Let $ \mathscr{B} $ be an extriangulated category which admits a cluster tilting subcategory $ \mathcal{T} $. We firstly introduce notions of $ \mathcal{T} $-cluster tilting subcategories and related subcategories. Then we prove there is a correspondence between $ \mathcal{T} $-cluster tilting subcategories of $ \mathscr{B} $ and support $ \tau $-tilting pairs of $ mod \underline{\Omega(\mathcal{T}}) $, which recovers several main results from the literature. Note that the generalization is nontrivial and we give a new proof technique.
Citation: Zhen Zhang, Shance Wang. Relative cluster tilting subcategories in an extriangulated category[J]. Electronic Research Archive, 2023, 31(3): 1613-1624. doi: 10.3934/era.2023083
Let $ \mathscr{B} $ be an extriangulated category which admits a cluster tilting subcategory $ \mathcal{T} $. We firstly introduce notions of $ \mathcal{T} $-cluster tilting subcategories and related subcategories. Then we prove there is a correspondence between $ \mathcal{T} $-cluster tilting subcategories of $ \mathscr{B} $ and support $ \tau $-tilting pairs of $ mod \underline{\Omega(\mathcal{T}}) $, which recovers several main results from the literature. Note that the generalization is nontrivial and we give a new proof technique.
[1] | B. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, Adv. Math., 204 (2006), 572–618. https://doi.org/10.1016/j.aim.2005.06.003 doi: 10.1016/j.aim.2005.06.003 |
[2] | P. Caldero, F. Chapoton, R. Schiffler, Quivers with relations arising from clusters (An case), Trans. Am. Math. Soc., 358 (2006), 1347–1364. https://doi.org/10.1090/s0002-9947-05-03753-0 doi: 10.1090/s0002-9947-05-03753-0 |
[3] | H. Nakaoka, Y. Palu, Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. Geom. Differ. Categ., 60 (2019), 117–193. |
[4] | Y. Liu, H. Nakaoka, Hearts of twin cotorsion pairs on extriangulated categories, J. Algebra, 528 (2019), 96–149. https://doi.org/10.1016/j.jalgebra.2019.03.005 doi: 10.1016/j.jalgebra.2019.03.005 |
[5] | T. Zhao, Z. Huang, Phantom ideals and cotorsion pairs in extriangulated categories, Taiwan. J. Math., 23 (2019), 29–61. https://doi.org/10.11650/TJM/180504 doi: 10.11650/TJM/180504 |
[6] | P. Zhou, B. Zhu, Cluster tilting subcategories in extriangulated categories, Theory Appl. Categ., 34 (2019), 221–242. |
[7] | J. He, P. Zhou, On the relation between $n$-cotorsion pairs and $(n+1)$-cluster tilting subcategories, J. Algebra Appl., 21 (2022), 2250011. https://doi.org/10.1142/S0219498822500116 doi: 10.1142/S0219498822500116 |
[8] | P. Zhou, B. Zhu, Triangulated quotient categories revisited, J. Algebra, 502 (2018), 196–232. https://doi.org/10.1016/j.jalgebra.2018.01.031 doi: 10.1016/j.jalgebra.2018.01.031 |
[9] | W. Yang, P. Zhou, B. Zhu, Triangulated categories with cluster-tilting subcategories, Pac. J. Math., 301 (2019), 703–740. https://doi.org/10.2140/PJM.2019.301.703 doi: 10.2140/PJM.2019.301.703 |
[10] | Y. Liu, P. Zhou, Relative rigid objects in extriangulated categories, J. Pure Appl. Algebra, 226 (2022), 106923. https://doi.org/10.1016/J.JPAA.2021.106923 doi: 10.1016/J.JPAA.2021.106923 |
[11] | Y. Liu, P. Zhou, On the relation between relative rigid and support tilting, preprint, arXiv: 2003.12788V1. https://doi.org/10.48550/arXiv.2003.12788 |
[12] | Y. Liu, P. Zhou, Relative rigid subcategories and $\tau$-tilting theory, Algebras Representation Theory, 25 (2022), 1699–1722. https://doi.org/10.1007/s10468-021-10082-6 doi: 10.1007/s10468-021-10082-6 |