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Abstract: Let B be an extriangulated category which admits a cluster tilting subcategory T . We
firstly introduce notions of T -cluster tilting subcategories and related subcategories. Then we prove
there is a correspondence between T -cluster tilting subcategories of B and support τ-tilting pairs of
modΩ(T ), which recovers several main results from the literature. Note that the generalization is
nontrivial and we give a new proof technique.
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1. Introduction

In [1] (see [2] for type A), the authors introduced cluster categories which were associated to finite
dimensional hereditary algebras. It is well known that cluster-tilting theory gives a way to construct
abelian categories from some triangulated and exact categories.

Recently, Nakaoka and Palu introduced extriangulated categories in [3], which are a simultaneous
generalization of exact categories and triangulated categories, see also [4–6]. Subcategories of an
extriangulated category which are closed under extension are also extriangulated categories. However,
there exist some other examples of extriangulated categories which are neither exact nor triangulated,
see [6–8].

When T is a cluster tilting subcategory, the authors Yang, Zhou and Zhu [9, Definition 3.1] intro-
duced the notions of T [1]-cluster tilting subcategories (also called ghost cluster tilting subcategories)
and weak T [1]-cluster tilting subcategories in a triangulated category C , which are generalizations of
cluster tilting subcategories. In these works, the authors investigated the relationship between C and
modT via the restricted Yoneda functor Gmore closely. More precisely, they gave a bijection between
the class of T [1]-cluster tilting subcategories of C and the class of support τ-tilting pairs of modT ,
see [9, Theorems 4.3 and 4.4].

Inspired by Yang, Zhou and Zhu [9] and Liu and Zhou [10], we introduce the notion of relative
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cluster tilting subcategories in an extriangulated category B. More importantly, we want to investigate
the relationship between relative cluster tilting subcategories and some important subcategories of
modΩ(T ) (see Theorem 3.9 and Corollary 3.10), which generalizes and improves the work by Yang,
Zhou and Zhu [9] and Liu and Zhou [10].

It is worth noting that the proof idea of our main results in this manuscript is similar to that in [9,
Theorems 4.3 and 4.4], however, the generalization is nontrivial and we give a new proof technique.

2. Preliminaries

Throughout the paper, let B denote an additive category. The subcategories considered are full
additive subcategories which are closed under isomorphisms. Let [X ](A, B) denote the subgroup of
HomB(A, B) consisting of morphisms which factor through objects in a subcategory X . The quotient
category B/[X ] of B by a subcategory X is the category with the same objects as B and the space
of morphisms from A to B is the quotient of group of morphisms from A to B in B by the subgroup
consisting of morphisms factor through objects in X . We use Ab to denote the category of abelian
groups.

In the following, we recall the definition and some properties of extriangulated categories from [4],
[11] and [3].

Suppose there exists a biadditive functor E : Bop × B → Ab. Let A,C ∈ B be two objects, an
element δ ∈ E(C, A) is called an E-extension. Zero element in E(C, A) is called the split E-extension.

Let s be a correspondence, which associates any E-extension δ ∈ E(C, A) to an equivalence class
s(δ) = [A

x
→ B

y
→ C]. Moreover, if s satisfies the conditions in [3, Definition 2.9], we call it a

realization of E.

Definition 2.1. [3, Definition 2.12] A triplet (B,E, s) is called an externally triangulated category, or
for short, extriangulated category if

(ET1) E : Bop ×B → Ab is a biadditive functor.
(ET2) s is an additive realization of E.
(ET3) For a pair of E-extensions δ ∈ E(C, A) and δ′ ∈ E(C′, A′), realized as s(δ) = [A

x
→ B

y
→ C] and

s(δ′) = [A′
x′
→ B′

y′
→ C′]. If there exists a commutative square,

A x //

a
��

B
y //

b
��

C

A′ x′ // B′
y′ // C′

then there exists a morphism c : C → C′ which makes the above diagram commutative.
(ET3)op Dual of (ET3).

(ET4) Let δ and δ′ be two E-extensions realized by A
f
→ B

f ′
→ D and B

g
→ C

g′
→ F, respectively. Then
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there exist an object E ∈ B, and a commutative diagram

A
f // B

f ′ //

g
��

D

d
��

A h // C h′ //

g′

��

E
e
��

F F

and an E-extension δ′′ realized by A
h
→ C

h′
→ E, which satisfy the following compatibilities:

(i). D
d
→ E

e
→ F realizes E(F, f ′)(δ′),

(ii). E(d, A)(δ′′) = δ,
(iii). E(E, f )(δ′′) = E(e, B)(δ′).

(ET4op) Dual of (ET4).

Let B be an extriangulated category, we recall some notations from [3, 6].

• We call a sequence X
x
→ Y

y
→ Z a conflation if it realizes some E-extension δ ∈ E(Z, X), where

the morphism x is called an inflation, the morphism y is called an deflation and X
x
→ Y

y
→ Z

δ
d is

called an E-triangle.
• When X

x
→ Y

y
→ Z

δ
d is an E-triangle, X is called the CoCone of the deflation y, and denote it by

CoCone(y); C is called the Cone of the inflation x, and denote it by Cone(x).

Remark 2.2. 1) Both inflations and deflations are closed under composition.
2) We call a subcategory T extension-closed if for any E-triangle X

x
→ Y

y
→ Z

δ
d with X, Z ∈ T ,

then Y ∈ T .

Denote I by the subcategory of all injective objects of B and P by the subcategory of all projective
objects.

In an extriangulated category having enough projectives and injectives, Liu and Nakaoka [4] defined
the higher extension groups as

Ei+1(X,Y) = E(Ωi(X),Y) = E(X,Σi(Y)) for i ≥ 0.

By [3, Corollary 3.5], there exists a useful lemma.

Lemma 2.3. For a pair of E-triangles L
l
→ M

m
→ N d and D

d
→ E

e
→ F d. If there is a commutative

diagram

L
f
��

l // M
g
��

m // N

h
��

//

D d // E e // F //

f factors through l if and only if h factors through e.
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3. Results

In this section, B is always an extriangulated category and T is always a cluster tilting subcategory
[6, Definition 2.10].

Let A, B ∈ B be two objects, denote by [T ](A,ΣB) the subset of B(A,ΣB) such that f ∈ [T ](A,ΣB)
if we have f : A→ T → ΣB where T ∈ T and the following commutative diagram

A h //

��

T
j
��

B // I i // ΣB δ //

where I is an injective object of B [10, Definition 3.2].
Let M and N be two subcategories of B. The notation [T ](M ,Σ(N )) = [T ](M ,Σ(N )) will

mean that [T ](M,ΣN) = [T ](M,ΣN) for every object M ∈M and N ∈ N .

Now, we give the definition of T -cluster tilting subcategories.

Definition 3.1. Let X be a subcategory of B.

1) [11, Definition 2.14] X is called T -rigid if [T ](X,ΣX) = [T ](X,ΣX);
2) X is called T -cluster tilting if X is strongly functorially finite in B and
X = {M ∈ C | [T ](X,ΣM) = [T ](X,ΣM) and [T ](M,ΣX) = [T ](M,ΣX)}.

Remark 3.2. 1) Rigid subcategories are always T -rigid by [6, Definition 2.10];
2) T -cluster tilting subcategories are always T -rigid;
3) T -cluster tilting subcategories always contain the class of projective objects P and injective ob-

jects I.

Remark 3.3. Since T is a cluster tilting subcategory, ∀X ∈ B, there exists a commutative diagram
by [6, Remark 2.11] and Definition 2.1((ET4)op), where T1, T2 ∈ T and h is a left T -approximation
of X:

ΩX
q
��

s // ΩT1

f
��

ΩT1

p1

��
PX

//

��

ΩT2
//

g
��

P

��

// T2
//

X

��

X
h
//

��

T1

��

// T2
//

Hence ∀X ∈ B, there always exists an E-triangle

Ω(T1)
fX
→ Ω(T2)→ X d with Ti ∈ T .

By Remark 3.2(3), P ⊆ T and B = CoCone(T ,T ) by [6, Remark 2.11(1),(2)]. Following from [4,
Theorem 3.2], B = B/T is an abelian category. ∀ f ∈ B(A,C), denote by f the image of f under the
natural quotient functor B → B.
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Let Ω(T ) =CoCone(P,T ), then Ω(T ) is the subcategory consisting of projective objects of B
by [4, Theorem 4.10]. Moreover, modΩ(T ) denotes the category of coherent functors over the category
of Ω(T ) by [4, Fact 4.13].

Let G : B → modΩ(T ), M 7→ HomB(−,M) |Ω(T ) be the restricted Yoneda functor. Then G is
homological, i.e., any E-triangle X → Y → Z d in B yields an exact sequence G(X)→ G(Y)→ G(Z)
in modΩ(T ). Similar to [9, Theorem 2.8], we obtain a lemma:

Lemma 3.4. Denote pro j(modΩ(T )) the subcategory of projective objects in modΩ(T ). Then

1) G induces an equivalence Ω(T )
∼
→ pro j(modΩ(T )).

2) For N ∈ modΩ(T ), there exists a natural isomorphism
HommodΩ(T )(G(Ω(T )),N) ' N(Ω(T )).

In the following, we investigate the relationship between B and modΩ(T ) via G more closely.

Lemma 3.5. Let X be any subcategory of B. Then

1) any object X ∈X , there is a projective presentation in mod Ω(T )

PG(X)
1

πG(X)

→ PG(X)
0 → G(X)→ 0.

2) X is a T -rigid subcategory if and only if the class {πG(X) | X ∈ X } has property ((S ) [9,
Definition 2.7(1)]).

Proof. 1). By Remark 3.3, there exists an E-triangle:

Ω(T1)
fX
→ Ω(T0)→ X d

When we apply the functorG to it ,there exists an exact sequenceG(Ω(T1))→ G(Ω(T0))→ G(X)→ 0.
By Lemma 3.4(1), G(Ω(Ti)) is projective in mod Ω(T ). So the above exact sequence is the desired
projective presentation.

2). For any X0 ∈ X , using the similar proof to [9, Lemma 4.1], we get the following commutative
diagram

HommodΩ(T )(G(Ω(T0),G(X0))

��

α // HommodΩ(T )(G(Ω(T1),G(X0))

��
HomB(Ω(T0), X0)

HomB( fX ,X0)
// HomB(Ω(T1), X0)

where α = HommodΩT (πG(X),G(X0)). By Lemma 3.4(2), both the left and right vertical maps are
isomorphisms. Hence the set {πG(X) | X ∈ X } has property ((S ) iff α is epic iff HomB( fX, X0) is epic
iff X is a T -rigid subcategory by [10, Lemma 3.6].

Lemma 3.6. Let X be a T -rigid subcategory and T1 a subcategory of T . Then X ∨ T1 is a T -rigid
subcategory iff E(T1,X ) = 0.

Proof. For any M ∈ X ∨ T1, then M = X ⊕ T1 for X ∈ X and T1 ∈ T1. Let h : X → T be a left
T -approximation of X and y : T1 → Σ(X′) for X′ ∈X any morphism. Then there exists the following
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commutative diagram

X ⊕ T1
f // T ⊕ T1

(0 1)
��

Ω(T1) //

��

P1
//

��

T1

y
��

//

X′ //

(1
0)
��

I
i0 //

(1
0)
��

Σ(X′)

(1
0)
��

//

X′ ⊕ T ′1 // I ⊕ IT
β // Σ(X′) ⊕ Σ(T ′1) //

with P1 ∈ P, f =

(
h 0
0 1

)
and β =

(
i0 0
0 i1

)
.

When X ∨ T1 is a T -rigid subcategory, we can get a morphism g : X ⊕ T1 → Σ(X′) ⊕ Σ(T ′1) such
that βg = (1

0)y(0 1) f . i.e., ∃b : T1 → I such that y = i0b. So E(T1, X′) = 0 and then E(T1,X ) = 0.

Let γ =

(
r11 r12

r21 r22

)
: T ⊕ T1 → Σ(X′) ⊕ Σ(T ′1) be a morphism. As X is T -rigid, r11h : X → Σ(X′)

factors through i0. Since E(T ,X ) = 0, r12 : T1 → Σ(X′) factors through i0. As T is rigid, the
morphism r21h : X → T → Σ(T ′1) factors through i1, and the morphism r22 : T1 → Σ(T ′1) factors

through i1. So the morphism γ f can factor through β =

(
i0 0
0 i1

)
. Therefore X ∨ T1 is an T -rigid

subcategory.

For the definition of τ-rigid pair in an additive category, we refer the readers to see [9, Definition
2.7].

Lemma 3.7. Let U be a class of T -rigid subcategories and V a class of τ-rigid pairs of modΩ(T ).
Then there exists a bijection ϕ : U → V , given by : X 7→ (G(X ),Ω(T ) ∩Ω(X )).

Proof. Let X be T -rigid. By Lemma 3.5, G(X ) is a τ-rigid subcategory of mod Ω(T ).
Let Y ∈ Ω(T ) ∩ Ω(X ), then there exists X0 ∈ X such that Y = Ω(X0). Consider the E-triangle

Ω(X0) → P → X0 d with P ∈ P. ∀X ∈ X , applying HomB(−, X) yields an exact sequence
HomB(P, X) → HomB(Ω(X0), X) → E(X0, X) → 0. Hence in B = B/T , HomB(Ω(X0), X) �

E(X0, X).
By Remark 3.3, for X0, there is an E-triangle Ω(T1) → Ω(T2) → X0 d with T1, T2 ∈ T . Applying

HomB(−, X), we obtain an exact sequence HomB(Ω(T2), X) → HomB(Ω(T1), X) → E(X0, X) →
E(Ω(T2), X). By [10, Lemma 3.6], HomB(Ω(T2), X) → HomB(Ω(T1), X) is epic. Moreover, Ω(T2) is
projective in B by [4, Proposition 4.8]. So E(Ω(T2), X) = 0. Thus E(X0, X) = 0. Hence ∀X ∈X ,

G(X)(Y) = HomB(Ω(X0), X) = 0.
So (G(X ),Ω(T ) ∩Ω(X )) is a τ-rigid pairs of modΩ(T ).

We will show ϕ is a surjective map.
Let (N , σ) be a τ-rigid pair of modΩ(T ). ∀N ∈ N , consider the projective presentation

P1
πN

→ P0 → N → 0

Electronic Research Archive Volume 31, Issue 3, 1613–1624.
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such that the class {πN |N ∈ N} has Property (S ). By Lemma 3.4, there exists a unique morphism
fN : Ω(T1) → Ω(T0) in Ω(T ) satisfying G( fN) = πN and G(Cone( fN)) � N. Following from Lemma
3.5, X1 := {cone( fN) | N ∈ N } is a T -rigid subcategory.

Let X = X1 ∨ Y , where Y = {T ∈ T | Ω(T ) ∈ σ}. For any T0 ∈ Y , there is an E-triangle
Ω(T0) → P → T0 d with P ∈ P. For any Cone( fN) ∈ X1, applying HomB(−,Cone( fN)), yields an
exact sequence HomB(Ω(T0),Cone( fN)) → E(T0,Cone( fN)) → E(P,Cone( fN)) = 0. Since (N , σ) is
a τ-rigid pair, HomB(Ω(T0),Cone( fN)) = G(Cone( fM))(Ω(T0)) = 0. So E(T0,Cone( fN)) = 0. Due
to Lemma 3.6, X = X1 ∨ Y is T -rigid. Since Y ⊆ T , we get G(Y ) = HomB(−,T ) |Ω(T )= 0
by [4, Lemma 4.7]. So G(X ) = G(X1) = N .

It is straightforward to check that Ω(T ) ∩ Ω(X1) = 0. Let X ∈ Ω(T ) ∩ Ω(X ), then X ∈ Ω(T ) and
X ∈ Ω(X ) = Ω(X1)∨σ. So we can assume that X = Ω(X1)⊕E, where E ∈ σ. Then Ω(X1)⊕E ∈ Ω(T ).
Since E ∈ Ω(T ), we get Ω(X1) ∈ Ω(T ) ∩ Ω(X1) = 0. So Ω(T ) ∩ Ω(X ) ⊆ σ. Clearly, σ ⊆ Ω(T ).
Moreover, σ ⊆ Ω(X ). So σ ⊆ Ω(T ) ∩Ω(X ). Hence Ω(T ) ∩Ω(X ) = σ. Therefore ϕ is surjective.

Lastly, ϕ is injective by the similar proof method to [9, Proposition 4.2].
Therefore ϕ is bijective.

Lemma 3.8. Let T be a rigid subcategory and A
a
→ B→ C

δ
d an E-triangle satisfying [T ](C,Σ(A)) =

[T ](C,Σ(A)). If there exist an E-extension γ ∈ E(T, A) and a morphism t : C → T with T ∈ T such
that t∗γ = δ, then the E-triangle A

a
→ B→ C

δ
d splits.

Proof. Applying HomB(T,−) to the E-triangle A→ I
i
→ Σ(A)

α
d with I ∈ I, yields an exact sequence

HomB(T, A)→ E(T, X)→ E(T, I) = 0. So there is a morphism d ∈ HomB(T,Σ(A)) such that γ = d∗α.
So δ = t∗γ = t∗d∗α = (dt)∗α. So we have a diagram which is commutative:

A a // B

��

// C

dt
��

δ //

A // I i // Σ(A) α //

Since [T ](C,Σ(A)) = [T ](C,Σ(A)) and dt ∈ [T ](C,Σ(A)), dt can factor through i. So 1A can factor
through a and the result follows.

Now, we will show our main theorem, which explains the relation between T -cluster tilting subcat-
egories and support τ-tilting pairs of modΩ(T ).

The subcategory X is called a preimage of Y by G if G(X ) = Y .

Theorem 3.9. There is a correspondence between the class of T -cluster tilting subcategories of B and
the class of support τ-tilting pairs of modΩ(T ) such that the class of preimages of support τ-tilting
subcategories is contravariantly finite in B.

Proof. Let ϕ be the bijective map, such that X 7→ (G(X ),Ω(T ∩ Ω(X ))), where G is the restricted
Yoneda functor defined in the argument above Lemma 3.4.

1). The map ϕ is well-defined.
If X is T -cluster tilting, then X is T -rigid. So ϕ(X ) is a τ-rigid pair of modΩ(T ) by Lemma

3.7. Therefore Ω(T ) ∩ Ω(X ) ⊆ KerG(X ). Assume Ω(T0) ∈ Ω(T ) is an object of KerG(X ). Then
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HomB(Ω(T0),X ) = 0. Applying HomB(−, X) with X ∈ X to Ω(T0)→ P→ T0 d with P ∈ P, yields
an exact sequence

HomB(P, X)→ HomB(Ω(T ), X)→ E(T0, X)→ 0.
Hence we get E(T0, X) � HomB(Ω(T0), X) = 0.
Applying HomB(T0,−) to X → I → Σ(X) d, we obtain

(3.1) [T ](T0,Σ(X )) = [T ](T0,Σ(X )).

For any ba : X
a
→ R

b
→ Σ(T0) with R ∈ T , as T is rigid, we get a commutative diagram:

X
a
��

T

b
��

∃t

||
T0

// IR
// Σ(T0) //

Hence we get (3.2) [T ](X ,Σ(T0)) = [T ](X ,Σ(T0)).
By the equalities (3.1) and (3.2) and X being a T -rigid subcategory, we obtain

[T ](X ,Σ(X ⊕ T0)) = [T ](X ,Σ(X ⊕ T0)) and [T ](X ⊕ T0,Σ(X )) = [T ](X ⊕ T0,Σ(X )).
As X is T -cluster tilting, we get X ⊕ T0 ∈X . So T0 ∈X . And thus Ω(T0) ∈ Ω(T ) ∩ Ω(X ). Hence
KerG(X ) = Ω(T ) ∩Ω(X ).

Since X is functorially finte, similar to [6, Lemma 4.1(2)], ∀Ω(T ) ∈ Ω(T ), we can find an E-

triangle Ω(T )
f
→ X1 → X2 d, where X1, X2 ∈ X and f is a left X -approximation. Applying G,

yields an exact sequence

G(Ω(R))
G( f )
→ G(X1)→ G(X2)→ 0.

Thus we get a diagram which is commutative, where HomB( f , X) is surjective.

HomB(X1, X)
HomB( f ,X)

//

��

HomB(Ω(R), X)

��

// 0

HommodΩ(T )(G(X1),G(X))
◦G( f )// HommodΩ(T )(G(Ω(R)),G(X))

By Lemma 3.4, the morphism ◦G( f ) is surjective. So G( f ) is a left G(X )-approximation and
(G(X ),Ω(T ) ∩Ω(X )) is a support τ-tilting pair of modΩ(T ) by [3, Definition 2.12].

2). ϕ is epic.
Assume (N , σ) is a support τ-tilting pair of modΩ(T ). By Lemma 3.7, there is a T -rigid subcate-

gory X satisfies G(X ) = N . So ∀Ω(T ) ∈ Ω((T )), there is an exact sequence G(Ω(T ))
α
→ G(X3) →

G(X4)→ 0, such that X3, X4 ∈X and α is a left G(X )-approximation. By Yoneda’s lemma, we have
a unique morphism in modΩ((T )):

β : Ω(T )→ X3 such that α = G(β) and G(cone(β)) � G(X4).
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Moreover, ∀X ∈X , consider the following commutative diagram

HomB(X3, X)
HomB(β,X)

//

G(−)
��

HomB(Ω(T ), X)

�

��
HommodΩ(T )(G(X3),G(X)) ◦α // HommodΩ(T )(G(Ω(T )),G(X))

By Lemma 3.4, G(−) is surjective. So the map HomB(β, X) is surjective.
Denote Cone(β) by YR and X ∨ add{YR | Ω(T ) ∈ Ω(T )} by X̃ .
We claim X̃ is T -rigid.
(I). Assume a : YR

a1
→ T0

a2
→ Σ(X) with T0 ∈ T and X ∈X . Consider the following diagram:

Ω(T )
β //

∃g
��

X3
γ //

∃ f
��

YR

a
��

//

X // I i // ΣX //

Since X is T -rigid, ∃ f : X3 → I such that aγ = i f . So there is a morphism g : Ω(T ) → X making
the upper diagram commutative. Since HomB(β, X) is surjective, g factors through β. Hence a factors
through i, i.e., [T ](YR,Σ(X )) = [T ](YR,Σ(X )).

(II). For any morphism b : X
b1
→ T0

b2
→ Σ(YR) with T0 ∈ T and X ∈ X . Consider the following

diagram:

Ω(T )
β //

��

X3
γ //

aγ
��

Y

a
��

//

P

��

// I

iX
��

I

iY
��

T

��

// Σ(X3)

��

γ1 // Σ(YT )

��

By [3, Lemma 5.9], R → Σ(X3) → Σ(YT ) d is an E-triangle. Because T is rigid, b2 factors through
γ1. By the fact that X is T -rigid, b = b2b1 can factor through iX. Since γ1iX = iY , we get that b factors
through iY . So [T ](X ,Σ(YT )) = [T ](X ,Σ(YT )).

By (I) and (II), we also obtain [T ](YT ,Σ(YT )) = [T ](YT ,Σ(YT )).
Therefore X̃ = X ∨ add{YT | Ω(T ) ∈ Ω(T )} is T -rigid.
Let M ∈ B satisfying [T ](M,Σ(X̃ )) = [T ](M,Σ(X̃ )) and [T ](X̃ ,ΣM) = [T ](X̃ ,ΣM). Consider

the E-triangle:

Ω(T5)
f
→ Ω(T6)

g
→ M d

where T5, T6 ∈ T . By the above discussion, there exist two E-triangles:

Ω(T6)
u
→ X6

v
→ Y6 d and Ω(T5)

u
′

→ X5
v
′

→ Y5 d .
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where X5, X6 ∈ X, u and u
′

are left X -approximations of Ω(T6), Ω(T5), respectively. So there exists a
diagram of E-triangles which is commutative:

Ω(T5)
f // Ω(T6)

g //

u
��

M

a
��

//

Ω(T5)
x=u f // X6

v
��

y // N

b
��

//

Y

��

Y

��

We claim that the morphism x = u f is a left X -approximation of Ω(T5). In fact, let X ∈ X and
d : Ω(T5)→ X, we can get a commutative diagram of E-triangles:

Ω(T5)

f
��

Ω(T5)
p1

��

d // X

��
Ω(T6) //

g
��

P

��

d1 // IX

iX
��

M
h

//

��

T5 d2

//

��

Σ(X)

��

where P ∈ P. By the assumption, [T ](M,Σ(X)) = [T ](M,Σ(X)). So d2h factors through iX. By
Lemma 2.3, d factors through f . Thus ∃ f1 : Ω(T6) → X such that d = f1 f . Moreover, u is a left
X -approximation of Ω(T6). So ∃u1 : X6 → X such that f1 = u1u. Thus d = f1 f = u1u f = u1x. So
x = u f is a left X -approximation of Ω(T5).

Hence there is a commutative diagram:

Ω(T5) x // X6

λ

��

y // N

ϕ

��

//

Ω(T5) u
′

// X5
v
′

// Y5
δ5 //

By [3, Corollary 3.16], we get an E-triangle X6
(y
λ)
→ N ⊕ X5 → Y5

x∗δ5
d

Since u
′

is a left X -approximation of Ω(T5), there is also a commutative diagram with P ∈ P:

Ω(T5) u
′

// X5

��

v // Y5

∃t
��

δ5 //

Ω(T5) // P // T5
µ //

such that δ5 = t∗µ. So x∗δ5 = x∗t∗µ = t∗x∗µ. By Lemma 3.8, the E-triangle x∗δ5 splits. So N ⊕ X5 '

X6 ⊕ Y5 ∈ X̃ . hence N ∈ X̃ .
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Similarly, consider the following commutative diagram with P ∈ P:

Ω(T6) u // X6

λ

��

v // Y6

t
��

δ6 //

Ω(T6) u
′

// P v
′

// T6
δ //

and the E-triangle M → N → Y
g∗δ6
d . Then ∃t : Y → T6 such that δ6 = t∗δ. Then g∗δ6 = g∗t∗δ =

t∗(g∗δ). Since [T ](X̃ ,ΣM) = [T ](X̃ ,ΣM), the E-triangle g∗δ6 splits by Lemma 3.5 and M is a direct
summands of N. Hence M ∈ X̃ .

By the above, we get X̃ is a T -cluster tilting subcategory.
By the definition of YR, G(YR) ∈ G(X ). So G(X̃ ) ' G(X ) ' N . Moreover, σ = Ω(T )∩Ω(X ) ⊆

Ω(T ) ∩Ω(X̃ ) and Ω(T ) ∩Ω(X̃ ) ⊆ kerG(X ) = σ. So Ω(T ) ∩Ω(X̃ ) = σ. Hence ϕ is surjective.
3). ϕ is injective following from the proof of Lemma 3.7.

By [4, Proposition 4.8 and Fact 4.13], B ' modΩ(T ). So it is easy to get the following corollary
by Theorem 3.9:

Corollary 3.10. Let X be a subcategory of B.

1) X is T -rigid iffX is τ-rigid subcategory of B.
2) X is T -cluster tilting iffX is support τ-tilting subcategory of B.

If let H = CoCone(T ,T ), then H can completely replace B and draw the corresponding con-
clusion by the proof Lemma 3.7 and Theorem 3.9, which is exactly [12, Theorem 3.8]. If let B is a
triangulated category, then Theorem 3.9 is exactly [9, Theorem 4.3].
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