Research article

Partially doubly strictly diagonally dominant matrices with applications


  • Received: 28 November 2022 Revised: 02 March 2023 Accepted: 09 March 2023 Published: 20 March 2023
  • A new class of matrices called partially doubly strictly diagonally dominant (for shortly, PDSDD) matrices is introduced and proved to be a subclass of nonsingular $ H $-matrices, which generalizes doubly strictly diagonally dominant matrices. As applications, a new eigenvalue localization set for matrices is given, and an upper bound for the infinity norm bound of the inverse of PDSDD matrices is presented. Based on this bound, a new pseudospectra localization for matrices is derived and a lower bound for distance to instability is obtained.

    Citation: Yi Liu, Lei Gao, Tianxu Zhao. Partially doubly strictly diagonally dominant matrices with applications[J]. Electronic Research Archive, 2023, 31(5): 2994-3013. doi: 10.3934/era.2023151

    Related Papers:

  • A new class of matrices called partially doubly strictly diagonally dominant (for shortly, PDSDD) matrices is introduced and proved to be a subclass of nonsingular $ H $-matrices, which generalizes doubly strictly diagonally dominant matrices. As applications, a new eigenvalue localization set for matrices is given, and an upper bound for the infinity norm bound of the inverse of PDSDD matrices is presented. Based on this bound, a new pseudospectra localization for matrices is derived and a lower bound for distance to instability is obtained.



    加载中


    [1] L. Lévy, Sur le possibilitédu l'equibre électrique, C. R. Acad. Sci. Paris, 93 (1881), 706–708.
    [2] B. Li, M. Tsatsomeros, Doubly diagonally dominant matrices, Linear Algebra Appl., 261 (1997), 221–235. https://doi.org/10.1016/S0024-3795(96)00406-5 doi: 10.1016/S0024-3795(96)00406-5
    [3] J. Z. Liu, F.Z. Zhang, Disc separation of the Schur complements of diagonally dominant matrices and determinantal bounds, SIAM J. Matrix Anal. Appl., 27 (2005), 665–674. https://doi.org/10.1137/040620369 doi: 10.1137/040620369
    [4] L. Cvetković, $H$-matrix theory vs. eigenvalue localization, Numer. Algorithms, 42 (2006), 229–245. https://doi.org/10.1007/s11075-006-9029-3 doi: 10.1007/s11075-006-9029-3
    [5] L. Cvetković, M. Erić, J. M. Peña, Eventually SDD matrices and eigenvalue localization, Appl. Math. Comput., 252 (2015), 535–540. https://doi.org/10.1016/j.amc.2014.12.012 doi: 10.1016/j.amc.2014.12.012
    [6] L. Cvetković, V. Kostić, R. Bru, F. Pedroche, A simple generalization of Geršgorin's theorem, Adv. Comput. Math., 35 (2011), 271–280. https://doi.org/10.1007/s10444-009-9143-6 doi: 10.1007/s10444-009-9143-6
    [7] L. Cvetković, V. Kostić, R. Varga, A new Geršgorin-type eigenvalue inclusion area, Electron. Trans. Numer. Anal., 18 (2004), 73–80.
    [8] S. Geršgorin, Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk SSSR Ser. Mat., 1 (1931), 749–754.
    [9] Q. Liu, Z.B. Li, C.Q. Li, A note on eventually SDD matrices and eigenvalue localization, Appl. Math. Comput., 311 (2017), 19–21. https://doi.org/10.1016/j.amc.2017.05.011 doi: 10.1016/j.amc.2017.05.011
    [10] R.S. Varga, Geršgorin and His Circles, Springer-Verlag, Berlin, 2004.
    [11] X. M. Gu, S. L. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. https://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576
    [12] W. Li, The infinity norm bound for the inverse of nonsingular diagonal dominant matrices, Appl. Math. Lett., 21 (2008), 258–263. https://doi.org/10.1016/j.aml.2007.03.018 doi: 10.1016/j.aml.2007.03.018
    [13] C. Q. Li, L. Cvetković, Y. M. Wei, J. X. Zhao, An infinity norm bound for the inverse of Dashnic-Zusmanovich type matrices with applications, Linear Algebra Appl., 565 (2019), 99–122. https://doi.org/10.1016/j.laa.2018.12.013 doi: 10.1016/j.laa.2018.12.013
    [14] C. Q. Li, Schur complement-based infinity norm bounds for the inverse of SDD matrices, Bull. Malays. Math. Sci. Soc., 43 (2020), 3829–3845. https://doi.org/10.1007/s40840-020-00895-x doi: 10.1007/s40840-020-00895-x
    [15] J. M. Varah, A lower bound for the smallest singular value of a matrix, Linear Algebra Appl., 11 (1975), 3–5. https://doi.org/10.1016/0024-3795(75)90112-3 doi: 10.1016/0024-3795(75)90112-3
    [16] C. Q. Li, Y. T. Li, Note on error bounds for linear complementarity problems for $B$-matrices, Appl. Math. Lett., 57 (2016), 108–113. https://doi.org/10.1016/j.aml.2016.01.013 doi: 10.1016/j.aml.2016.01.013
    [17] C. Q. Li, Y. T. Li, Weakly chained diagonally dominant $B$-matrices and error bounds for linear complementarity problems, Numer. Algorithms, 73 (2016), 985–998. https://doi.org/10.1007/s11075-016-0125-8 doi: 10.1007/s11075-016-0125-8
    [18] C. Q. Li, Y. T. Li, Double $B$-tensors and quasi-double $B$-tensors, Linear Algebra Appl., 466 (2015), 343–356. https://doi.org/10.1016/j.laa.2014.10.027 doi: 10.1016/j.laa.2014.10.027
    [19] Q. L. Liu, Y. T. Li, $p$-Norm SDD tensors and eigenvalue localization, J. Inequal. Appl., 2016 (2016), 178. https://doi.org/10.1186/s13660-016-1119-8 doi: 10.1186/s13660-016-1119-8
    [20] A. M. Ostrowski, Über die Determinanten mit iiberwiegender Hauptdiagonale, Comment. Math. Helvetici., 10 (1937), 69–96.
    [21] Y. M. Gao, H. W. Xiao, Criteria for generalized diagonally dominant matrices and $M$-matrices, Linear Algebra Appl., 169 (1992), 257–268. https://doi.org/10.1016/0024-3795(92)90182-A doi: 10.1016/0024-3795(92)90182-A
    [22] T. Szulc, Some remarks on a theorem of Gudkov, Linear Algebra Appl., 225 (1995), 221–235. https://doi.org/10.1016/0024-3795(95)00343-P doi: 10.1016/0024-3795(95)00343-P
    [23] W. Li, On Nekrasov matrices, Linear Algebra Appl., 281 (1998), 87–96. https://doi.org/10.1016/S0024-3795(98)10031-9 doi: 10.1016/S0024-3795(98)10031-9
    [24] J. X. Zhao, Q. L. Liu, C. Q. Li, Y. T. Li, Dashnic-Zusmanovich type matrices: A new subclass of nonsingular $H$-matrices, Linear Algebra Appl., 552 (2018), 277–287. https://doi.org/10.1016/j.laa.2018.04.028 doi: 10.1016/j.laa.2018.04.028
    [25] D. L. Cvetković, L. Cvetković, C. Q. Li, CKV-type matrices with applications, Linear Algebra Appl., 608 (2021), 158–184. https://doi.org/10.1016/j.laa.2020.08.028 doi: 10.1016/j.laa.2020.08.028
    [26] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA, 1994.
    [27] A. Brauer, Limits for the characteristic roots of a matrix Ⅱ, Duke Math. J., 14 (1947), 21–26. https://doi.org/10.1215/S0012-7094-47-01403-8 doi: 10.1215/S0012-7094-47-01403-8
    [28] L. Cvetković, P. F. Dai, K. Doroslovački, Y. T. Li, Infinity norm bounds for the inverse of Nekrasov matrices, Appl. Math. Comput., 219 (2013), 5020–5024. https://doi.org/10.1016/j.amc.2012.11.056 doi: 10.1016/j.amc.2012.11.056
    [29] C. Q. Li, H. Pei, A. N. Gao, Y. T. Li, Improvements on the infinity norm bound for the inverse of Nekrasov matrices, Numer. Algorithms, 71 (2016), 613–630. https://doi.org/10.1007/s11075-015-0012-8 doi: 10.1007/s11075-015-0012-8
    [30] V. R. Kostić, L. Cvetković, D. L. Cvetković, Pseudospectra localizations and their applications, Numer. Linear Algebra Appl., 23 (2016), 356–372. https://doi.org/10.1002/nla.2028 doi: 10.1002/nla.2028
    [31] L. Y. Kolotilina, On bounding inverse to Nekrasov matrices in the infinity norm, J. Math. Sci., 199 (2014), 432–437. https://doi.org/10.1007/s10958-014-1870-7 doi: 10.1007/s10958-014-1870-7
    [32] N. Morača, Upper bounds for the infinity norm of the inverse of SDD and $S$-SDD matrices, J. Comput. Appl. Math., 206 (2007), 666–678. https://doi.org/10.1016/j.cam.2006.08.013 doi: 10.1016/j.cam.2006.08.013
    [33] S. Z. Pan, S. C. Chen, An upper bound for $||A^{-1}||_{\infty}$ of strictly doubly diagonally dominant matrices, J. Fuzhou Univ. Nat. Sci. Ed., 36 (2008), 639–642. https://doi.org/10.3724/SP.J.1047.2008.00026 doi: 10.3724/SP.J.1047.2008.00026
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1067) PDF downloads(57) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog