In this paper, we seek to solve the Kolmogorov-Petrovskii-Piskunov (KPP) equation by the linear barycentric rational interpolation method (LBRIM). As there are non-linear parts in the KPP equation, three kinds of linearization schemes, direct linearization, partial linearization, Newton linearization, are presented to change the KPP equation into linear equations. With the help of barycentric rational interpolation basis function, matrix equations of three kinds of linearization schemes are obtained from the discrete KPP equation. Convergence rate of LBRIM for solving the KPP equation is also proved. At last, two examples are given to prove the theoretical analysis.
Citation: Jin Li, Yongling Cheng. Barycentric rational interpolation method for solving KPP equation[J]. Electronic Research Archive, 2023, 31(5): 3014-3029. doi: 10.3934/era.2023152
In this paper, we seek to solve the Kolmogorov-Petrovskii-Piskunov (KPP) equation by the linear barycentric rational interpolation method (LBRIM). As there are non-linear parts in the KPP equation, three kinds of linearization schemes, direct linearization, partial linearization, Newton linearization, are presented to change the KPP equation into linear equations. With the help of barycentric rational interpolation basis function, matrix equations of three kinds of linearization schemes are obtained from the discrete KPP equation. Convergence rate of LBRIM for solving the KPP equation is also proved. At last, two examples are given to prove the theoretical analysis.
[1] | Y. Liu, M. Song, H. Li, Y. Li, W. Hou, Containment problem of fifinite-fifield networks with fixed and switching topology, Appl. Math. Comput., 411 (2021), 126519. https://doi.org/10.1016/j.amc.2021.126519 doi: 10.1016/j.amc.2021.126519 |
[2] | Y. Liu, Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations, J. Nonlin. Sci. Appl., 8 (2015), 340–353. https://doi.org/10.22436/JNSA.008.04.07 doi: 10.22436/JNSA.008.04.07 |
[3] | D. Mehdi, S. Ali, Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions, J. Comput. Appl. Math., 230 (2009), 400–410. https://doi.org/10.1016/j.cam.2008.12.011 doi: 10.1016/j.cam.2008.12.011 |
[4] | B. Wongsaijai, T. Aydemir, T. Ak, S. Dhawan, Analytical and numerical techniques for initial-boundary value problems of kolmogorov-petrovsky-piskunov equation, Numer. Methods Partial Differ. Equations, 2020 (2020), 1–18. https://doi.org/10.1002/num.22693 doi: 10.1002/num.22693 |
[5] | J. E. Macías-Díaz, A. Puri, An explicit positivity-preserving finite-difference scheme for the classical Fisher-Kolmogorov-Petrovsky-Piscounov equation, Appl. Math. Comput., 218 (2012), 5829–5837. https://doi.org/10.1016/j.amc.2011.11.064 doi: 10.1016/j.amc.2011.11.064 |
[6] | W. Qin, D. Ding, X. Ding, Two boundedness and monotonicity preserving methods for a generalized Fisher-KPP equation, Appl. Math. Comput., 252 (2015), 552–567. https://doi.org/10.1016/j.amc.2014.12.043 doi: 10.1016/j.amc.2014.12.043 |
[7] | M. Izadi, A second-order accurate finite-difference scheme for the classical Fisher-Kolmogorov-Petrovsky-Piscounov equation, J. Inf. Optim. Sci., 42 (2021), 431–448. https://doi.org/10.1080/02522667.2019.1696919 doi: 10.1080/02522667.2019.1696919 |
[8] | J. E. Macías-Díaz, I. E. Medina-Ramírez, A. Puri, Numerical treatment of the spherically symmetric solutions of a generalized Fisher-Kolmogorov-Petrovsky-Piscounov equation, J. Comput. Appl. Math., 231 (2009), 851–868. https://doi.org/10.1016/j.cam.2009.05.008 doi: 10.1016/j.cam.2009.05.008 |
[9] | C. Y. Qin, S. F. Tian, X. B. Wang, L. Zou, T. T. Zhang, Lie symmetry analysis, conservation laws and analytic solutions of the time fractional Kolmogorov-Petrovskii-Piskunov equation, Chin. J. Phys., 56 (2018), 1734–1742. https://doi.org/10.1016/j.cjph.2018.05.002 doi: 10.1016/j.cjph.2018.05.002 |
[10] | P. Veeresha, D. G. Prakasha, D. Baleanu, An efficient numerical technique for the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equation, Mathematics, 7 (2019), 1–18. https://doi.org/10.3390/math7030265 doi: 10.3390/math7030265 |
[11] | X. L. Li, Theoretical analysis of the reproducing kernel gradient smoothing integration technique in galerkin meshless methods, J. Comp. Math., 41 (2023), 503–526. https://doi.org/10.4208/jcm.2201-m2021-0361 doi: 10.4208/jcm.2201-m2021-0361 |
[12] | J. Wan, X. L. Li, Analysis of a superconvergent recursive moving least squares approximation, Appl. Math. Lett., 133, (2022), 108223 https://doi.org/10.1016/j.aml.2022.108223 doi: 10.1016/j.aml.2022.108223 |
[13] | M. Floater, H. Kai, Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math., 107 (2007), 315–331. https://doi.org/10.1007/s00211-007-0093-y doi: 10.1007/s00211-007-0093-y |
[14] | G. Klein, J. Berrut, Linear rational finite differences from derivatives of barycentric rational interpolants, SIAM J. Numer. Anal., 50 (2012), 643–656. https://doi.org/10.1137/110827156 doi: 10.1137/110827156 |
[15] | G. Klein, J. Berrut, Linear barycentric rational quadrature, BIT Numer. Math., 52 (2012), 407–424. https://doi.org/10.1007/s10543-011-0357-x doi: 10.1007/s10543-011-0357-x |
[16] | J. Berrut, S. Hosseini, G. Klein, The linear barycentric rational quadrature method for Volterra integral equations, SIAM J. Sci. Comput., 36, (2014), 105–123. https://doi.org/10.1137/120904020 doi: 10.1137/120904020 |
[17] | P. Berrut, G. Klein. Recent advances in linear barycentric rational interpolation, J. Comput. Appl. Math., 259 (2014), 95–107. https://doi.org/10.1016/j.cam.2013.03.044 doi: 10.1016/j.cam.2013.03.044 |
[18] | E. Cirillo, K. Hormann, On the Lebesgue constant of barycentric rational Hermite interpolants at uniform partition, J. Comput. Appl. Math., 349 (2019), 292–301. https://doi.org/10.13140/RG.2.2.34932.65923 doi: 10.13140/RG.2.2.34932.65923 |
[19] | S. Li, Z. Q. Wang, High Precision Meshless barycentric Interpolation Collocation Method–Algorithmic Program and Engineering Application, Science Publishing, 2012. |
[20] | Z. Q. Wang, S. Li, Barycentric Interpolation Collocation Method for Nonlinear Problems, National Defense Industry Press, Beijing, 2015. |
[21] | Z. Q. Wang, Z. K. Xu, J. Li, Mixed barycentric interpolation collocation method of displacement-pressure for incompressible plane elastic problems, Chin. J. Appl. Mech., 35 (2018), 195–201. https://doi.org/10.11776/cjam.35.03.D011 doi: 10.11776/cjam.35.03.D011 |
[22] | Z. Q. Wang, L. Zhang, Z. K. Xu, J. Li, Barycentric interpolation collocation method based on mixed displacement-stress formulation for solving plane elastic problems, Chin. J. Appl. Mech., 35 (2018), 304–309. https://doi.org/10.11776/cjam.35.02.D002 doi: 10.11776/cjam.35.02.D002 |
[23] | J. Li, Y. Cheng, Linear barycentric rational collocation method for solving second-order Volterra integro-differential equation, Comput. Appl. Math., 39 (2020). https://doi.org/10.1007/s40314-020-1114-z doi: 10.1007/s40314-020-1114-z |
[24] | J. Li, Y. Cheng, Linear barycentric rational collocation method for solving heat conduction equation, Numer. Methods Partial Differ. Equations, 37 (2021), 533–545. https://doi.org/10.1002/num.22539 doi: 10.1002/num.22539 |
[25] | J. Li, Y. Cheng, Barycentric rational method for solving biharmonic equation by depression of order, Numer. Methods Partial Differ. Equations, 37 (2021), 1993–2007. https://doi.org/10.1002/num.22638 doi: 10.1002/num.22638 |
[26] | J. Li, Linear barycentric rational collocation method for solving biharmonic equation, Demonstr. Math., 55 (2022), 587–603. https://doi.org/10.1515/dema-2022-0151 doi: 10.1515/dema-2022-0151 |
[27] | J. Li, X. N. Su, K. Y. Zhao, Barycentric interpolation collocation algorithm to solve fractional differential equations, Math. Comput. Simul., 205 (2023), 340–367. https://doi.org/10.1016/j.matcom.2022.10.005 doi: 10.1016/j.matcom.2022.10.005 |
[28] | J. Li, Y. L. Cheng, Z. C. Li, Z. K. Tian, Linear barycentric rational collocation method for solving generalized Poisson equations, Math. Biosci. Eng., 20 (2023), 4782–4797. https://doi.org/10.3934/mbe.2023221 doi: 10.3934/mbe.2023221 |
[29] | J. Li, Barycentric rational collocation method for fractional reaction-diffusion equation, AIMS Math., 8 (2023), 9009–9026. https://doi.org/10.3934/math.2023451 doi: 10.3934/math.2023451 |