In this article, applying variational technique as well as critical point theory, we establish a series of criteria to ensure the existence and multiplicity of nontrivial periodic solutions to a second-order nonlinear partial difference equation. Our results generalize some known results. Moreover, numerical stimulations are presented to illustrate applications of our major findings.
Citation: Yuhua Long, Dan Li. Multiple nontrivial periodic solutions to a second-order partial difference equation[J]. Electronic Research Archive, 2023, 31(3): 1596-1612. doi: 10.3934/era.2023082
In this article, applying variational technique as well as critical point theory, we establish a series of criteria to ensure the existence and multiplicity of nontrivial periodic solutions to a second-order nonlinear partial difference equation. Our results generalize some known results. Moreover, numerical stimulations are presented to illustrate applications of our major findings.
[1] | J. S. Yu, J. Li, Discrete-time models for interactive wild and sterile mosquitoes with general time steps, Math. Biosci., 346 (2022), 108797. https://doi.org/10.1016/j.mbs.2022.108797 doi: 10.1016/j.mbs.2022.108797 |
[2] | Y. H. Long, L. Wang, Global dynamics of a delayed two-patch discrete SIR disease model, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105117. https://doi.org/10.1016/j.cnsns.2019.105117 doi: 10.1016/j.cnsns.2019.105117 |
[3] | Z. M. Guo, J. S. Yu, Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China, Ser. A Math., 46 (2003), 506–515. https://doi.org/10.1007/BF02884022 doi: 10.1007/BF02884022 |
[4] | J. S. Yu, Z. M. Guo, X. F. Zou, Periodic solutions of second order self-adjoint difference equations, J. London Math. Soc., 71 (2005), 146–160. https://doi.org/10.1112/S0024610704005939 doi: 10.1112/S0024610704005939 |
[5] | Y. H. Long, J. L. Chen, Existence of multiple solutions to second-order discrete Neumann boundary value problems, Appl. Math. Lett., 83 (2018), 7–14. https://doi.org/10.1016/j.aml.2018.03.006 doi: 10.1016/j.aml.2018.03.006 |
[6] | Z. Zhou, J. X. Ling, Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with $\phi_{c}$-Laplacian, Appl. Math. Lett., 91 (2019), 28–34. https://doi.org/10.1016/j.aml.2018.11.016 doi: 10.1016/j.aml.2018.11.016 |
[7] | Y. H. Long, Existence of two homoclinic solutions for a nonperiodic difference equation with a perturbation, AIMS Math., 6 (2021), 4786–4802. https://doi.org/10.3934/math.2021281 doi: 10.3934/math.2021281 |
[8] | J. H. Kuang, Z. M. Guo, Heteroclinic solutions for a class of p-Laplacian difference equations with a parameter, Appl. Math. Lett., 100 (2020), 106034. https://doi.org/10.1016/j.aml.2019.106034 doi: 10.1016/j.aml.2019.106034 |
[9] | X. C. Cai, J. S. Yu, Existence theorems of periodic solutions for second-order nonlinear difference equations, Adv. Differ. Equations, 2008 (2007), 247071. https://doi.org/10.1155/2008/247071 doi: 10.1155/2008/247071 |
[10] | H. P. Shi, Periodic and subharmonic solutions for second-order nonlinear difference equations, J. Appl. Math. Comput., 48 (2015), 157–171. https://doi.org/10.1007/s12190-014-0796-z doi: 10.1007/s12190-014-0796-z |
[11] | Z. G. Ren, J. Li, H. P. Shi, Existence of periodic solutions for second-order nonlinear difference equations, J. Nonlinear Sci. Appl., 9 (2016), 1505–1514. http://dx.doi.org/10.22436/jnsa.009.04.09 doi: 10.22436/jnsa.009.04.09 |
[12] | S. Ma, Z. H. Hu, Q. Jiang, Multiple periodic solutions for the second-order nonlinear difference equations, Adv. Differ. Equations, 2018 (2018), 265. https://doi.org/10.1186/s13662-018-1713-9 doi: 10.1186/s13662-018-1713-9 |
[13] | S. S. Cheng, Partial Difference Equations, Taylor and Francis, 2003. https://doi.org/10.1201/9780367801052 |
[14] | Y. H. Long, X. Q. Deng, Existence and multiplicity solutions for discrete Kirchhoff type problems, Appl. Math. Lett., 126 (2022), 107817. https://doi.org/10.1016/j.aml.2021.107817 doi: 10.1016/j.aml.2021.107817 |
[15] | Y. H. Long, Multiple results on nontrivial solutions of discrete Kirchhoff type problems, J. Appl. Math. Comput., 2022. https://doi.org/10.1007/s12190-022-01731-0 doi: 10.1007/s12190-022-01731-0 |
[16] | Y. H. Long, Nontrivial solutions of discrete Kirchhoff type problems via Morse theory, Adv. Nonlinear Anal., 11 (2022), 1352–1364. https://doi.org/10.1515/anona-2022-0251 doi: 10.1515/anona-2022-0251 |
[17] | H. Zhang, Y. H. Long, Multiple existence results of nontrivial solutions for a class of second-order partial difference equations, Symmetry, 15 (2023), 6. https://doi.org/10.3390/sym15010006 doi: 10.3390/sym15010006 |
[18] | H. Zhang, Y. Zhou, Y. H. Long, Results on multiple nontrivial solutions to partial difference equations, AIMS Math., 8 (2023), 5413–5431. https://doi.10.3934/math.2023272 doi: 10.3934/math.2023272 |
[19] | Y. H. Long, H. Zhang, Three nontrivial solutions for second-order partial difference equation via morse theory, J. Funct. Spaces, 2022 (2022), 1564961. https://doi.org/10.1155/2022/1564961 doi: 10.1155/2022/1564961 |
[20] | Y. H. Long, H. Zhang, Existence and multiplicity of nontrivial solutions to discrete elliptic Dirchlet problems, Electron. Res. Arch., 30 (2022), 2681–2699. https://doi.org/10.3934/era.2022137 doi: 10.3934/era.2022137 |
[21] | S. H. Wang, Z. Zhou, Periodic solutions for a second-order partial difference equation, J. Appl. Math. Comput., 69 (2022), 731–752. https://doi.org/10.1007/s12190-022-01769-0 doi: 10.1007/s12190-022-01769-0 |
[22] | S. J. Du, Z. Zhou, On the existence of multiple solutions for a partial discrete Dirichlet boundary value problem with mean curvature operator, Adv. Nonlinear Anal., 11 (2022), 198–211. https://doi.org/10.1515/anona-2020-0195 doi: 10.1515/anona-2020-0195 |
[23] | J. Cheng, P. Chen, L. M. Zhang, Homoclinic solutions for a differential inclusion system involving the p(t)-Laplacian, Adv. Nonlinear Anal., 12 (2023), 20220272. https://doi.org/10.1515/anona-2022-0272 doi: 10.1515/anona-2022-0272 |
[24] | P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, American Mathematical Society, Providence, 1986. https://doi.org/10.1090/cbms/065 |