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Abstract: In this paper, we seek to solve the Kolmogorov-Petrovskii-Piskunov (KPP) equation by
the linear barycentric rational interpolation method (LBRIM). As there are non-linear parts in the KPP
equation, three kinds of linearization schemes, direct linearization, partial linearization, Newton lin-
earization, are presented to change the KPP equation into linear equations. With the help of barycentric
rational interpolation basis function, matrix equations of three kinds of linearization schemes are ob-
tained from the discrete KPP equation. Convergence rate of LBRIM for solving the KPP equation is
also proved. At last, two examples are given to prove the theoretical analysis.

Keywords: barycentric rational interpolation; collocation method; Kolmogorov-Petrovskii-Piskunov
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1. Introduction

Lots of physical phenomena can be expressed by non-linear partial differential equations (PDE)
[1,2] and nonlinear Klein-Gordon equation [3], including inter alia, dissipative and dispersive PDE. In
this paper, we consider the KPP equation

∂φ

∂t
−
∂2φ

∂s2 + αφ + βφ2 + γφ3 = 0, 0 ≤ s ≤ 1, 0 ≤ t ≤ T, γ > 0 (1.1)

φ(0, t) = 0, φ(1, t) = 0, 0 < t < T (1.2)

where α, β, γ ∈ R are constant.
The KPP equation (1.1) was named after the Russian mathematicians Kolmogorov, Petrovsky, and

Piskunov.
In the work of [4], modified extended tanh method was used to solve the KPP equation, and linear

finite difference (FD) methods were presented to investigate numerical solution of the KPP equation.
Furthermore, stability of the numerical scheme was proved. Explicit FD schemes [5] for the classical
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Fisher KPP equation were explored, and stability analysis of the FD schemes was proved under choices
of the model and numerical parameters. Generalized Fisher-KPP equation is solved by semi-explicit
and implicit FD method [6], and stability and convergence of the proposed semi-explicit and implicit
methods were also given, respectively. Based on the classical C-N scheme, classical Fisher-KPP equa-
tion [7] was studied, second-order accurate numerical estimates of time and space were obtained, and
then stability, consistency, and (therefore) convergence of the proposed method were shown. Radially
symmetric solutions of the generalized Fisher-KPP equation were presented in [8], analytical predic-
tion was provided for the Heaviside equation. Multiple-term fractional KPP equation was investigated
by Lie symmetry analysis method. Convergence analysis of exact power series solutions was also
proposed in [9]. In [10], the fractional KPP equation was solved by q-homotopy analysis transform
method (q-HATM), then uniqueness and convergence analysis of q-HATM the projected problem was
also presented. In [11], numerical integration of the reproducing kernel gradient smoothing integration
were constructed and the existence, uniqueness and error estimates of the solution of Galerkin meshless
methods were established. In reference [12], recursive moving least squares (MLS) approximation was
constructed in meshless methods. Properties and theoretical error of the recursive MLS approximation
are analyzed.

In order to avoid the Runge phenomenon, lots of methods have been developed to overcome it.
Among them, barycentric interpolation was developed in the 1960s. In recent years, linear rational
interpolation (LRI) was proposed by Floater et al. [13–15], and error of linear rational interpola-
tion [16–18] was also proved. The barycentric interpolation collocation method (BICM) has been
developed by Wang et al. [19, 20], and the algorithm of BICM has been used for linear and non-linear
problems [21, 22]. In recent research, the Volterra integro-differential equation (VIDE) [23], heat
equation (HE) [24], biharmonic equation (BE) [25], telegraph equation (TE) [26], fractional differen-
tial equations [27], generalized Poisson equations [28] and fractional reaction-diffusion equation [29]
have been studied by the linear barycentric rational interpolation collocation method (LBRIM), and
their convergence rates were also proved.

In this paper, LBRIM has been used to solve the KPP equation with the matrix equation, which can
be obtained easily. By three kinds of linearization, including direct linearization, partial linearization
and Newton linearization, the nonlinear part of the KPP equation is translated into the linear part.
A matrix equation of the linearization scheme is constructed from the linear KPP equation. Then,
convergence rate of LBRIM of the discrete KPP equation is also given. At last, two numerical examples
are presented to validate our theoretical analysis.

2. Linearization for KPP equation

In the following, the KPP equation is changed into the linear equation by linearization scheme,
including direct linearization, partial linearization and Newton linearization.

2.1. Direct linearization

In the following KPP equation, the nonlinear term βφ2 + γφ3 is changed to βφ2
0 + γφ3

0:

∂φ

∂t
−
∂2φ

∂s2 + αφ + βφ2
0 + γφ3

0 = 0, (2.1)
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Then we get the linear scheme as

∂φk

∂t
−
∂2φk

∂s2 + αφk = −βφ2
k−1 − γφ

3
k−1, a ≤ s ≤ b, 0 ≤ t ≤ T. (2.2)

2.2. Partial linearization

By the partial linearization, nonlinear term βφ2 + γφ3 is changed to φ(βφ0 + γφ2
0):

∂φ

∂t
−
∂2φ

∂s2 + αφ + φ(βφ0 + γφ2
0) = 0 (2.3)

Then, we have

∂φk

∂t
−
∂2φk

∂s2 + αφk + (βφk−1 + γφ2
k−1)φk = 0, a ≤ s ≤ b, 0 ≤ t ≤ T. (2.4)

2.3. Newton linearization

For the nonlinear term, by the Taylor expansion βφ2 + γφ3 = (βφ2
0 + γφ3

0) + (2βφ0 + 3γφ2
0)(φ − φ0),

we have

∂φ

∂t
−
∂2φ

∂s2 + αφ + φ(2βφ0 + 3γφ2
0) = βφ2

0 + 2γφ3
0. (2.5)

Then, we have

∂φk

∂t
−
∂2φk

∂s2 + αφk + (2βφk−1 + 3γφ2
k−1)φk = βφ2

k−1 + 2γφ3
k−1, (2.6)

where k = 1, 2, · · · , .

3. Differentiation matrices of KPP equation

Interval [a, b] is divided into a = s0 < s1 < s2 < · · · < sm−1 < sm = b, for uniform partition with
hs = b−a

m and nonuniform partition to be the second kind of Chebyshev point x = cos((0 : m)′π/m), t =

cos((0 : n)′π/n). Time [0,T ] is divided into 0 = t0 < t1 < t2 < · · · < tn−1 < tn = T and ht = T
n to be a

uniform partition. Then, we take φnm(s, t) to approximate φ(s, t) as

φnm(s, t) =

m∑
i=0

n∑
j=0

ri(s)r j(t)φi j (3.1)

where φi j = φ(si, t j).

ri(s) =

wi

s − si
m∑

j=0

w j

s − s j

, r j(t) =

w j

t − t j
n∑

i=0

wi

t − ti

(3.2)
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is the barycentric interpolation basis [26], and

wi =
∑
k∈Ji

(−1)k
k+ds∏

j=k, j,i

1
si − s j

, w j =
∑
k∈J j

(−1)k
k+dt∏

i=k,k, j

1
t j − ti

(3.3)

where Ji = {k ∈ I, i − ds ≤ k ≤ i}, I = {0, 1, · · · ,m − ds} (see [26]). We get the barycentric rational
interpolation method (BRIM).

For the case

wi =
1∏

i,k (si − sk)
,w j =

1∏
j,k

(
t j − tk

) , (3.4)

we get the barycentric Lagrange interpolation methods (BLIM).
So

r′j (si) =
w j/wi

si − s j
, j , i, r′i (si) = −

∑
j,i

r′j (si) , (3.5)

r
′′

j (si) = k

r′i (si) r′i
(
s j

)
−

r
′

i

(
s j

)
si − s j

 , j , i, (3.6)

r
′′

i (si) = −
∑
j,i

r
′′

j (si) (3.7)

Then, we have

D(0,1)
i j = r′i

(
t j

)
, (3.8)

D(1,0)
i j = r′i

(
s j

)
, (3.9)

D(2,0)
i j = r(2)

i

(
s j

)
. (3.10)

3.1. Matrix equation of direct linearization

Combining (3.1) and (2.2), we have[
Im ⊗D

(0,1) +D(2,0) ⊗ In + αIm ⊗ In

]
φk = −diag(βφ2

k−1 + γφ3
k−1), (3.11)

and then we have

Lφk = Ψk−1 (3.12)

where
L = Im ⊗D

(0,1) +D(2,0) ⊗ In + αIm ⊗ In,

Ψk−1 = −diag(βφ2
k−1 + γφ3

k−1),

and ⊗ is the Kronecher product [24].
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3.2. Matrix equation of partial linearization

Combining (3.1) and (2.4), we have[
Im ⊗D

(0,1) +D(2,0) ⊗ In + αIm ⊗ In + diag(βφ2
k−1 + γφ3

k−1)
]
φk = 0, (3.13)

n = 1, 2, · · · , and then we have

Lφk = 0 (3.14)

where L = Im ⊗D
(0,1) +D(2,0) ⊗ In + αIm ⊗ In + diag(βφ2

k−1 + γφ3
k−1).

3.3. Matrix equation of Newton linearization

Combining (3.1) and (2.6), we have[
Im ⊗D

(0,1) +D(2,0) ⊗ In + αIm ⊗ In + diag(2βφ2
k−1 + 3γφ3

k−1)
]
φk

= diag(βφ2
k−1 + γφ3

k−1), (3.15)

and then we get

Lφk = Ψk−1 (3.16)

where
L = Im ⊗D

(0,1) +D(2,0) ⊗ In + αIm ⊗ In + diag(2βφ2
k−1 + 3γφ3

k−1),

and
Ψn−1 = diag(βφ2

k−1 + γφ3
k−1).

The boundary condition can be solved by substitution method, additional method or elimination
method; see [20]. In the following, we adopt the substitution method and additional method.

4. Convergence rate of LBRIM for KPP equation

In this part, error estimate of KPP equation is given with rn(s) =

n∑
i=0

ri(s)φi to replace φ(s), where

ri(s) is defined as in (3.2), and φi = φ(si). We also define

e(s) := φ(s) − rn(s) = (s − si) · · · (s − si+d)φ [si, si+1, . . . , si+d, s] . (4.1)

Then, we have the following.

Lemma 1. For e(s) defined by (4.1) and φ(s) ∈ Cd+2[a, b],∣∣∣e(k)(s)
∣∣∣ ≤ Chd−k+1, k = 0, 1, · · · . (4.2)
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For KPP equation, rational interpolation function of φ(s, t) is defined as rmn(s, t),

rmn(s, t) =

m+ds∑
i=0

n+dt∑
j=0

wi, j

(s − si)
(
t − t j

)φi, j

m+ds∑
i=0

n+dt∑
j=0

wi, j

(s − si)
(
t − t j

) (4.3)

where

wi, j = (−1)i−ds+ j−dt
∑
k1∈Ji

k1+ds∏
h1=k1,h1, j

1∣∣∣si − sh1

∣∣∣ ∑k2∈Ji

k2+dt∏
h2=k2,h2, j

1∣∣∣t j − th2

∣∣∣ . (4.4)

We define e(s, t) to be the error of φ(s, t) as

e(s, t) : = φ(s, t) − rmn(s, t) (4.5)
= (s − si) · · ·

(
s − si+ds

)
φ
[
si, si+1, . . . , si+d1 , s, t

]
+

(
t − t j

)
· · ·

(
t − t j+dt

)
φ
[
s, t j, t j+1, . . . , t j+d2 , t

]
.

With similar analysis to Lemma 1, we have the following.

Theorem 1. For e(s, t) defined as (4.5) and φ(s, t) ∈ Cds+2[a, b] ×Cdt+2[0,T ], we have∣∣∣e(k1,k2) (s, t)
∣∣∣ ≤ C(hds−k1+1

s + hdt−k2+1
t ), k1, k2 = 0, 1, · · · . (4.6)

We take the direct linearization of the KPP equation to prove the convergence rate. Let φ(sm, tn) be
the approximate function of φ(s, t) and L be a bounded operator. Then,

Lφ(sm, tn) = 0, (4.7)

and

lim
m,n→∞

Lφ(sm, tn) = 0. (4.8)

Then, we get the following.

Theorem 2. For φ(sm, tn) : Lφ(sm, tn) = 0 and L defined as (4.7),

|φ(s, t) − φ(sm, tn)| ≤ C(hds−1 + τdt).

Proof. By (4.7), we have

Lφ(s, t) − Lφ(sm, tn)

=
∂φ(s, t)
∂t

−
∂2φ(s, t)
∂s2 + αφ(s, t) + βφ2

0(s, t) + γφ3
0(s, t)

−

[
∂φ(sm, tn)

∂t
−
∂2φ(sm, tn)

∂s2 + αφ(sm, tn) + βφ2
0(sm, tn) + γφ3

0(sm, tn)
]

=
∂φ

∂t
−
∂φ

∂t
(sm, tn) +

∂2φ

∂s2 −
∂2φ

∂s2 (sm, tn)

+
[
αφ(s, t) + βφ2

0(s, t) + γφ3
0(s, t) − (αφ(sm, tn) + βφ2

0(sm, tn) + γφ3
0(sm, tn))

]
:= E1(s, t) + E2(s, t) + E3(s, t).

(4.9)

Electronic Research Archive Volume 31, Issue 5, 3014–3029.



3020

Here
E1(s, t) =

∂φ

∂t
−
∂φ

∂t
(sm, tn),

E2(s, t) =
∂2φ

∂s2 −
∂2φ

∂s2 (sm, tn),

E3(s, t) = αφ(s, t) + βφ2
0(s, t) + γφ3

0(s, t) − (αφ(sm, tn) + βφ2
0(sm, tn) + γφ3

0(sm, tn)).

For E2(s, t), we have

E2(s, t) =
∂2φ

∂s2 −
∂2φ

∂s2 (sm, tn)

=
∂2φ

∂s2 −
∂2φ

∂s2 (sm, t) +
∂2φ

∂s2 (sm, t) −
∂2φ

∂s2 (sm, tn)

=

m−ds∑
i=0

(−1)i∂
2φ

∂s2 [si, si+1, . . . , si+d1 , sm, t]

m−ds∑
i=0

λi(s)

+

n−dt∑
j=0

(−1) j∂
2φ

∂s2 [t j, t j+1, . . . , t j+d2 , sm, tn]

n−dt∑
j=0

λ j(t)

=
∂2e
∂s2 (sm, t) +

∂2e
∂s2 (sm, tn).

For E2(s, t), we get

|E2(s, t)| ≤

∣∣∣∣∣∣∂2e
∂s2 (sm, x) +

∂2e
∂s2 (sm, tn)

∣∣∣∣∣∣ ≤ C(hds−1 + τdt+1). (4.10)

Then, we have

|E1(s, t)| ≤
∣∣∣∣∣∂e
∂t

(sm, t) +
∂e
∂t

(sm, tn)
∣∣∣∣∣ ≤ C(hds+1 + τdt). (4.11)

Similarly, for E3(s, t) we have

|E3(s, t)| ≤ C(hds+1 + τdt+1). (4.12)

Combining (4.9), (4.11), (4.12) together, the proof of Theorem 2 is completed.

5. Numerical examples

In this part, two examples are presented to test the theorem.

Example 1. Consider the KPP equation

∂φ

∂t
−
∂2φ

∂s2 + αφ + βφ2 + γφ3 = 0

Electronic Research Archive Volume 31, Issue 5, 3014–3029.
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with the analysis solution

φ(s, t) = −
1
3
−

√
8 + 12b

3
+
√
−2b tanh

√−b
s −

√
8 + 12b

6
t


and under the condition −8(1 + 6b)
√

4 + 6b − 11 = 0, with the initial condition

φ(s, 0) = −
1
3
−

√
8 + 12b

3
+
√
−2b tanh

(√
−bx

)
and boundary condition

φ(−40, t) = φ−, φ(80, t) = φ+,

with b = − 3
16 −

√
5

16 and

φ− = lim
s→−∞

−1
3
−

√
8 + 12b

3
+
√
−2b tanh

(√
−bx

) ,

φ+ = lim
s→∞

−1
3
−

√
8 + 12b

3
+
√
−2b tanh

(√
−bx

) .
In Figures 1–3, errors of direct linearization, partial linearization, Newton linearization with

m = n = 10, ds = dt = 7 for the KPP equation by rational interpolation collocation methods are
presented, respectively. From the figures, we know that the precision can reach to 10−10 for three kinds
of linearization.
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Figure 1. Errors of direct linearization with m = n = 16, d1 = d2 = 7, [a, b] = [0, 1] in
Example 4.1. (a) uniform, (b) nonuniform.
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Figure 2. Errors of partial linearization with m = n = 10, d1 = d2 = 7, [a, b] = [0, 1] in
Example 4.1. (a) uniform, (b) nonuniform.

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−5

0

5

10

15

20

x 10
−9

xt

uc −
ue

(a) uniform

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−3

−2

−1

0

1

2

x 10
−10

xt

uc −
ue

(b) nonuniform

Figure 3. Errors of Newton linearization with rational m = n = 10, d1 = d2 = 7 in Example
4.1. (a) uniform, (b) nonuniform.

Table 1. Iteration ordinal number of BLIM and LBRIM for KPP equation with m = n = 12.

LBIM LBRIM
linearization uniform nonuniform uniform nonuniform
direct 4.3391e-11 9 1.6098e-11 9 3.1678e-09 9 1.5768e-10 9
partial 4.3557e-11 10 3.6622e-12 10 3.1678e-09 10 1.5770e-10 10
Newton 4.3636e-11 5 1.0834e-12 5 3.1678e-09 5 1.5772e-10 5

In Table 1, iteration ordinal numbers of BLIM and LBRIM for KPP equation with m = n = 12
are presented under e = 10−10, while the boundary condition deals with the method of substitution.
From Table 1, we know that iteration ordinal number of Newton linearization is less than other direct
linearization methods and partial linearization.
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Figure 4. Errors of Newton linearization with LBCM m = n = 10, in Example 4.1. (a)
uniform, (b) nonuniform.

In Figure 4, errors of Newton linearization with LBCM m = n = 10 for KPP equation by Lagrange
interpolation collocation methods are presented. Compared with Newton linearization under rational
interpolation collocation method, we can also get high accuracy. From Figure 4, we know that the
precision can also reach 10−10 for uniform and nonuniform mesh.

Table 2. Errors of Newton linearization for α, β, γ under uniform with m = n = 12,
ds = dt = 9.

α = −β = −1 β = −γ = 1 α = −γ = −1
-5 2.4195e-08 2.7605e-10 2.9706e-10
-2 1.4645e-11 1.1929e-11 4.3791e-11
1 6.2681e-12 1.0389e-11 6.2681e-12
2 4.5979e-12 2.2771e-12 2.2429e-12
5 4.7751e-12 1.3827e-12 3.7885e-12

In Table 2, errors of Newton linearization for α, β, γ under uniform with m = n = 12, ds = dt = 9
are presented. In the first column, with α = −β = −1, errors for γ = −5,−2, 1, 2, 5 are presented
and can reach 10−12. Meanwhile, for the second and third column, errors for α, β = −5,−2, 1, 2, 5 are
presented respectively, and the accuracy can also reach 10−12.

In the following example, we take α = −1, β = 1, γ = 1 to test our numerical algorithm.

Table 3. Errors of BLIM for KPP equation with m = n = 16.

method of substitution additional method
linearization uniform nonuniform uniform nonuniform
direct 6.7391e-09 5.9533e-12 1.7651e-10 2.7792e-12
partial 4.0553e-09 1.3818e-11 3.1325e-10 1.3701e-11
Newton 5.2930e-09 3.6027e-12 3.5777e-11 8.2138e-14

In Tables 3 and 4, by BLIM and LBRIM, three kinds of linearization methods, direct, partial and
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Newton linearization, are used to solve the KPP equation with boundary condition dealing with the
method of substitution and the additional method, respectively. Errors show that the precisions under
uniform and nonuniform are all the same with m = n = 16 in Table 3 and m = n = 16, ds = dt = 7 in
Table 4.

Table 4. Errors of LBRIM for KPP equation with m = n = 16, ds = dt = 7.

method of substitution additional method
linearization uniform nonuniform uniform nonuniform
direct 3.0396e-10 1.2940e-10 2.5244e-09 5.6023e-11
partial 3.1112e-10 1.3056e-10 2.5176e-09 5.7818e-11
Newton 3.7006e-10 1.3056e-10 2.5255e-09 5.5790e-11

Table 5. Errors of Newton linearization for t.

uniform nonuniform
t (8, 8)ds = dt = 6 (16, 16)ds = dt = 12 (8, 8)ds = dt = 7 (16, 16)ds = dt = 15
0.1 2.7194e-06 4.2786e-11 2.5418e-06 6.3038e-13
0.9 2.1531e-06 3.0908e-11 2.8847e-06 1.6875e-14
1 1.0817e-07 3.7229e-11 1.3454e-07 2.8311e-14
5 1.0162e-07 1.1727e-11 1.6906e-08 5.9952e-14
10 2.8122e-06 3.6257e-09 6.4357e-07 4.7354e-11
15 5.8758e-06 2.7142e-07 2.3034e-06 4.3082e-09

In Table 5, errors of Newton linearization for t = 0.1, 0.9, 1, 5, 10, 15 are presented under the uni-
form and nonuniform with m = n = 8, 16 and ds = dt = 6, 12, respectively. From Table 5, as the time
variable becomes large, with proper choosing of m, n and ds, dt, the accuracy precision can reach 10−09

which means our method is still useful.

In the following table, direct linearization is chosen to present numerical results. From Tables
6 and 7, errors of direct linearization for uniform dt = 7 with different ds values are given, and the
convergence rate is O(hds − 1). From Table 7, with space variable s, ds = 7, the convergence rate is
O(hdt), which agrees with our theorem.

Table 6. Errors of direct linearization for uniform for dt = 7.

m, n ds = 2 hα ds = 3 hα ds = 4 hα ds = 5 hα

8 4.7077e-03 6.1377e-04 6.1907e-05 2.2449e-05
12 2.4779e-03 1.5829 2.0398e-04 2.7168 1.4464e-05 3.5860 1.8462e-06 6.1612
16 1.8896e-03 0.9422 8.1190e-05 3.2023 6.9051e-06 2.5701 1.9952e-07 7.7340
20 1.5075e-03 1.0124 3.8071e-05 3.3939 3.0201e-06 3.7060 3.1135e-08 8.3246
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Table 7. Errors of direct linearization for uniform for ds = 7.

m, n dt = 2 τα dt = 3 τα dt = 4 τα dt = 5 τα

8 3.9953e-07 1.2610e-07 1.2893e-07 2.8790e-07
12 1.6949e-07 2.1148 1.9734e-08 4.5744 8.3939e-10 12.416 8.8306e-10 14.272
16 8.9539e-08 2.2182 8.3374e-09 2.9950 1.0957e-10 7.0778 4.7227e-11 10.179
20 6.4086e-08 1.4988 5.1602e-09 2.1501 4.5771e-11 3.9117 8.6414e-12 7.6112

For Tables 8 and 9, the errors of Chebyshev partition for direct linearization with s and t are pre-
sented. For dt = 7, the convergence rate is O(hds) in Table 8, while in Table 9, the convergence rate is
O(hdt), which agrees with our theorem.

Table 8. Errors of direct linearization for Chebyshev partition for dt = 7.

m, n ds = 2 hα ds = 3 hα ds = 4 hα ds = 5 hα

8 1.9411e-03 3.2955e-04 5.7140e-05 2.0361e-05
12 4.0048e-04 3.8927 4.5059e-05 4.9073 3.6799e-06 6.7641 1.1361e-07 12.797
16 2.2681e-04 1.9764 1.3156e-05 4.2793 2.6268e-07 9.1759 4.0012e-09 11.631
20 1.2927e-04 2.5195 8.7324e-06 1.8367 9.3088e-08 4.6489 7.9731e-10 7.2290

Table 9. Errors of direct linearization for Chebyshev partition for ds = 7.

m, n dt = 2 τα dt = 3 τα dt = 4 τα dt = 5 τα

8 5.5468e-07 4.0183e-07 3.6812e-07 5.4111e-07
12 8.3133e-08 4.6809 8.8031e-09 9.4236 7.5400e-10 15.268 4.1898e-10 17.668
16 4.5578e-08 2.0892 4.6599e-09 2.2111 3.3539e-11 10.820 2.6583e-11 9.5853
20 3.2921e-08 1.4578 2.5339e-09 2.7303 1.7307e-11 2.9649 1.6798e-12 12.376

In the following table, direct linearization is chosen to present numerical results. From Tables 10
and 11, errors of Newton linearization for uniform partition dt = 7 with different ds values are given,
and the convergence rate is O(hds − 1). From Table 10, with space variable s, ds = 7, the convergence
rate is O(hdt), which agrees with our theorem.

Table 10. Errors of Newton linearization for uniform for dt = 7.

m, n ds = 2 hα ds = 3 hα ds = 4 hα ds = 5 hα

8 4.3818e-03 6.1705e-04 6.2256e-05 2.2025e-05
12 2.5447e-03 1.3402 2.0687e-04 2.6953 1.5769e-05 3.3868 1.8370e-06 6.1264
16 1.9287e-03 0.9635 8.1387e-05 3.2427 7.3540e-06 2.6515 1.8067e-07 8.0617
20 1.5338e-03 1.0268 3.8099e-05 3.4016 3.1384e-06 3.8160 2.6633e-08 8.5798
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Table 11. Errors of Newton linearization for uniform for ds = 7.

m, n dt = 2 τα dt = 3 τα dt = 4 τα dt = 5 τα

8 4.2023e-07 1.4489e-07 1.3869e-07 2.8207e-07
12 1.7038e-07 2.2265 1.9678e-08 4.9238 8.4558e-10 12.578 9.3671e-10 14.077
16 8.9888e-08 2.2228 8.3237e-09 2.9908 1.1259e-10 7.0085 5.6174e-11 9.7813
20 6.3712e-08 1.5424 5.1515e-09 2.1503 4.6064e-11 4.0054 9.4698e-12 7.9785

For Tables 12 and 13, the errors of Chebyshev partition for Newton linearization with s and t are
presented. For dt = 7, the convergence rate is O(hds) in Table 12, while in Table 13, the convergence
rate is O(hds), which agrees with our theorem.

Table 12. Errors of Newton linearization for Chebyshev partition for dt = 7.

m, n ds = 2 hα ds = 3 hα ds = 4 hα ds = 5 hα

8 1.9012e-03 3.4523e-04 5.7649e-05 1.9973e-05
12 4.0168e-04 3.8341 4.5180e-05 5.0154 3.6854e-06 6.7823 1.1597e-07 12.698
16 2.2820e-04 1.9655 1.3216e-05 4.2727 2.6512e-07 9.1488 3.1861e-09 12.495
20 1.2919e-04 2.5495 8.7313e-06 1.8577 8.1146e-08 5.3057 7.2055e-10 6.6618

Table 13. Errors of Newton linearization for Chebyshev partition for ds = 7.

m, n dt = 2 τα dt = 3 τα dt = 4 τα dt = 5 τα

8 5.9248e-07 3.9805e-07 4.1713e-07 6.2982e-07
12 8.4035e-08 4.8169 8.8160e-09 9.3966 4.0629e-10 17.102 4.4462e-10 17.895
16 4.4469e-08 2.2123 4.5532e-09 2.2968 3.0165e-11 9.0391 2.5477e-11 9.9396
20 3.2433e-08 1.4144 2.5000e-09 2.6867 1.6915e-11 2.5924 2.2268e-12 10.922

Example 2. Consider the KPP equation

∂φ

∂t
− γ

∂2φ

∂s2 − φ + φ2 + φ3 = 0

with the initial condition
φ(s, 0) = sin(2πx), x ∈ [0, 1],

and boundary condition
φ(0, t) = φ(1, t) = 0, (0 ≤ t ≤ T ).

In this example, there are no exact solutions under this initial condition and boundary condition.
We take the error of iteration as e = 10−10, and the numerical value of error of iteration is less than
e = 10−10, we get the numerical solution. Numerical solutions of direct linearization with m = n =

19, d1 = d2 = 6 under uniform and nonuniform partitions for T = 0,T = 0.01,T = 0.02,T = 0.03,T =

0.04,T = 0.05 are shown in Figure 5.
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Figure 5. Numerical solutions of direct linearization with m = n = 19, d1 = d2 = 6, in
Example 4.2. (a) uniform partition, (b) nonuniform partition.

6. Concluding remarks

In this paper, LBRIM is presented to solve (1+1) dimensional KPP equation. Three kinds of lin-
earization methods are taken to translate the nonlinear part of the KPP equation into a linear part. A
matrix equation of the discrete KPP equation is obtained from corresponding linearization schemes.
Convergence rate of LBRIM is also presented. For the (2+1) or (3+1) dimensional KPP equation, the
fractional time KPP equation can also be solved by LBRIM, we will investigate this case in the future
paper.
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