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Abstract: A new class of matrices called partially doubly strictly diagonally dominant (for shortly,
PDSDD) matrices is introduced and proved to be a subclass of nonsingular H-matrices, which general-
izes doubly strictly diagonally dominant matrices. As applications, a new eigenvalue localization set for
matrices is given, and an upper bound for the infinity norm bound of the inverse of PDSDD matrices is
presented. Based on this bound, a new pseudospectra localization for matrices is derived and a lower
bound for distance to instability is obtained.
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1. Introduction

A matrix A = [ai j] ∈ Cn×n is called a strictly diagonally dominant (SDD) matrix if

|aii| > ri(A) (1.1)

for all i ∈ N := {1, . . . , n}, where ri(A) =
∑

j∈N\{i}
|ai j|.

The concept of SDD originated from the well-known Lévy-Desplanques Theorem [1], which states
that if condition (1.1) holds, then A is nonsingular, i.e., SDD matrices are nonsingular. It is well known
that the class of SDD matrices has wide applications in many fields of scientific computing, such as
the Schur complement problem [2, 3], eigenvalue localizations [4–10], convergence analysis of the
parallel-in-time iterative method [11], estimating the infinity norm for the inverse of H-matrices [12–15],
error bound for linear complementarity problems [16, 17], structure tensors [18, 19], etc.

Some well-known matrices have been presented and studied [4, 7, 20] by breaking the diagonal
dominance condition (1.1). For instance, by allowing at most one row to be non-SDD, Ostrowski
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introduced the class of Ostrowski matrices [20] (also known as doubly strictly diagonally dominant
(DSDD) matrices). Here, a matrix A = [ai j] ∈ Cn×n is an Ostrowski matrix [20] if for all j , i,

|aii||a j j| > ri(A)r j(A).

In addition, based on the partition-based approach that allows more than one row to be non-SDD, a
well-known class of matrices called S -SDD matrices has been proposed and studied [7, 21].

Definition 1.1. [7, 21] Let A = [ai j] ∈ Cn×n and S be a nonempty proper subset of N. Then, a matrix A
is called an S -SDD matrix if{

|aii| > rS
i (A), i ∈ S ,(

|aii| − rS
i (A)
)(
|a j j| − rS

j (A)
)
> rS

i (A)rS
j (A), i ∈ S , j ∈ S ,

where rS
i (A) =

∑
j∈S \{i}

|ai j|.

Besides DSDD matrices and S -SDD matrices, there are many generalizations of SDD matrices, such
as Nekrasov matrices [22, 23], DZ-type matrices [24], CKV-type matrices [25] and so on.

Observe from Definition 1.1 that S -SDD matrices only consider the effect of “interaction” between
i ∈ S and j ∈ S on the nonsingular. However, other “interaction,” such as the “constraint condition”
between i ∈ S (i ∈ S ) and j ∈ S ( j ∈ S ) with i , j, might also affect the non-singularity of the matrix.
Naturally, an interesting question arises: When we consider this “constraint condition,” can we get
the non-singularity of the matrix? To answer this question, in this paper, we introduce a new class of
nonsingular matrices arising from this “constraint condition” and show several benefits from this new
class of matrices, which we will call partially doubly strictly diagonally dominant matrices.

This paper is organized as follows. In Section 2, we present a new class of matrices called PDSDD
matrices and prove that it is a subclass of nonsingular H-matrices, which is similar to, but different from,
the class of S -SDD matrices. Section 3 gives a new eigenvalue localization set for matrices and presents
an infinity norm bound for the inverse of PDSDD matrices. It is proved that the obtained bound is better
than the well-known Varah’s bound for SDD matrices. Based on this infinity norm bound, we also
obtain a new pseudospectra localization for matrices and apply it to measure the distance to instability.
Finally, we give concluding remarks in Section 4.

2. Partially doubly strictly diagonally dominant matrices

We start with some preliminaries and definitions. Let Zn×n be the set of all matrices A = [ai j] ∈ Rn×n

with ai j ≤ 0 and i , j. A matrix A ∈ Zn×n is called a nonsingular M-matrix if its inverse is nonnegative,
i.e., A−1 ≥ 0 [26]. A matrix A = [ai j] ∈ Cn×n is called a nonsingular H-matrix [26] if its comparison
matrixM(A) = [mi j] ∈ Rn×n defined by

mi j =

{
|ai j|, i = j,
−|ai j|, i , j,

is a nonsingular M-matrix. Let |N | be the cardinality of set N.
In the following, we define a new class of matrices called PDSDD matrices.
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Definition 2.1. Let S be a subset of N and S be the complement of S . Given a matrix A = [ai j] ∈ Cn×n,
for each subset ∆ ∈ {S , S }, denote ∆− := {i ∈ ∆|aii ≤ ri(A)} and ∆+ := {i ∈ ∆|aii > ri(A)}. Then, a matrix
A is called a partially doubly strictly diagonally dominant (PDSDD) matrix if for each ∆ ∈ {S , S } either
|∆−| = 0 or |∆−| = 1, and for i ∈ ∆−, |aii| > r∆i (A),(

|aii| − r∆i (A)
)(
|a j j| − r∆j (A) + |a ji|

)
> r∆i (A)(r∆j (A) + |a ji|), j ∈ ∆+,

(2.1)

where r∆i (A) =
∑

j∈∆\{i}
|ai j|.

Note that the class of DSDD matrices allows at most one row to be non-SDD, whereas the class of
matrices defined in Definition 2.1 allows at most one row to be non-SDD in each subset ∆ ∈ {S , S }. For
this reason, we call it the class of PDSDD matrices.

The following theorem provides that the class of PDSDD matrices is a subclass of nonsingular
H-matrices.

Theorem 2.1. Every PDSDD matrix is a nonsingular H-matrix.

Proof. According to the well-known result that SDD matrices are nonsingular H-matrices, it is sufficient
to consider the case that A has one or two non-SDD rows. Assume, on the contrary, that A is a singular
matrix, and then there exists a nonzero eigenvector x = [x1, x2, . . . , xn]T corresponding to 0 eigenvalue
such that

Ax = 0. (2.2)

Let |xp| := max
i∈N
{|xi|}. Then, |xp| > 0, and p ∈ ∆ ∪ ∆, where ∆ ∈ {S , S }. Without loss of generality, we

assume that ∆ = S . Next, we need only consider the case p ∈ S , and another case p ∈ S can be proved
similarly. For p ∈ S , it follows from Definition 2.1 that p ∈ S − ∪ S +, where S − := {i ∈ S |aii ≤ ri(A)}
and S + := {i ∈ S |aii > ri(A)}.

If p ∈ S −, then by Definition 2.1 we have

|app| > rS
p (A), (2.3)

and for all j ∈ S +, (
|app| − rS

p (A)
)(
|a j j| − rS

j (A) + |a jp|
)
> rS

p (A)(rS
j (A) + |a jp|). (2.4)

Note that |S −| = 1. Then, S \ {p} = S +. Let |xq| := max
k∈S \{p}

{|xk|}. Considering the p-th equality of (2.2),

we have

appxp = −
∑

k,p,k∈S

apkxk −
∑

k,p,k∈S

apkxk.

Taking the modulus in the above equation and using the triangle inequality yields

|app||xp| ≤
∑

k,p,k∈S

|apk||xk| +
∑

k,p,k∈S

|apk||xk|
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≤
∑

k,p,k∈S

|apk||xq| +
∑

k,p,k∈S

|apk||xp|

= rS
p (A)|xq| + rS

p (A)|xp|,

which implies that

(|app| − rS
p (A))|xp| ≤ rS

p (A)|xq|. (2.5)

If |xq| = 0, then |app| − rS
p (A) ≤ 0 as |xp| > 0, which contradicts (2.3). If |xq| , 0, then from the q-th

equality of (2.2), we obtain

|aqq||xq| ≤
∑

k,q,k∈S

|aqk||xk| +
∑

k,q,k∈S

|aqk||xk|

≤

( ∑
k,q,k∈S

|aqk| − |aqp|

)
|xq| +

( ∑
k,q,k∈S

|aqk| + |aqp|

)
|xp|

= (rS
q (A) − |aqp|)|xq| + (rS

q (A) + |aqp|)|xp|,

i.e.,

(|aqq| − rS
q (A) + |aqp|)|xq| ≤ (rS

q (A) + |aqp|)|xp|. (2.6)

Multiplying (2.6) with (2.5) and dividing by |xp||xq| > 0, we have

(|app| − rS
p (A))(|aqq| − rS

q (A) + |aqp|) ≤ rS
p (A)(rS

q (A) + |aqp|),

which contradicts (2.4).
If p ∈ S +, then |app| > rp(A). Considering the p-th equality of (2.2) and using the triangle inequality,

we obtain

|app||xp| ≤
∑
k,p

|apk||xk| ≤ rp(A)|xp|,

i.e., |app| ≤ rp(A), which contradicts |app| > rp(A). Hence, we can conclude that 0 is not an eigenvalue
of A, that is, A is a nonsingular matrix.

We next prove that A is a nonsingular H-matrix. For any ε ≥ 0, let

Bε =M(A) + εI = [bi j].

Note that bii = |aii| + ε, bi j = −|ai j|, and Bε ∈ Zn×n. Then, ∆−(Bε) ⊆ ∆−(A), and ∆+(A) ⊆ ∆+(Bε). If A is
an SDD matrix, then ∆−(A) = ∅, and thus ∆−(Bε) = ∅, which implies that Bε is an SDD matrix. If A is
not an SDD matrix, then |∆−(A)| = 1 for some ∆ ∈ {S , S }. For this case, |∆−(Bε)| = 0 or |∆−(Bε)| = 1. If
|∆−(Bε)| = 0 for each ∆ ∈ {S , S }, then Bε is also an SDD matrix. If |∆−(Bε)| = 1 for some ∆ ∈ {S , S },
then ∆−(Bε) = ∆−(A) and ∆+(Bε) = ∆+(A). Hence, for i ∈ ∆−(Bε),

|bii| − r∆i (Bε) = |aii| + ε − r∆i (A) > 0,
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and for all j ∈ ∆+(Bε),

(|bii| − r∆i (Bε))(|b j j| − r∆j (Bε) + |b ji|) = (|aii| + ε − r∆i (A))(|a j j| + ε − r∆j (A) + |a ji|)

≥ (|aii| − r∆i (A))(|a j j| − r∆j (A) + |a ji|)

> r∆i (A)(r∆j (A) + |a ji|)

= r∆i (Bε)(r∆j (Bε) + |b ji|).

Therefore, Bε is a PDSDD matrix and thus nonsingular for each ε ≥ 0. This implies thatM(A) is a
nonsingular M-matrix (see the condition (D15) of Theorem 2.3 in [26, Chapter 6]). Therefore, A is a
nonsingular H-matrix. The proof is complete. □

Proposition 2.1. Every DSDD matrix is a PDSDD matrix.

Proof. If A is an SDD matrix, then A is a PDSDD matrix. If A is not an SDD matrix, then by the
assumptions it holds that there exists i0 ∈ N such that |ai0i0 | ≤ ri0(A) and

|ai0i0 ||a j j| > ri0(A)r j(A) for all j , i0.

Taking S = N, we have rS
i (A) = 0 and rS

i (A) = ri(A) for all i ∈ N. This implies that for all j ∈ S \ {i0},(
|ai0i0 | − rS

i0(A)
)(
|a j j| − rS

j (A) + |a ji0 |
)
− rS

i0(A)(rS
j (A) + |a ji0 |)

= |ai0i0 |(|a j j| − r j(A) + |a ji0 |) − ri0(A)|a ji0 |

= |ai0i0 ||a j j| − |ai0i0 |(r j(A) − |a ji0 |) − ri0(A)|a ji0 |

≥ |ai0i0 ||a j j| − ri0(A)(r j(A) − |a ji0 | + |a ji0 |)
= |ai0i0 ||a j j| − ri0(A)r j(A)
> 0.

Hence, by Definition 2.1, we conclude that A is a PDSDD matrix. The proof is complete. □

Next, we give an example to show that neither PDSDD matrices nor S -SDD matrices are included in
each other.

Example 2.1. Consider the following matrices:

A =


3 −1 −3 0
−1 3 0 −8
0 −1 3 0
0 0 0 8

 , B =


3 0 0 −3
0 3 0 −3
0 0 3 −3
0 0 0 8

 .
By calculation, we know that A is a PDSDD matrix for S = {1, 3}, but it is not an S -SDD matrix for

any nonempty proper subset S of N and thus not a DSDD matrix. Meanwhile, B is an S -SDD matrix
for S = {1, 2, 3}, but it is not a PDSDD matrix, because B has three non-SDD rows.

According to Theorem 2.1, Proposition 2.1 and Example 2.1, the relations among DSDD matrices,
PDSDD matrices, S -SDD matrices and H-matrices can be depicted as follows:

{PDSDD} ⊂ {H}, {PDSDD} 1 {S -SDD}, {S-SDD} 1 {PDSDD},

and
{DSDD} ⊂ {PDSDD} ∩ {S-SDD}.

Electronic Research Archive Volume 31, Issue 5, 2994–3013.
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3. Some possible applications

3.1. A new eigenvalue localization set for matrices

It is well known that the non-singularity of matrices can generate the equivalent eigenvalue inclusion
set in the complex plane [4, 5, 7, 9, 24]. By the non-singularity of PDSDD matrices, we in this section
give a new eigenvalue localization set for matrices. Before that, an equivalent condition for the definition
of PDSDD matrices is given, which can be proved immediately from Definition 2.1.

Lemma 3.1. Let A = [ai j] ∈ Cn×n and {S , S } be a partition of the set N. A matrix A is called a PDSDD
matrix if and only if S ⋆ is not empty unless S is empty, and S

⋆
is not empty unless S is empty, where

S ⋆ :=
{
i ∈ S : |aii| > rS

i (A), and for all j ∈ S \ {i}, |a j j| > r j(A) and(
|aii| − rS

i (A)
)(
|a j j| − rS

j (A) + |a ji|
)
> rS

i (A)(rS
j (A) + |a ji|)

}
,

and

S
⋆

:=
{
i ∈ S : |aii| > rS

i (A), and for all j ∈ S \ {i}, |a j j| > r j(A) and(
|aii| − rS

i (A)
)(
|a j j| − rS

j (A) + |a ji|
)
> rS

i (A)(rS
j (A) + |a ji|)

}
with rS

i (A) =
∑

j∈S \{i}
|ai j|.

By Lemma 3.1, we can obtain the following theorem.

Theorem 3.1. Let A = [ai j] ∈ Cn×n and S be any subset of N. Then,

σ(A) ⊆ ΘS (A) := θS (A)
⋃
θS (A),

where σ(A) is the set of all the eigenvalues of A,

θS (A) =
⋂
i∈S

(
ΓS

i (A)
)⋃ ⋃

j∈S \{i}

(
V̂S

i j(A) ∪ Γ j(A)
)

and

θS (A) =
⋂
i∈S

(
ΓS

i (A)
)⋃ ⋃

j∈S \{i}

(
V̂S

i j(A) ∪ Γ j(A)
)

with
ΓS

i (A) :=
{
z ∈ C : |z − aii| ≤ rS

i (A)
}
, Γ j(A) :=

{
z ∈ C : |z − a j j| ≤ r j(A)

}
,

and

V̂S
i j(A) :=

{
z ∈ C : (|z − aii| − rS

i (A))(|z − a j j| − rS
j (A) + |a ji|)

≤ rS
i (A)(rS

j (A) + |a ji|)
}
.
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Proof. Without loss of generality, we assume that S is a nonempty subset of N. For the case of S = ∅,
we have ΘS (A) = θS (A), and the conclusion can be proved similarly. Suppose, on the contrary, that
there exists an eigenvalue λ of A such that λ < ΘS (A), that is, λ < θS (A) and λ < θS (A). For λ < θS (A),
there exists an index i ∈ S such that λ < ΓS

i (A), and for all j ∈ S \ {i}, λ < Γ j(A) and λ < V̂S
i j(A), that is,

|λ − aii| > rS
i (A), |λ − a j j| > r j(A), and

(|λ − aii| − rS
i (A))(|λ − a j j| − rS

j (A) + |a ji|) > rS
i (A)(rS

j (A) + |a ji|).

Similarly, for λ < θS (A), there exists an index i ∈ S such that λ < ΓS
i (A), and for all j ∈ S \ {i}, λ < Γ j(A)

and λ < V̂S
i j(A), that is, |λ − aii| > rS

i (A), |λ − a j j| > r j(A), and

(|λ − aii| − rS
i (A))(|λ − a j j| − rS

j (A) + |a ji|) > rS
i (A)(rS

j (A) + |a ji|).

These imply that S ⋆(λI − A) and S
⋆
(λI − A) are not empty. It follows from Lemma 3.1 that λI − A is a

PDSDD matrix. Then, by Theorem 2.1, λI − A is nonsingular, which contradicts that λ is an eigenvalue
of A. Hence, λ ∈ ΘS (A). This completes the proof. □

Remark 3.1. Take the intersection over all possible subsets S of N, and we can get a satisfactory
eigenvalue localization although it has more computation costs:

σ(A) ⊆ Θ(A) :=
⋂
S⊆N

ΘS (A).

To compare our set Θ(A) with the Geršgorin disks Γ(A) in [8], Brauer’s ovals of CassiniK(A) in [27]
and the Cvetković-Kostić-Varga eigenvalue localization set C(A) in [7], let us recall the definitions of
Γ(A), K(A) and C(A) as follows.

Theorem 3.2. [8] Let A = [ai j] ∈ Cn×n and σ(A) be the set of all eigenvalues of A. Then,

σ(A) ⊆ Γ(A) :=
⋃
i∈N

Γi(A),

where Γi(A) = {z ∈ C : |aii − z| ≤ ri(A)}.

Theorem 3.3. [27] Let A = [ai j] ∈ Cn×n and σ(A) be the set of all eigenvalues of A. Then,

σ(A) ⊆ K(A) :=
⋃

i, j∈N,i, j

Ki j(A),

where Ki j(A) = {z ∈ C : |aii − z||a j j − z| ≤ ri(A)r j(A)}.

Theorem 3.4. [7] Let S be any nonempty proper subset of N, and n ≥ 2. Then, for any A = [ai j] ∈ Cn×n,
all the eigenvalues of A belong to set

CS (A) =

⋃
i∈S

ΓS
i (A)

⋃
 ⋃

i∈S , j∈S

VS
i j(A)

 ,
Electronic Research Archive Volume 31, Issue 5, 2994–3013.
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and hence

σ(A) ⊆ C(A) :=
⋂

S⊂N,S,∅,S,N

CS (A),

where ΓS
i (A) is given by Theorem 3.1, and

VS
i j(A) :=

{
z ∈ C : (|z − aii| − rS

i (A))(|z − a j j| − rS
j (A)) ≤ rS

i (A)rS
j (A)
}
.

Remark 3.2. Observe that the class of SDD matrices is a subclass of DSDD matrices, which is a
subclass of of PDSDD matrices. Hence, the corresponding set Θ(A) will contain Brauer’s ovals of
Cassini K(A), which contains the Geršgorin disks Γ(A), that is,

Θ(A) ⊆ K(A) ⊆ Γ(A).

In addition, because PDSDD class and S -SDD class do not contain each other, it follows that the
relation between Θ(A) and C(A) is

Θ(A) 1 C(A) and C(A) 1 Θ(A).

3.2. An infinity norm bound for the inverse of PDSDD matrices

In this section, we consider the infinity norm bounds for the inverse of PDSDD matrices, since
it might be used for the convergence analysis of matrix splitting and matrix multi-splitting iterative
methods for solving large sparse systems of linear equations, linear complementarity problems and
pseudospectra localizations.

Theorem 3.5. Let A = [ai j] ∈ Cn×n be a PDSDD matrix. Then,

||A−1||∞ ≤ max

min
i∈S ⋆

max

 1

|aii| − rS
i (A)
, φS

i (A)

 ,min
i∈S
⋆

max
{

1
|aii| − rS

i (A)
, φS

i (A)
} , (3.1)

where S ⋆ and S
⋆

are defined by Lemma 3.1,

φS
i (A) := max

j∈S \{i}

{
XS

i j(A),
1

|a j j| − r j(A)

}
with

XS
i j(A) :=

|a j j| − rS
j (A) + |a ji| + rS

i (A)

(|aii| − rS
i (A))(|a j j| − rS

j (A) + |a ji|) − rS
i (A)(rS

j (A) + |a ji|)
.

Proof. According to a well-known fact (see [10, 30]),

||A−1||−1
∞ = inf

x,0

||Ax||∞
||x||∞

= min
||x||∞=1

||Ax||∞ = ||Ax∗||∞ = max
i∈N
|(Ax∗)i|

for some x∗ = [x∗1, x
∗
2, . . . , x

∗
n]T such that ||x||∞ = 1. Denote |x∗p| = ||x||∞ = 1. It follows that

||A−1||−1
∞ ≥ |(Ax∗)p|.

Electronic Research Archive Volume 31, Issue 5, 2994–3013.
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Consider the p-th row of Ax∗, and we have

(Ax∗)p = appx∗p +
∑
j,p

ap jx∗j. (3.2)

Since A is a PDSDD matrix, it follows from Lemma 3.1 that S ⋆ is not empty unless S is empty, and
S
⋆

is not empty unless S is empty. We only consider the case both S and S are not empty, and the case
of S = ∅ or S = ∅ can be proved similarly.

The first case. Suppose that either S or S is a singleton set. We assume that S = {k}. Then, S = N\{k},
and from Lemma 3.1 it holds that S ⋆ is not empty and S

⋆
is not empty, that is,

|akk| > rS
k (A) = rk(A).

For each i0 ∈ S
⋆
, |ai0i0 | > rS

i0
(A), and for all j ∈ S \ {i0},(

|ai0i0 | − rS
i0(A)
)(
|a j j| − rS

j (A) + |a ji0 |
)
> rS

i (A)(rS
j (A) + |a ji0 |). (3.3)

Note that p ∈ S ∪ S . If p ∈ S = {k}, then

|app| ≤ |(Ax∗)p| + rp(A),

and
||A−1||−1

∞ ≥ |(Ax∗)p| ≥ |app| − rp(A) > 0.

Hence,

||A−1||∞ ≤
1

|app| − rp(A)
=

1

|akk| − rS
k (A)
. (3.4)

If p ∈ S , then p = i0 or p , i0, where i0 ∈ S
⋆
. If p = i0, then let |x∗q| = max

j∈S \{p}
{|x∗j |}. By (3.2), it follows that

appx∗p = (Ax∗)p −
∑

j,p, j∈S

ap jx∗j −
∑

j,p, j∈S

ap jx∗j,

and taking absolute values on both sides and using the triangle inequality, we get

|app||x∗p| ≤ |(Ax∗)p| +
∑

j,p, j∈S

|ap j||x∗j | +
∑

j,p, j∈S

|ap j||x∗j |

≤ |(Ax∗)p| +
∑

j,p, j∈S

|ap j||x∗p| +
∑

j,p, j∈S

|ap j||x∗q|

≤ ||A−1||−1
∞ + rS

p (A)|x∗p| + rS
p (A)|x∗q|,

which implies that

|app| − ||A−1||−1
∞ − rS

p (A) ≤ rS
p (A)|x∗q|. (3.5)
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Consider the q-th row of Ax∗, and we have

(Ax∗)q = aqqx∗q +
∑
j,q

aq jx∗j.

It follows that

|aqq||x∗q| ≤ |(Ax∗)q| +

 ∑
j,q, j∈S

|aq j| − |aqp|

 |x∗q| +
 ∑

j,q, j∈S

|aq j| + |aqp|

 |x∗p|
≤ ||A−1||−1

∞ +
(
rS

q (A) − |aqp|
)
|x∗q| +

(
rS

q (A) + |aqp|
)
,

i.e.,

(|aqq| − rS
q (A) + |aqp|)|x∗q| ≤ ||A

−1||−1
∞ + (rS

q (A) + |aqp|). (3.6)

Then, from (3.5) and (3.6), we get that

|app| − ||A−1||−1
∞ − rS

p (A)

rS
p (A)

≤ |x∗q| ≤
||A−1||−1

∞ + rS
q (A) + |aqp|

|aqq| − rS
q (A) + |aqp|

,

which implies that

||A−1||∞ ≤
|aqq| − rS

q (A) + |aqp| + rS
p (A)

(|app| − rS
p (A))(|aqq| − rS

q (A) + |aqp|) − rS
p (A)(rS

q (A) + |aqp|)

≤ max
j∈S \{i0}

|a j j| − rS
j (A) + |a ji0 | + rS

i0
(A)

(|ai0i0 | − rS
i0

(A))(|a j j| − rS
j (A) + |a ji0 |) − rS

i0
(A)(rS

j (A) + |a ji0 |)

:= max
j∈S \{i0}

XS
i0 j(A). (3.7)

If p , i0, then |app| > rp(A). Similarly to the proof of (3.4), we obtain

||A−1||∞ ≤
1

|app| − rp(A)
≤ max

j∈S \{i0}

1
|a j j| − r j(A)

.

Hence,

||A−1||∞ ≤ max
j∈S \{i0}

{
XS

i0 j(A),
1

|a j j| − r j(A)

}
.

Since i0 is arbitrary in S
⋆
, it follows that

||A−1||∞ ≤ min
i∈S
⋆

max
j∈S \{i}

{
XS

i j(A),
1

|a j j| − r j(A)

}
. (3.8)

By (3.4) and (3.8), it holds that

||A−1||∞ ≤ max

min
i∈S ⋆

1

|aii| − rS
i (A)
,min

i∈S
⋆

max
j∈S \{i}

{
XS

i j(A),
1

|a j j| − r j(A)

} .
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If S is a singleton set, then similar to the above case, we obtain

||A−1||∞ ≤ max
{

min
i∈S ⋆

max
j∈S \{i}

{
XS

i j(A),
1

|a j j| − r j(A)

}
,min

i∈S
⋆

1
|aii| − rS

i (A)

}
.

The second case. Suppose that both S and S are singleton sets. By Lemma 3.1, it follows that S ⋆ is not
empty, and S

⋆
is not empty. Then, similar to the proof of the first case, we have

||A−1||∞ ≤ min
i∈S ⋆

max
j∈S \{i}

{
XS

i j(A),
1

|a j j| − r j(A)

}
,

and

||A−1||∞ ≤ min
i∈S
⋆

max
j∈S \{i}

{
XS

i j(A),
1

|a j j| − r j(A)

}
.

Now, the conclusion follows from the above two cases. □

In [15], an elegant upper bound for the inverse of SDD matrices is presented.

Theorem 3.6. [15] Let A = [ai j] ∈ Cn×n be an SDD matrix. Then,

||A−1||∞ ≤ max
i∈N

1
|aii| − ri(A)

.

This bound is usually called Varah’s bound and plays a critical role in numerical algebra [11,16,28,29].
As discussed before, an SDD matrix is a PDSDD matrix as well. Thus, Theorem 3.5 can be applied to
SDD matrices. In the following, we show that bound (3.1) of Theorem 3.5 works better than Varah’s
bound of Theorem 3.6.

Theorem 3.7. Let A = [ai j] ∈ Cn×n be an SDD matrix and S be any subset of N. Then,

||A−1||∞ ≤ φ
S (A) ≤ max

i∈N

1
|aii| − ri(A)

,

where

φS (A) := max

min
i∈S

max

 1

|aii| − rS
i (A)
, φS

i (A)

 ,min
i∈S

max
{

1
|aii| − rS

i (A)
, φS

i (A)
}

and φS
i (A) is given by Theorem 3.5.

Proof. Since A is an SDD matrix, it follows from Lemma 3.1 that S ⋆ = S for any subset S of N. Hence,
by Theorem 3.5, it follows that

||A−1||∞ ≤ φ
S (A).

We next prove that φS (A) ≤ max
i∈N

1
|aii |−ri(A) . Define |ai0i0 | − ri0(A) := min

i∈N
{|aii| − ri(A)}. Obviously, for each

i ∈ N,
1

|aii| − rS
i (A)

≤
1

|ai0i0 | − ri0(A)
and

1

|aii| − rS
i (A)

≤
1

|ai0i0 | − ri0(A)
.
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Note that for each i ∈ S ,

φS
i (A) := max

j∈S \{i}

{
XS

i j(A),
1

|a j j| − r j(A)

}
(3.9)

and

XS
i j(A) :=

|a j j| − rS
j (A) + |a ji| + rS

i (A)

(|aii| − rS
i (A))(|a j j| − rS

j (A) + |a ji|) − rS
i (A)(rS

j (A) + |a ji|)
.

If |aii| − ri(A) ≥ |a j j| − r j(A), then

(|aii| − rS
i (A))(|a j j| − rS

j (A) + |a ji|) − rS
i (A)(rS

j (A) + |a ji|)

= (|aii| − ri(A))(|a j j| − rS
j (A) + |a ji|) + rS

i (A)(|a j j| − r j(A))

≥ (|a j j| − r j(A))(|a j j| − rS
j (A) + |a ji|) + rS

i (A)(|a j j| − r j(A))

= (|a j j| − r j(A))(|a j j| − rS
j (A) + |a ji| + rS

i (A)),

which implies that

XS
i j(A) ≤

1
|a j j| − r j(A)

≤
1

|ai0i0 | − ri0(A)
. (3.10)

If |aii| − ri(A) < |a j j| − r j(A), then

(|aii| − rS
i (A))(|a j j| − rS

j (A) + |a ji|) − rS
i (A)(rS

j (A) + |a ji|)

= (|aii| − ri(A))(|a j j| − rS
j (A) + |a ji|) + rS

i (A)(|a j j| − r j(A))

> (|aii| − ri(A))(|a j j| − rS
j (A) + |a ji|) + rS

i (A)(|aii| − ri(A))

= (|aii| − ri(A))(|a j j| − rS
j (A) + |a ji| + rS

i (A)),

which implies that

1
|a j j| − r j(A)

< XS
i j(A) <

1
|aii| − ri(A)

≤
1

|ai0i0 | − ri0(A)
. (3.11)

By (3.9), (3.10) and (3.11), it follows that for each i ∈ S ,

φS
i (A) ≤

1
|ai0i0 | − ri0(A)

.

Similarly, for each i ∈ S , we can see that

φS
i (A) ≤

1
|ai0i0 | − ri0(A)

.

This completes the proof. □

Remark 3.3. For SDD matrices, consider the intersection over all possible subsets S of N, and a tighter
upper bound for ||A−1||∞ can be obtained from Theorem 3.7:

||A−1||∞ ≤ min
S⊆N
φS (A) ≤ φS (A) ≤ max

i∈N

1
|aii| − ri(A)

.
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Besides SDD matrices, for other subclasses of H-matrices, such as DSDD matrices, S -SDD matrices
and Nekrasov matrices, various infinity norm bounds for their inverse have also been derived. For details,
see [12, 23, 28–33] and references therein. A numerical example is given to illustrate the advantage of
the proposed bound in Theorem 3.6.

Example 3.1. Consider the matrix in Example 2.1:

A =


3 −1 −3 0
−1 3 0 −8
0 −1 3 0
0 0 0 8

 .
By computation, we know that A is a PDSDD matrix for S = {1, 3} but neither SDD nor a Nekrasov

matrix. Moreover, it is easy to verify that there is no nonempty proper subset S of N such that A is an
S -SDD matrix, and so it is not a DSDD matrix. Therefore, neither of the existing bounds for SDD,
DSDD, S -SDD, and Nekrasov matrices can be used to estimate ||A−1||∞. However, by our bound (3.1),
we have

||A−1||∞ ≤ 2.

The exact value of the infinity norm of the inverse of A is ||A−1||∞ = 1.

3.3. A new pseudospectra localization and its application

For a given ε > 0, denoted by

Λε(A) = {λ ∈ C : ∃ x ∈ Cn \ {0}, E ∈ Cn×n, ||E|| ≤ ε such that (A + E)x = λx},

the ε-pseudospectrum of a matrix A consists of all eigenvalues of matrices [30], which is equivalent to

Λε(A) = {z ∈ C : ||(A − zI)−1||−1 ≤ ε}, (3.12)

where the convention is ||A−1||−1 = 0 if A is singular [30]. This implies that the infinity norm bounds of
the inverse of a given matrix could be used to generate new pseudospectra localizations. For details,
see [13, 25, 30]. So, in this section, we shall give a new pseudospectra localization using the obtained
bound in Section 3.2. Before that, a useful lemma is given that will be used later.

Lemma 3.2. Let A be an arbitrary matrix and S be any subset of N. Then,

||A−1||−1
∞ ≥ µ(A) := min { f (A), g(A)} ,

where

f (A) := max
i∈S

min
{
|aii| − rS

i (A), min
j∈S \{i}

{
µS

i j(A), |a j j| − r j(A)
}}

and

g(A) := max
i∈S

min
{
|aii| − rS

i (A), min
j∈S \{i}

{
µS

i j(A), |a j j| − r j(A)
}}

with the convention ||A−1||−1
∞ if A is singular, and µS

i j(A) = 0 if |a j j| − rS
j (A) + |a ji| + rS

i (A) = 0; otherwise,

µS
i j(A) =

(|aii| − rS
i (A))(|a j j| − rS

j (A) + |a ji|) − rS
i (A)(rS

j (A) + |a ji|)

|a j j| − rS
j (A) + |a ji| + rS

i (A)
.
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Proof. For any given subset S of N, if A is a PDSDD matrix, then it follows from Lemma 3.1 and
Theorem 3.5 that

||A−1||−1
∞ ≥ min

{
max
i∈S ⋆

min
{
|aii| − rS

i (A), min
j∈S \{i}

{
µS

i j(A), |a j j| − r j(A)
}}
,

max
i∈S
⋆

min
{
|aii| − rS

i (A), min
j∈S \{i}

{
µS

i j(A), |a j j| − r j(A)
}}}

= µ(A).

If A is not a PDSDD matrix, then it follows from Lemma 3.1 that at least one of the following conditions
holds: (i) |aii| ≤ rS

i (A) for all i ∈ S ; (ii) |aii| > rS
i (A) for some i ∈ S ; but for some j ∈ S \ {i}, |a j j| ≤ r j(A) or

(
|aii| − rS

i (A)
)(
|a j j| − rS

j (A) + |a ji|
)
≤ rS

i (A)(rS
j (A) + |a ji|);

(iii) |aii| ≤ rS
i (A) for all i ∈ S ; (iv) |aii| > rS

i (A) for some i ∈ S ; but for some j ∈ S \ {i}, |a j j| ≤ r j(A) or

(
|aii| − rS

i (A)
)(
|a j j| − rS

j (A) + |a ji|
)
≤ rS

i (A)(rS
j (A) + |a ji|).

This implies that µ(A) ≤ 0 ≤ ||A−1||−1
∞ . The proof is complete. □

Now, a new pseudospectra localization for matrices is given based on Lemma 3.2.

Theorem 3.8. (ε-pseudo PDSDD set) Let A = [ai j] ∈ Cn×n and S be any subset of N. Then,

Λε(A) ⊆ ΘS (A, ε) := θS (A, ε)
⋃
θS (A, ε),

where

θS (A, ε) :=
⋂
i∈S

ΓS
i (A, ε)

⋃ ⋃
j∈S \{i}

(
V̂S

i j(A, ε) ∪ Γ j(A, ε)
)


and

θS (A, ε) :=
⋂
i∈S

ΓS
i (A, ε)

⋃ ⋃
j∈S \{i}

(
V̂S

i j(A, ε) ∪ Γ j(A, ε)
)


with
ΓS

i (A, ε) :=
{
z ∈ C : |z − aii| ≤ rS

i (A) + ε
}
,

Γ j(A, ε) :=
{
z ∈ C : |z − a j j| ≤ r j(A) + ε

}
,

and

V̂S
i j(A, ε) :=

{
z ∈ C : (|z − aii| − rS

i (A) − ε)(|z − a j j| − rS
j (A) + |a ji|)

≤ rS
i (A)(rS

j (A) + |a ji| + ε)
}
.
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Proof. From Lemma 3.2 and (3.12), we immediately get

Λε(A) = {z ∈ C : ||(A − zI)−1||−1 ≤ ε} ⊆ {z ∈ C : µ(A − zI) ≤ ε}, (3.13)

where µ(A − zI) is defined as in Lemma 3.2. Note that rS
i (A − zI) = rS

i (A) and rS
i (A − zI) = rS

i (A).
Therefore, for any λ ∈ Λε(A), it follows from (3.13) that

f (A − λI) ≤ ε or g(A − λI) ≤ ε,

where f (A − λI) and g(A − λI) are given by Lemma 3.2.
Case I. If f (A− λI) ≤ ε, then for all i ∈ S , |aii − λ| ≤ rS

i (A)+ ε or |aii − λ| > rS
i (A)+ ε for some i ∈ S ;

but for some j ∈ S \ {i}, |a j j − λ| ≤ r j(A) + ε or µS
i j(A − λI) ≤ ε, i.e.,

(|aii − λ| − rS
i (A))(|a j j − λ| − rS

j (A) + |a ji|) − rS
i (A)(rS

j (A) + |a ji|)

|a j j − λ| − rS
j (A) + |a ji| + rS

i (A)
≤ ε. (3.14)

If |a j j − λ| − rS
j (A) > 0, then it follows from (3.14) that(
|aii − λ| − rS

i (A) − ε
)(
|a j j − λ| − rS

j (A) + |a ji|
)
≤ rS

i (A)(rS
j (A) + |a ji| + ε).

If |a j j − λ| − rS
j (A) ≤ 0, then |a j j − λ| ≤ rS

j (A) + ε ≤ r j(A) + ε. These imply that λ ∈ θS (A, ε).
Case II. If g(A − λI) ≤ ε, then for all i ∈ S , |aii − λ| ≤ rS

i (A) + ε or |aii − λ| > rS
i (A) + ε for some

i ∈ S ; but for some j ∈ S \ {i}, |a j j − λ| ≤ r j(A) + ε or µS
i j(A − λI) ≤ ε, i.e.,

(|aii − λ| − rS
i (A))(|a j j − λ| − rS

j (A) + |a ji|) − rS
i (A)(rS

j (A) + |a ji|)

|a j j − λ| − rS
j (A) + |a ji| + rS

i (A)
≤ ε. (3.15)

If |a j j − λ| − rS
j (A) > 0, then it follows from (3.15) that(
|aii − λ| − rS

i (A) − ε
)(
|a j j − λ| − rS

j (A) + |a ji|
)
≤ rS

i (A)(rS
j (A) + |a ji| + ε).

If |a j j − λ| − rS
j (A) ≤ 0, then |a j j − λ| ≤ rS

j (A) + ε ≤ r j(A) + ε. These imply that λ ∈ θS (A, ε).
From Case I and Case II, the conclusion follows. □

As an application, using Theorem 3.8, we next give a lower bound for distance to instability. Denote
by Red(A) ∈ Rn×n the real matrix associated with a given matrix A = [ai j] ∈ Cn×n in the following way:

(Red(A))i j =

{
Re(aii), j = i,
|ai j|, j , i.

Theorem 3.9. Consider A = [ai j] ∈ Cn×n, such that Red(A) is a PDSDD matrix with all diagonal
elements negative. Then, µ(Red(A)) > 0 and

Λε(A) ⊆ ΘS (A, ε) ⊂ C− f or all 0 < ε < µ(Red(A)), (3.16)

where C− is the open left half plane of C, µ(Red(A)) is defined as in Lemma 3.2, and Λε(A) denotes the
infinity norm ε-pseudospectrum of A.
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Proof. Since Red(A) is a PDSDD matrix, it follows from Lemma 3.2 that µ(Red(A)) > 0. To prove (3.16),
for 0 < ε < µ(Red(A)), it suffices to show that Re(z) < 0 for each z ∈ ΘS (A, ε). It follows from Theorem
3.8 that z ∈ θS (A, ε) or z ∈ θS (A, ε). We only consider the case of z ∈ θS (A, ε), and the case of z ∈ θS (A, ε)
can be proved similarly. Since z ∈ θS (A, ε), it follows that for all i ∈ S , either (i) |aii − z| ≤ rS

i (A) + ε or (ii)
|aii − z| > rS

i (A) + ε for some i ∈ S ; but for some j ∈ S \ {i}, |a j j − z| ≤ r j(A) + ε or(
|aii − z| − rS

i (A) − ε
)(
|a j j − z| − rS

j (A) + |a ji|
)
≤ rS

i (A)(rS
j (A) + |a ji| + ε). (3.17)

Note that

µ(Red(A)) = min { f (Red(A)), g(Red(A))} ,

where

f (Red(A)) := max
i∈S

min
{
|Re(aii)| − rS

i (Red(A)), min
j∈S \{i}

{
µS

i j(Red(A)), |Re(a j j)| − r j(Red(A))
}}

and

g(Red(A)) := max
i∈S

min
{
|Re(aii)| − rS

i (Red(A)), min
j∈S \{i}

{
µS

i j(Red(A)), |Re(a j j)| − r j(Red(A))
}}

with µS
i j(Red(A)) defined as in Lemma 3.2.

For case (i), i.e., |aii − z| ≤ rS
i (A) + ε for all i ∈ S , we have

Re(z) − Re(aii) ≤ |Re(z) − Re(aii)| = |Re(z − aii)| ≤ |z − aii|

≤ rS
i (A) + ε

< rS
i (A) + |Re(aii)| − rS

i (A)
= −Re(aii),

which implies that Re(z) < 0.
For case (ii), i.e., |z − aii| > rS

i (A) + ε for some i ∈ S , if |a j j − z| ≤ r j(A) + ε, then

Re(z) − Re(a j j) ≤ |Re(z) − Re(a j j)| = |Re(z − a j j)| ≤ |z − a j j|

≤ r j(A) + ε
< r j(A) + |Re(a j j)| − r j(A)
= −Re(a j j),

which implies that Re(z) < 0. If (3.17) holds, then

Re(z) − Re(a j j) ≤ |Re(z) − Re(a j j)| = |Re(z − a j j)|
≤ |z − a j j| (3.18)

≤
rS

i (A)(rS
j (A) + |a ji| + ε)

|z − aii| − rS
i (A) − ε

+ rS
j (A) − |a ji|.
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If |z − aii| < |Re(aii)|, then Re(z) − Re(aii) ≤ |z − aii| < |Re(aii)|, which leads to Re(z) < 0. Otherwise, since

0 < ε <
(|Re(aii)| − rS

i (A))(|Re(a j j)| − rS
j (A) + |a ji|) − rS

i (A)(rS
j (A) + |a ji|)

|Re(a j j)| − rS
j (A) + |a ji| + rS

i (A)

≤
(|z − aii| − rS

i (A))(|Re(a j j)| − rS
j (A) + |a ji|) − rS

i (A)(rS
j (A) + |a ji|)

|Re(a j j)| − rS
j (A) + |a ji| + rS

i (A)
,

it follows that

rS
i (A)(rS

j (A) + |a ji| + ε)

|z − aii| − rS
i (A) − ε

+ rS
j (A) − |a ji| < |Re(a j j)|,

which together with (3.18) yields that

Re(z) − Re(a j j) < |Re(a j j)| = −Re(a j j),

and thus Re(z) < 0. This completes the proof. □

The following example shows that the bound µ(Red(A)) in Theorem 3.9 is better than those of [13]
and [30] in some cases.

Example 3.2. Consider the matrix A ∈ R10×10 in [13], where

A =



−78 −7 10 5 10 8 3 5 1 7
4 −95 9 −3 3 5 3 5 5 2
4 4 −58 6 8 1 −3 4 4 6
9 7 8 −87 2 5 6 −8 8 3
0 2 −4 2 −90 1 7 2 6 7

10 9 3 6 −3 −80 8 2 6 9
−9 6 5 4 8 7 −86 7 1 10
7 9 1 7 7 −3 4 −93 11 3

10 8 4 4 3 5 6 4 −45 −5
4 2 2 10 9 9 2 10 −3 −47



.

It follows from [13] that A is a DZ-type matrix, and ε = µ(Red(A)) = 0.66. On the other hand, it
is easy to verify that A is also a PDSDD matrix for S = {1, 2, 3, 4, 9}. Hence, from Theorem 3.9, we
can get a new lower bound for distance to instability ε = µ(Red(A)) = 4.17 and plot the corresponding
pseudospectrum as shown in Figure 1, where Γε(A),D(A, ε), ΘS (A, ε), the pseudospectrum Λε(A) and
the eigenvalues of A are represented by a blue solid boundary, a green dotted boundary, a red solid
boundary, a gray area, and a black “×,” respectively.

As can be seen from Figure 1, the sets Γε(A) of [30] andD(A, ε) of [13] propagate far into the right
half-plane of C, but the localization set ΘS (A, ε) touches the y-axis. This implies that we cannot use
Γε(A) andD(A, ε) to determine the stability of A. However, using the localization set ΘS (A, ε), we can
determine that A is a stable matrix.
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Figure 1. Localization sets for ε-pseudospectrum for ε = µ(Red(A)) = 4.17.

4. Conclusions

This paper proposes a new class of nonsingular H-matrices called PDSDD matrices, which is similar
to but different from S -SDD matrices. By its non-singularity, a new eigenvalue localization set for
matrices is presented, which improves some existing results in [8] and [27]. Furthermore, an infinity
norm bound for the inverse of PDSDD matrices is obtained, which improves the well-known Varah’s
bound for strictly diagonally dominant matrices. Meanwhile, utilizing the proposed infinity norm bound,
a new pseudospectra localization for matrices is given, and a lower bound for distance to instability is
provided as well. In addition, applying the proposed infinity norm bound to explore the error bounds
for linear complementarity problems of PDSDD matrices is also an interesting problem. It is worth
studying in the future.

Acknowledgments

The authors would like to thank the editor and the anonymous referees for their valuable suggestions
and comments. This work was partly supported by the National Natural Science Foundations of China
(61962059 and 31600299), the Young Science and Technology Nova Program of Shaanxi Province
(2022KJXX-01), the Science and Technology Project of Yan’an (2022SLGYGG-007), the Scientific
Research Program Funded by Yunnan Provincial Education Department (2022J0949).

Conflict of interest

The authors declare there are no conflicts of interest.

References
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