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1. Introduction

Denote the real number set and the integer set by R and Z, respectively. For any a, b ∈ Z with a ≤ b,
define Z(a, b): ={a, a + 1, · · · , b}. In this paper, we focus on multiple nontrivial periodic solutions of
the following second-order partial difference equation:

△1
[
p(n − 1,m) (△1u(n − 1,m))η

]
+ △2

[
r(n,m − 1) (△2u(n,m − 1))η

]
+ q(n,m)(u(n,m))η + f ((n,m), u(n,m)) = 0, n,m ∈ Z,

(1.1)

where △1u(n,m) = u(n+1,m)−u(n,m) and △2u(n,m) = u(n,m+1)−u(n,m). f ((n,m), u) : Z2×R→ R

is continuous with respect to u. Given integers T1,T2 > 0, for any n,m ∈ Z, let nonzero sequences
{p(n,m)}, {r(n,m)} and {q(n,m)} satisfy

p(n + T1,m) = p(n,m) = p(n,m + T2) > 0, r(n + T1,m) = r(n,m) = r(n,m + T2) ≥ 0,

q(n + T1,m) = q(n,m) = q(n,m + T2) ≤ 0,
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and
f ((n + T1,m), u) = f ((n,m), u) = f ((n,m + T2), u) , ∀((n,m), u) ∈ Z2 × R.

Let η be the ratio of odd positive integers such that (−1)η = −1. If a solution u = {u(n,m)} satisfies
u(n + T1,m) = u(n,m) = u(n,m + T2) for any n,m ∈ Z, we call u a (T1,T2)-periodic solution. To help
with understanding if a solution u is (T1,T2)-periodic, we give an example as a remark.

Remark 1.1. Consider (1.1) with T1 = T2 = 2. Suppose (1.1) possesses four solutions, denoted by

u1 = (u11, u12, u13, u14), u2 = (u21, u22, u23, u24),
u3 = (u31, u32, u33, u34), u4 = (u41, u42, u43, u44).

If they are (2, 2)-periodic, that is, u(n + 2,m) = u(n,m) = u(n,m + 2), n,m = 1, 2, then

u31 = u11 = u13 = u33, u32 = u12 = u14 = u34;
u41 = u21 = u23 = u43, u42 = u22 = u24 = u44.

Actually, u1 = u3 and u2 = u4. Therefore, u11 = u13 and u12 = u14 ensure that the solution
u1 = (u11, u12, u13, u14) is (2, 2)-periodic.

In socio-economic activities and natural science research, we often encounter variables similar to
time t. Meanwhile, one can often only observe or record values of these variables in discrete cases.
Solving this problem is inseparable from difference equations. During past decades, difference equa-
tions have been used extensively [1,2], and scholars have studied difference equations in many ways, in-
cluding period solutions, boundary value problems, homoclinic solutions, heteroclinic solutions [3–8]
and so on. It is worth mentioning that Guo and Yu [3] made critical point theory an effective tool
to discuss periodic solutions by constructing a new variational structure for the first time. In [9], by
critical point theory, Cai and Yu studied the existence of solutions to the following equation:

△ (pn(△xn−1)η) + qnxηn = f (n, xn), n ∈ Z. (1.2)

Obviously, Eq (1.2), involving only one independent variable, is a special case of (1.1). It has been
studied by many authors, and certain conclusions [10–12] have been yielded.

On the other side, as modern technology advances rapidly, the use of mathematical modeling to
solve problems is not only becoming more and more frequent, but also there are more and more factors
needing to be considered. As a result, partial difference equations, containing multiple independent
integer variables, have widespread applications in image processing, life sciences, quantum mechanics,
and other fields [13] and capture great interest of many scholars. For example, [14–16] obtain multiple
results on discrete Kirchhoff problems, and [17–20] concern second order partial difference equations
via Morse theory. Very recently, [21] investigated periodic solutions of the equation

△1
[
p(n − 1,m)△1u(n − 1,m)

]
+ △2 [r(n,m − 1)△2u(n,m − 1)] + f ((n,m), u(n,m)) = 0, (1.3)

via critical point theory. Clearly, letting η ≡ 1, (1.1) is just (1.3), and (1.1) is more general than (1.3).
Moreover, via critical point theory, [22, 23] deal with the existence of multiple solutions for a partial
discrete Dirichlet boundary value problem with mean curvature operator and homoclinic solutions for
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a differential inclusion system involving the p(t)-Laplacian, respectively. In view of the abovemen-
tioned results, we find that critical point theory serves as a robust method for studying both differential
equations and difference equations. Therefore, motivated by the above obtained results, we intend to
study periodic solutions to (1.1) by critical point theory. We also provide numerical stimulations to
illustrate applications of our theoretical results. Our results generalize some results in [9] and [21].
The resulting problem engages two major difficulties: First, to estimate relations between norms, we
need to transfer (1.1) into an equivalent form to compute its eigenvalues. Another difficulty we must
overcome is verifying the link geometry and certifying boundedness of the Palais-Smale sequence.

For the rest of this paper, we organize in the following way. In Section 2, we give a variational
structure and look for the corresponding functional to (1.1). Moreover, some definitions and lemmas
are recalled. Our main results and detailed proofs are provided in Section 3. Finally, Section 4 presents
three examples to demonstrate the application of our main results.

2. Preliminaries and notations

In this section, we establish the corresponding variational framework to (1.1) and state some pre-
liminaries and notations to make preparation for our main results.

Write

u = (· · · ; · · · , u(1, 1), u(2, 1), u(3, 1), · · · ; · · · , u(1, 2), u(2, 2), u(3, 2), · · · ; · · · ),

and let
S = {u = {u(n,m)}|u(n,m) ∈ R, n,m ∈ Z}

be a vector space which is composed of all u = {u(n,m)}n,m∈Z. Define

E = {u = {u(n,m)} ∈ S |u(n + T1,m) = u(n,m) = u(n,m + T2), n,m ∈ Z}

as a subset of S . Define an inner product ⟨·, ·⟩ on E as

⟨u, v⟩ =
T1∑

n=1

T2∑
m=1

u(n,m)v(n,m), ∀u, v ∈ E.

Then, the induced norm ∥ · ∥ is

∥u∥ =

 T1∑
n=1

T2∑
m=1

|u(n,m)|2


1
2

, ∀u ∈ E.

Clearly, the dimension of the Hilbert space E is T1T2-dimensional. Thus, E is homeomorphic to
RT1T2 .

For s > 1, define another norm ∥ · ∥s on E as

∥u∥s =

 T1∑
n=1

T2∑
m=1

|u(n,m)|s


1
s

, ∀u ∈ E.
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Then, ∥u∥2 = ∥u∥, and for β > η + 1 there exist constants C2 ≥ C1 > 0, C4 ≥ C3 > 0 such that

C1∥u∥ ≤ ∥u∥η+1 ≤ C2∥u∥, C3∥u∥ ≤ ∥u∥β ≤ C4∥u∥, ∀u ∈ E. (2.1)

Moreover, there holds

T1∑
n=1

T2∑
m=1

|u(n,m)|2 ≤ (T1T2)
η−1
η+1

 T1∑
n=1

T2∑
m=1

|u(n,m)|η+1


2
η+1

.

Then,

(T1T2)−
η−1

2(η+1)

 T1∑
n=1

T2∑
m=1

|u(n,m)|2


1
2

≤

 T1∑
n=1

T2∑
m=1

|u(n,m)|η+1


1
η+1

,

which means that we can choose C1 = (T1T2)−
η−1

2(η+1) .
Consider a functional I : E → R in the following form:

I(u) =
1
η + 1

T1∑
n=1

T2∑
m=1

[
p(n − 1,m) (△1u(n − 1,m))η+1 + r(n,m − 1) (△2u(n,m − 1))η+1

−q(n,m)(u(n,m))η+1
]
−

T1∑
n=1

T2∑
m=1

F ((n,m), u(n,m)) ,

(2.2)

where F ((n,m), u) =
∫ u

0
f ((n,m), s) ds. Since f ((·, ·), u) is continuous with respect to u, it follows that

I ∈ C1(E,R). Moreover, for any u ∈ E, using the periodic condition, direct computation yields

∂I
∂u(n,m)

=p(n − 1,m) (△1u(n − 1,m))η − p(n,m) (△1u(n,m))η + r(n − 1,m) (△2u(n,m − 1))η

− r(n,m) (△2u(n,m))η − q(n,m)(u(n,m))η − f ((n,m), u(n,m))

= − △1
[
p(n − 1,m)(△1u(n − 1,m))η

]
− △2 [r(n,m − 1)(△2u(n,m − 1))η]

− q(n,m)(u(n,m))η − f ((n,m), u(n,m)) .

Hence, u ∈ E being a critical point for I is equivalent to

△1
[
p(n − 1,m) (△1u(n − 1,m))η

]
+ △2

[
r(n,m − 1) (△2u(n,m − 1))η

]
+ q(n,m)(u(n,m))η

+ f ((n,m), u(n,m)) = 0, ∀u ∈ E,

which is just (1.1). Therefore, we transform the problem to find (T1,T2)-periodic solutions to (1.1) to
the problem to seek critical points of I on E.

For convenience, write u ∈ E as

u = (u(1, 1), · · · , u(T1, 1); u(1, 2), · · · , u(T1, 2); · · · ; u(1,T2), · · · , u(T1,T2))T ,

where ·T denotes the transpose of vector ·. Let matrices A and B be defined by
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A =


B 0

B
. . .

0 B


T1T2×T1T2.

B =



2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 2 −1
−1 0 0 · · · −1 2


T1×T1,

By matrix theory, we find that the matrix B is semi-definite positive, and its eigenvalues are

λk = 2(1 − cos
2kπ
T1

), k = 0, 1, 2, · · · ,T1 − 1.

Then, λ1 = 0 < λ2 ≤ λ3 ≤ · · · ≤ λT1 , and

λ2 = 2(1 − cos
2π
T1

).

Moreover, matrices A and B have the same eigenvalues λ1 = 0 < λ2 ≤ λ3 ≤ · · · ≤ λT1 , and the
multiplicity of each eigenvalue λk of matrix A is T2. Direct computation gives

∥△1u(n − 1,m)∥2 =
T1∑

n=1

T2∑
m=1

[△1u(n − 1,m)]2 =

T1∑
n=1

T2∑
m=1

(u(n,m) − u(n − 1,m))2

=

T1∑
n=1

T2∑
m=1

u2(n,m) − 2
T1∑

n=1

T2∑
m=1

u(n,m)u(n − 1,m) +
T1∑

n=1

T2∑
m=1

u2(n − 1,m)

= 2
T1∑

n=1

T2∑
m=1

u2(n,m) − 2
T1∑

n=1

T2∑
m=1

u(n,m)u(n − 1,m)

= ⟨Au, u⟩,

and

∥△1u(n,m)∥2 =
T1∑

n=1

T2∑
m=1

[△1u(n,m)]2 =

T1∑
n=1

T2∑
m=1

(u(n + 1,m) − u(n,m))2

=

T1∑
n=1

T2∑
m=1

u2(n + 1,m) − 2
T1∑

n=1

T2∑
m=1

u(n + 1,m)u(n,m) +
T1∑

n=1

T2∑
m=1

u2(n,m)

= 2
T1∑

n=1

T2∑
m=1

u2(n,m) − 2
T1∑

n=1

T2∑
m=1

u(n,m)u(n − 1,m)

= ⟨Au, u⟩ = ∥△1u(n − 1,m)∥2.

Define an orthogonal matrix
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P =

T1 2T1 (T2−1)T1+1



1 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 1 0 · · · 0 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 · · · 0 0 0 · · · 0 · · · 1 0 · · · 0 T2

0 1 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 0 1 · · · 0 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 · · · 0 0 0 · · · 0 · · · 0 1 · · · 0 2T2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0 (T1−1)T2+1
0 0 · · · 0 0 0 · · · 1 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 1 T1T2×T1T2

such that

v = Pu = (u(1, 1), · · · , u(1,T2); u(2, 1), · · · , u(2,T2); · · · ; u(T1, 1), · · · , u(T1,T2))T .

Then, the matrix P is a rearrangement transformation of u, and ∥u∥s = ∥v∥s for any s > 0.
Similarly, given matrices C and D as

C =



2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 2 −1
−1 0 0 · · · −1 2


T2×T2,

D =


C 0

C
. . .

0 C


T1T2×T1T2

,

it follows that eigenvalues of matrix C are µ1 = 0 < µ2 ≤ µ3 ≤ · · · ≤ µT2 , and

µ2 = 2(1 − cos
2π
T2

).

In the same manner, we have that eigenvalues of matrix D are also µ1 = 0 < µ2 ≤ µ3 ≤ · · · ≤ µT2 ,
and each eigenvalue µκ, 1 ≤ κ ≤ T2 is T1-multiple. Further,

∥△2u(n,m − 1)∥2 =
T1∑

n=1

T2∑
m=1

[△2u(n,m − 1)]2 = ⟨Dv, v⟩,

and

∥△2u(n,m)∥2 =
T1∑

n=1

T2∑
m=1

[△2u(n,m)]2 = ⟨Dv, v⟩ = ∥△2u(n,m − 1)∥2.

Set W = {w ∈ E|w = {c}, c ∈ R} and Y = W⊥. Then, E = Y ⊕W. Thus, for any u ∈ Y , we have

λ2∥u∥2 ≤ ∥△1u(n − 1,m)∥2 = ∥△1u(n,m)∥2 = ⟨Au, u⟩ ≤ λT1∥u∥
2,

µ2∥u∥2 = µ2∥v∥2 ≤ ∥△2u(n,m − 1)∥2 = ∥△2u(n,m)∥2 = ⟨Dv, v⟩ ≤ µT2∥v∥
2 = µT2∥u∥

2.
(2.3)
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Thus, for any w ∈ W, we get

∥△1w(n − 1,m)∥2 = ∥△1w(n,m)∥2 = ⟨Aw,w⟩ = 0,
∥△2w(n,m − 1)∥2 = ∥△2w(n,m)∥2 = ⟨DPw, Pw⟩ = 0.

(2.4)

In the following, we recall some definitions and lemmas which are useful to our main results.

Definition 2.1. Let I ∈ C1 (E,R). If any sequence {uk} ⊂ E such that {I(uk)} is bounded and I′ (uk)→ 0
as k → ∞ possesses a convergent subsequence, then I satisfies the Palais-Smale (P.S . for short)
condition.

Let Bρ denote an open ball whose center is 0 and radius is ρ in E. Let ∂Bρ stand for the boundary
of Bρ. The following Lemmas 2.1–2.3 are main tools to prove our results, and we can refer to [24] for
detail.

Lemma 2.1. (Mountain Pass Lemma [24]) Let X be a real Banach space and I ∈ C1(X,R) satisfy the
P.S . condition. Moreover, I(0) = 0. Suppose
( f1) there exist constants ρ, a > 0 such that I|∂Bρ ≥ a;
( f2) there exists e ∈ X\Bρ such that I(e) ≤ 0.
Then, I admits a critical value c ≥ a given by

c = inf
h∈Γ

sup
s∈[0,1]

I(h(s))

where
Γ = {h ∈ C([0, 1], X)|h(0) = 0, h(1) = e}.

Lemma 2.2. (Linking theorem [24]) Let X = X1 ⊕ X2 be a real Banach space, where X1 is a finite-
dimensional subspace of X. Suppose that I ∈ C1 (E,R) satisfies the P.S . condition. If
( f3) there exist constants ρ, a > 0 such that I|∂Bρ∩X2 ≥ a, and
( f4) there exist constants e ∈ ∂B1 ∩ X2, R0 > ρ such that I|∂Q ≤ 0, where Q =

(
B̄R0 ∩ X1

)
⊕

{re|0 < r < R0},
then I has a critical value c ≥ a, and

c = inf
h∈Γ

max
u∈Q̄

I(h(u)),

where
Γ =

{
h ∈ C(Q̄, X) : h|∂Q = id

}
.

Lemma 2.3. (Saddle point theorem [24]) Let X = X1 ⊕ X2 be a real Banach space and X1 , {0} be a
finite-dimensional subspace of X. Suppose I ∈ C1 (E,R) satisfies the P.S . condition. If
( f5) there exist constants σ and ρ > 0 such that I|∂Bρ∩X1 ≤ σ, and
( f6) there exist constants e ∈ Bρ ∩ X1, ω > σ such that I|e+X2 ≥ ω,
then I has a critical value c ≥ ω, and

c = inf
h∈Γ

max
u∈Bρ∩X1

I(h(u)),

where
Γ =

{
h ∈ C

(
B̄ρ ∩ X1, X

)
|h|∂Bρ∩X1 = id

}
.
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3. Main results and proofs

For convenience, we give some notations first. Write Ω := Z(1,T1) × Z(1,T2), and

pmax = max
(n,m)∈Ω

p(n,m) > 0, pmin = min
(n,m)∈Ω

p(n,m) > 0,

rmax = max
(n,m)∈Ω

r(n,m) ≥ 0, rmin = min
(n,m)∈Ω

r(n,m) ≥ 0,

qmax = max
(n,m)∈Ω

q(n,m) ≤ 0, qmin = min
(n,m)∈Ω

q(n,m) ≤ 0.

To study (1.1), the following assumptions are needed:

(F1) lim
u→0

f ((n,m), u)

uη
= 0, ∀((n,m), u) ∈ Ω × R.

(F2) There exist constants a1 > 0, a2 > 0 and β > η + 1 such that

F((n,m), u) ≥ a1|u|β − a2, ∀((n,m), u) ∈ Ω × R.

Remark 3.1. By (F2), we have

(F′2) lim
|u|→+∞

F((n,m), u)

uη+1 = +∞, ∀((n,m), u) ∈ Ω × R.

Thus, (F1) and (F′2) mean that f ((n,m), u) is superlinearly increasing at both 0 and∞.

Now, we are in the position to present our main results.

Theorem 3.1. Let (F1) and (F2) hold. Moreover,
(q) for any (n,m) ∈ Ω, q(n,m) < 0.
Then, (1.1) possesses at least two nontrivial (T1,T2)-periodic solutions.

Theorem 3.2. Suppose (F1) and (F2) are satisfied. If
T1∑

n=1

T2∑
m=1

F((n,m), u) ≥ 0 and

(q′) q(n,m) ≡ 0, ∀(n,m) ∈ Ω,
then (1.1) admits at least two nontrivial (T1,T2)-periodic solutions.

Recall C1 = (T1T2)−
η−1

2(η+1) , λ2 = 2(1 − cos 2π
T1

) and µ2 = 2(1 − cos 2π
T2

). We have the following.

Theorem 3.3. If (q) and
(F3)

T1∑
n=1

T2∑
m=1

(−q(n,m))

 T1∑
n=1

T2∑
m=1

f 2(n,m)


η+1

2 (
1

C1

)η+1

<
(
pminλ

η+1
2

2 + rminµ
η+1

2
2 − qmax

)  T1∑
n=1

T2∑
m=1

f (n,m)

η+1

, ∀(n,m) ∈ Ω,

hold, then equation

△1
[
p(n − 1,m) (△1u(n − 1,m))η

]
+ △2

[
r(n,m − 1) (△2u(n,m − 1))η

]
+ q(n,m) (u(n,m))η + f (n,m) = 0, n,m ∈ Z,

(3.1)

has at least a (T1,T2)-periodic solution.
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Remark 3.2. In fact, (1.2) and (1.3) are special cases of (1.1). Consider (1.1) with r(n,m) ≡ 0, and
(1.1) can be written in the form of (1.2). Meanwhile, if q(n,m) = 0 and η = 1, then (1.1) changes to
(1.3). Moreover, our Theorems 3.1–3.3 are able to override Theorem 3.2 of [9], Theorem 3.1 of [21]
and Theorem 3.3 of [9]. Consequently, (1.1) is a generalization of both (1.2) and (1.3), and our results
are more universal.

Before stating proofs of Theorems 3.1–3.3, we need to prove the compactness of I first.

Lemma 3.1. Assume (F2) holds. Then, I satisfies the P.S . condition on E.

Proof. Assume that for any {uk} ⊂ E there exists a constant M > 0 such that

|I(uk)| ≤ M and I′(uk)→ 0, as k → +∞.

As E is a finite-dimensional space, we only need to prove that {uk} is bounded. By (F2), we have

−M ≤I(uk)

=
1
η + 1

T1∑
n=1

T2∑
m=1

[
p(n − 1,m) (△1uk(n − 1,m))η+1 + r(n,m − 1) (△2uk(n,m − 1))η+1

]
−

1
η + 1

T1∑
n=1

T2∑
m=1

q(n,m)(uk(n,m))η+1 −

T1∑
n=1

T2∑
m=1

F((n,m), uk(n,m))

≤
pmax

η + 1

T1∑
n=1

T2∑
m=1

(△1uk(n − 1,m))η+1 +
rmax

η + 1

T1∑
n=1

T2∑
m=1

(△2uk(n,m − 1))η+1

−
qmin

η + 1

T1∑
n=1

T2∑
m=1

(uk(n,m))η+1 − a1

T1∑
n=1

T2∑
m=1

|uk(n,m)|β + a2T1T2

=
pmax

η + 1
∥△1uk(n − 1,m)∥η+1

η+1 +
rmax

η + 1
∥△2uk(n,m − 1)∥η+1

η+1 −
qmin

η + 1
∥uk∥

η+1
η+1

− a1∥uk∥
β
β + a2T1T2.

(3.2)

Moreover, due to (2.1) and (2.3), it follows that

∥△1uk(n − 1,m)∥η+1
η+1 ≤ Cη+1

2 ∥△1uk(n − 1,m)∥η+1
≤ Cη+1

2 λ
η+1

2
T1
∥uk∥

η+1 ,

∥△2uk(n,m − 1)∥η+1
η+1 ≤ Cη+1

2 ∥△2uk(n,m − 1)∥η+1
≤ Cη+1

2 µ
η+1

2
T2
∥uk∥

η+1 ,

∥uk∥
η+1
η+1 ≤ Cη+1

2 ∥uk∥
η+1 , ∥uk∥

β
β ≥ Cβ3 ∥uk∥

β .

(3.3)

Therefore, combining (3.2) with (3.3), it yields that

−M ≤
pmaxC

η+1
2 λ

η+1
2

T1

η + 1
∥uk∥

η+1 +
rmaxC

η+1
2 µ

η+1
2

T2

η + 1
∥uk∥

η+1
−

qminC
η+1
2

η + 1
∥uk∥

η+1

− a1C
β
3 ∥uk∥

β + a2T1T2.

That is,

a1C
β
3 ∥uk∥

β
−

Cη+1
2

(
pmaxλ

η+1
2

T1
+ rmaxµ

η+1
2

T2
− qmin

)
η + 1

∥uk∥
η+1
≤ a2T1T2 + M. (3.4)
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Since β > η + 1, (3.4) ensures that {uk} ⊂ E is a bounded sequence. Consequently, I satisfies the
P.S . condition, and the proof is finished.

Proof of Theorem 3.1 By Lemma 3.1, I satisfies the P.S . condition on E. In the following, we
verify conditions ( f1) and ( f2) of Lemma 2.1 to complete the proof.

In fact, from (F1), it follows that

lim
u→0

F((n,m), u)

uη+1 = 0, ∀(n,m) ∈ Ω.

Then, there is a ρ > 0 such that

|F((n,m), u)| ≤ −
qmax

2(η + 1)
uη+1, ∀(n,m) ∈ Ω, |u| ≤ ρ.

Hence, for any u ∈ E with ∥u∥ ≤ ρ, we obtain

I(u) ≥ −
qmax

η + 1
∥u∥η+1
η+1 +

qmax

2(η + 1)
∥u∥η+1
η+1 = −

qmax

2(η + 1)
∥u∥η+1
η+1 ≥ −

qmaxC
η+1
1

2(η + 1)
∥u∥η+1. (3.5)

Take a = −
qmaxC

η+1
1

2(η + 1)
ρη+1 > 0, and then (3.5) ensures I(u)|∂Bρ ≥ a > 0. Thus, ( f1) of Lemma 2.1 is

fulfilled.
Given ω ∈ E with ∥ω∥ = 1 and α > 0, we have

I(αω) =
1
η + 1

T1∑
n=1

T2∑
m=1

[
p(n − 1,m) (△1αω(n − 1,m))η+1 + r(n,m − 1)(△2αω(n,m − 1))η+1

]
−

1
η + 1

T1∑
n=1

T2∑
m=1

q(n,m)(αω(n,m))η+1 −

T1∑
n=1

T2∑
m=1

F((n,m), αω(n,m))

≤
αη+1 pmax

η + 1
∥△1ω(n − 1,m)∥η+1

η+1 +
αη+1rmax

η + 1
∥△2ω(n,m − 1)∥η+1

η+1 −
αη+1qmin

η + 1
∥ω∥

η+1
η+1

− a1α
β∥ω∥

β
β + a2T1T2

≤
αη+1 pmaxC

η+1
2

η + 1
∥△1ω(n − 1,m)∥η+1 +

αη+1rmaxC
η+1
2

η + 1
∥△2ω(n,m + 1)∥η+1

−
αη+1qminC

η+1
2

η + 1
− a1α

βCβ3 + a2T1T2

≤
αη+1 pmaxC

η+1
2 λ

η+1
2

T1

η + 1
+
αη+1rmaxC

η+1
2 µ

η+1
2

T2

η + 1
−
αη+1qminC

η+1
2

η + 1
− a1α

βCβ3 + a2T1T2

→−∞, as α→ +∞,

which means that there exists α > ρ large enough such that I(u0) < 0, where u0 = αω ∈ E\Bρ.
Moreover, I(0) = 0. Thus, Lemma 2.1 guarantees that there is a critical value c ≥ a > 0. Assume ū is
a critical point, namely, I(ū) = c and I′(ū) = 0.
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In the following, we look for another critical point ũ for I. By (3.4), we get

I(u) ≤
Cη+1

2

(
pmaxλ

η+1
2

T1
+ rmaxµ

η+1
2

T2
− qmin

)
η + 1

∥uk∥
η+1
− a1C

β
3 ∥u∥

β + a2T1T2,

which indicates I is bounded from above. Denote the supremum of {I(u)}u∈E by cmax, and then ũ ∈ E
and I(ũ) = cmax. Obviously, ũ , 0. If ū , ũ, the proof is finished. Else, c = cmax. Lemma 2.1 means
that

c = inf
h∈Γ

sup
t∈[0,1]

I(h(t)),

where
Γ = {h ∈ C([0, 1], E)|h(0) = 0, h(1) = u0}.

Hence, for any h ∈ Γ, cmax = max
t∈[0,1]

I(h(t)). In view of I(h(t)) being continuous with respect to t,

I(0) ≤ 0 and I(u0) < 0, it follows that there exists a t0 ∈ (0, 1) such that I(h(t0)) = cmax. Choose
h1, h2 such that {h1(t)|t ∈ (0, 1)} ∩ {h2(t)|t ∈ (0, 1)} = ∅, and then there exist t1, t2 ∈ (0, 1) such that
I(h1(t1)) = I(h2(t2)) = cmax. Thus, we obtain two different critical points u1 = h1(t1) and u2 = h2(t2).
Consequently, there exist at least two nontrivial critical points which correspond to the critical value
cmax. This completes the proof.

Proof of Theorem 3.2 Let W = {w ∈ E|w = {c}, c ∈ R}, Y = W⊥, and then E = W ⊕ Y . By (F1),
there exist some ρ > 0 and u ∈ Bρ such that

F((n,m), u) ≤
pminλ

η+1
2

2 + rminµ
η+1

2 Cη+1
1

2(η + 1)Cη+1
2

|u|η+1.

Then, for every u ∈ (∂Bρ) ∩ Y , one obtains

I(u) ≥
pmin

η + 1
∥△1u(n − 1,m)∥η+1

η+1 +
rmin

η + 1
∥△2u(n,m − 1)∥η+1

η+1 −

(
pminλ

η+1
2

2 + rminµ
η+1

2
2

)
Cη+1

1

2(η + 1)Cη+1
2

∥u∥η+1
η+1

≥
pminC

η+1
1

η + 1
∥△1u(n − 1,m)∥η+1 +

rminC
η+1
1

η + 1
∥△2u(n,m − 1)∥η+1

−

(
pminλ

η+1
2

2 + rminµ
η+1

2
2

)
Cη+1

1

2(η + 1)
∥u∥η+1

≥

(
pminλ

η+1
2

2 + rminµ
η+1

2
2

)
Cη+1

1

η + 1
∥u∥η+1 −

(
pminλ

η+1
2

2 + rminµ
η+1

2
2

)
Cη+1

1

2(η + 1)
∥u∥η+1

=

(
pminλ

η+1
2

2 + rminµ
η+1

2
2

)
Cη+1

1

2(η + 1)
∥u∥η+1

=

(
pminλ

η+1
2

2 + rminµ
η+1

2
2

)
Cη+1

1 ρ
η+1

2(η + 1)
.

(3.6)

Set a =

(
pminλ

η+1
2

2 + rminµ
η+1

2
2

)
Cη+1

1 ρ
η+1

2(η + 1)
, and then (3.6) implies I(u) ≥ a, u ∈ (∂Bρ)∩ Y . Thus, ( f3) of

Lemma 2.2 is valid.
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Let e ∈ ∂B1 ∩ Y , and for every w ∈ W and s ∈ R, set u = se + w. From (2.4) together with (F2), it
follows that △1w = △2w = 0, ∥e∥ = 1, and

I(u) =I(se + w)

=
1
η + 1

T1∑
n=1

T2∑
m=1

[
p(n − 1,m)(△1se(n − 1,m))η+1 + r(n,m − 1)(△2se(n,m − 1))η+1

]
−

T1∑
n=1

T2∑
m=1

F((n,m), (se + w)(n,m)).

≤
sη+1 pmax

η + 1
∥△1e(n − 1,m)∥η+1

η+1 +
sη+1rmax

η + 1
∥△2e(n,m − 1)∥η+1

η+1

− a1

T1∑
n=1

T2∑
m=1

|se(n,m) + w(n,m)|β + a2T1T2

≤
sη+1 pmaxC

η+1
2

η + 1
∥△1e(n − 1,m)∥η+1 +

sη+1rmaxC
η+1
2

η + 1
∥△2e(n,m − 1)∥η+1

− a1C
β
3∥se + w∥β + a2T1T2

≤
sη+1Cη+1

2

η + 1

(
pmaxλ

η+1
2

T1
+ rmaxµ

η+1
2

T2

)
− a1C

β
3∥se∥β − a1C

β
3∥w∥

β + a2T1T2

=
sη+1Cη+1

2

η + 1

(
pmaxλ

η+1
2

T1
+ rmaxµ

η+1
2

T2

)
− a1C

β
3 sβ − a1C

β
3∥w∥

β + a2T1T2.

Write

g1(s) =
sη+1Cη+1

2

η + 1

(
pmaxλ

η+1
2

T1
+ rmaxµ

η+1
2

T2

)
− a1C

β
3 sβ, g2(τ) = −a1C

β
3τ
β + a2T1T2.

Then, both g1(s) and g2(τ) are bounded from above. Moreover, β > η + 1 leads to lim
s→+∞

g1(s) = −∞
and lim

τ→+∞
g2(τ) = −∞. Thus, there exists a positive constant R0 > ρ such that I(u) ≤ 0 holds for any

u ∈ ∂Q and Q =
(
B̄R0 ∩W

)
⊕ {se|0 < s < R0}.

Notice that Lemma 3.1 shows I satisfies the P.S . condition on E. Therefore, Lemma 2.2 ensures
that I admits a critical value c ≥ a, and

c = inf
h∈Γ

max
u∈Q̄

I(h(u)), Γ =
{
h ∈ C(Q̄, E) : h|∂Q = id

}
.

Take ū ∈ E to be a critical point which corresponds to c, that is, I(ū) = c. By (3.4), I is bounded
from above. Hence, there will be a ũ ∈ E such that

I(ũ) = cmax = sup
u∈E

I(u).

Then, ū and ũ are nontrivial (T1,T2)-periodic solutions of (1.1). If ū , ũ, then Theorem 3.2 holds.
Otherwise, ū = ũ, and then c = cmax, that is,

sup
u∈E

I(u) = inf
h∈Γ

sup
u∈Q̄

I(h(u)).
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Choose h = id, and we get sup
u∈Q̄

I(u) = cmax. Consider −e ∈ ∂Bρ ∩ Y . With the arbitrariness of e, it

follows that there is an R1 > ρ such that I|∂Q1 ≤ 0, where Q1 =
(
B̄R1 ∩W

)
⊕ {−se|0 < s < R1}. In the

same way, by Lemma 2.2, I possesses a new critical value c′ ≥ a > 0, and

c′ = inf
h∈Γ

max
u∈Q̄1

I(h(u)), Γ =
{
h ∈ C(Q̄1, E) : h|∂Q1 = id

}
.

If c′ , cmax, then this proof is done. If c′ = cmax, then for any h ∈ Γ, we have max
u∈Q̄1

I(h(u)) = cmax.

Specifically, take h = id, and then max
u∈Q̄1

I(u) = cmax. Since I|∂Q ≤ 0, I|∂Q1 ≤ 0 and cmax > 0, the

maximum value of I is given at a point inside Q and Q1, respectively. In addition, Q ∩ Q1 ⊂ W, and
for every w ∈ W, we have

I(w) = −
T1∑

n=1

T2∑
m=1

F((n,m),w(n,m)) ≤ 0.

Therefore, a point û which is different from ũ must exist in E such that I(û) = c′ = cmax. In summary,
if c < cmax, then (1.1) admits at least two nontrivial (T1,T2)-periodic solutions; if c = cmax, then (1.1)
admits an infinite number of nontrivial (T1,T2)-periodic solutions. This completes the proof.

Proof of Theorem 3.3 Similar to (2.2), the variational functional associated to (3.1) is expressed by

Î(u) =
1
η + 1

T1∑
n=1

T2∑
m=1

[
p(n − 1,m) (△1u(n − 1,m))η+1 + r(n,m − 1) (△2u(n,m − 1))η+1

−q(n,m) (u(n,m))η+1
]
−

T1∑
n=1

T2∑
m=1

f (n,m)u(n,m).

(3.7)

In the following, we utilize Lemma 2.3 to finish the proof. To begin with, it is to show that Î meets
the P.S . condition on E. Suppose {uk} ⊂ E, and there is a constant M̂ > 0 such that

|Î(uk)| ≤ M̂, Î′(uk)→ 0, k → +∞.

Since the dimension of E is T1T2, it is necessary for us to show {uk} is bounded in E. In view of
(3.7) and the oddness of η, there holds

M̂ ≥ Î(uk) ≥ −
1
η + 1

T1∑
n=1

T2∑
m=1

q(n,m) (uk(n,m))η+1
−

T1∑
n=1

T2∑
m=1

f (i, i)uk(n,m)

≥ −
qmax

η + 1
∥uk∥

η+1
η+1 −

 T1∑
n=1

T2∑
m=1

f 2(n,m)


1
2  T1∑

n=1

T2∑
m=1

u2
k (n,m)


1
2

≥ −
qmaxC

η+1
1

η + 1
∥uk∥

η+1
−

 T1∑
n=1

T2∑
m=1

f 2(n,m)


1
2

∥uk∥ .

(3.8)

Recall η + 1 > 1, and then (3.8) implies that {uk} is bounded in E. Therefore, Î satisfies the P.S .
condition on E.
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Next, we show ( f5) and ( f6) of Lemma 2.3 are met. For any w = (z, · · · , z)T ∈ W, one has

Î(w) = −
1
η + 1

T1∑
n=1

T2∑
m=1

q(n,m)zη+1 −

T1∑
n=1

T2∑
m=1

f (n,m)z.

Take

z =

−∑T1
n=1

∑T2
m=1 f (n,m)∑T1

n=1

∑T2
m=1 q(n,m)


1
η

, ρ = ∥w∥ =
√

T1T2

∣∣∣∣∣∣∣
∑T1

n=1

∑T2
m=1 f (n,m)∑T1

n=1

∑T2
m=1 q(n,m)

∣∣∣∣∣∣∣
1
η

.

Then

Î(w) =
η

η + 1

[∑T1
n=1

∑T2
m=1 f (n,m)

] η+1
η[∑T1

n=1

∑T2
m=1 q(n,m)

] 1
η

.

Thus,

Î(u) = σ ≜
η

η + 1

[∑T1
n=1

∑T2
m=1 f (n,m)

] η+1
η[∑T1

n=1

∑T2
m=1 q(n,m)

] 1
η

, ∀u ∈ ∂Bρ ∩W,

which means that ( f5) of Lemma 2.3 holds.
For y ∈ Y , one has

Î(y) ≥
pmin

η + 1
∥△1y(n − 1,m)∥η+1

η+1 +
rmin

η + 1
∥△2y(n,m − 1)∥η+1

η+1 −
qmax

η + 1
∥y∥η+1
η+1

−

 T1∑
n=1

T2∑
m=1

f 2(n,m)


1
2

∥y∥

≥
Cη+1

1

η + 1

(
pminλ

η+1
2

2 + rminµ
η+1

2
2 − qmax

)
∥y∥η+1 −

 T1∑
n=1

T2∑
m=1

f 2(n,m)


1
2

∥y∥

≥ −
η

η + 1

(∑T1
n=1

∑T2
m=1 f 2(n,m)

) η+1
2η

(
1

C1

) η+1
η(

pminλ
η+1

2
2 + γminµ

η+1
2

2 − qmax

) 1
η

,

and the last inequality is obtained by minimization with respect to ∥y∥. Set

ω0 = −
η

η + 1

(∑T1
n=1

∑T2
m=1 f 2(n,m)

) η+1
2η

(
1

C1

) η+1
η(

pminλ
η+1

2
2 + γminµ

η+1
2

2 − qmax

) 1
η

.

Together with (F3), this yields that

Î(u) ≥ ω0 > σ, ∀u ∈ Y.

So, ( f6) of Lemma 2.3 holds by taking e = 0. Thus, all conditions of Lemma 2.3 are satisfied, and
(3.1) admits at least a (T1,T2)-periodic solution.
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4. Examples

Finally, we give three examples to demonstrate the validity of our results. Let

Ẽ = {u = {u(n,m)} ∈ S |u(n + 2,m) = u(n,m) = u(n,m + 2), n,m ∈ Z(1, 2)}.

Example 4.1. Take η = 3. Consider Eq (1.1) with p(n,m) > 0, r(n,m) ≥ 0 and q(n,m) < 0 for any
n,m ∈ Z, and

f ((n,m), u) = 6u5, n,m ∈ Z, u ∈ R.

Then,
F((n,m), u) = u6, n,m ∈ Z, u ∈ R.

Obviously, f ((n,m), u) satisfies all conditions of Theorem 3.1. Then, (1.1) with f ((n,m), u) = 6u5

admits at least two nontrivial (T1,T2)-periodic solutions.
Specially, let p(n,m) = r(n,m) = 1, q(n,m) = −2 and T1 = T2 = 2, and then (1.1) can be rewritten

in the form of

△1(△1u(n − 1,m))3 + △2(△2u(n,m − 1))3 − 2(u(n,m))3 + 6(u(n,m))5 = 0. (4.1)

Using MATLAB, we find that (4.1) has at least two nontrivial solutions u1 = {u1(n,m)} ∈ Ẽ and
u2 = {u2(n,m)} ∈ Ẽ, where

u1 = (
√

3,−
√

3,
√

3,−
√

3), u2 = (−
√

3,
√

3,−
√

3,
√

3).

By Remark 1.1, u1 and u2 are two different nontrivial (2, 2)-periodic solutions to (4.1).

Example 4.2. For every n,m ∈ Z, consider (1.1) with p(n,m) > 0, r(n,m) ≥ 0 and q(n,m) = 0. Set
η = 3, and

f ((n,m), u) = 6u5, n,m ∈ Z, u ∈ R.

Then, all conditions of Theorem 3.2 are satisfied, and (1.1) has at least two nontrivial (T1,T2)-
periodic solutions.

Take p(n,m) = r(n,m) = 1 and T1 = T2 = 2, and then (1.1) becomes

△1(△1u(n − 1,m))3 + △2(△2u(n,m − 1))3 + 6(u(n,m))5 = 0. (4.2)

Utilizing MATLAB, (4.2) has at least two nontrivial solutions

u1 = (
2
√

6
3
,−

2
√

6
3
,

2
√

6
3
,−

2
√

6
3

), u2 = (−
2
√

6
3
,

2
√

6
3
,−

2
√

6
3
,

2
√

6
3

).

From Remark 1.1, (4.2) has at least two different nontrivial (2, 2)-periodic solutions u1 and u2.

Example 4.3. Set T1 = T2 = 2, η = 3 and f (n,m) = 2. Consider (3.1) with p(n,m) = 1, r(n,m) = 1
and q(n,m) = −2. Clearly, p(n,m), r(n,m), q(n,m) and f (n,m) are all (2, 2)-periodic, and (3.1) is in
the following form:

△1(△1u(n − 1,m))3 + △2(△2u(n,m − 1))3 − 2(u(n,m))3 + 2 = 0. (4.3)
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Obviously, we only need to verify (F3). Simple calculation gives

T1∑
n=1

T2∑
m=1

(−q(n,m))

 T1∑
n=1

T2∑
m=1

f 2(n,m)


η+1

2 (
1

C1

)η+1

= 8 × 162 × 4 = 8192,

(
pminλ

η+1
2

2 + γminµ
η+1

2
2 − qmax

)  T∑
n=1

T2∑
m=1

f (n,m)

η+1

= (42 + 42 + 2) × 84 = 139264 > 2048.

Thus, Theorem 3.3 ensures that (4.3) possesses at least one nontrivial (2, 2)-periodic solution. By
MATLAB and Remark 1.1, (4.3) admits at least a (2, 2)-periodic solution

u(1, 1) = 1, u(2, 1) = 1, u(1, 2) = 1, u(2, 2) = 1.
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