µm 

5. G.K. Singh, 

V. Yadav, 

R. Kumar [4] 

WC-10%Co Spark Assisted 

Diamond Face 

Grinding 

MRR: 0.3845 mm3/min 

WWR: 0.007042 g/min. 

ASR: 3.606 µm 

 

6. P. Janmanee,  

A. Muttamara [2] 

WC-10% Co Electrical Discharge 

Machining 

MRR: 2.731 mm3/min 

EWR: 37.234 mm3/min 

MCD: 183.87 µm/mm2 
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5. Conclusions 

1. The optimized parametric setting for material removal rate is: work material with cobalt content 
(6%), profile of tool (square), abrasive grit size (200), power rating (80%), and tool feed rate 
(0.021 mm/s). The percentage contributions of the various factors in descending order are; power 
rating (52.06%), grit size (18.70%), feed rate (8.20%), profile of tool (6.34), and cobalt content 
(0.28%).  

2. Power rating is the most significant factor that affects MRR as at high power rating, abrasive 
material has high impact energy against work surface. It should be noted that highest MRR can 
be obtained at a combination of high power rating, coarse grit and high feed rate of tool. 

3. Profile of tool possesses significant effect on MRR and TWR. For the tools having same cross-
section area, square profile tools gives higher MRR and TWR.  

4. The optimized parametric setting for tool wear rate is: work material with 6% cobalt content, 
profile of tool (triangular), abrasive grit size (500), power rating (40%), and tool feed rate  
(0.015 mm/s). The percentage contributions of the various factors in descending order are; power 
rating (52.99%), grit size (19.82%), feed rate (8.01%), profile of tool (6.87%), and cobalt content 
(0.74%). At optimize setting, the predicted S/N ratio was found 55.79 dB. 

5. For multi-response optimization, the optimized parametric setting is: work material with 24% 
cobalt content, profile of tool (round), grit size (200), power rating (80%), and tool feed rate 
(0.018 mm/s). The predicted S/N ratio for MRR and TWR is −22.41 and 38.75 respectively. 

6. MRR and TWR exhibit a strong correlation. Higher MRR can’t be obtained without tolerating 
higher TWR.  
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