Let $ (\mathcal{C}, \mathbb{E}, \mathfrak{s}) $ be an extriangulated category with a proper class $ \xi $ of $ \mathbb{E} $-triangles. In this paper, we study the balance of complete cohomology in $ (\mathcal{C}, \mathbb{E}, \mathfrak{s}) $, which is motivated by a result of Nucinkis that complete cohomology of modules is not balanced in the way the absolute cohomology Ext is balanced. As an application, we give some criteria for identifying a triangulated catgory to be Gorenstein and an Artin algebra to be $ F $-Gorenstein.
Citation: Jiangsheng Hu, Dongdong Zhang, Tiwei Zhao, Panyue Zhou. Balance of complete cohomology in extriangulated categories[J]. Electronic Research Archive, 2021, 29(5): 3341-3359. doi: 10.3934/era.2021042
Let $ (\mathcal{C}, \mathbb{E}, \mathfrak{s}) $ be an extriangulated category with a proper class $ \xi $ of $ \mathbb{E} $-triangles. In this paper, we study the balance of complete cohomology in $ (\mathcal{C}, \mathbb{E}, \mathfrak{s}) $, which is motivated by a result of Nucinkis that complete cohomology of modules is not balanced in the way the absolute cohomology Ext is balanced. As an application, we give some criteria for identifying a triangulated catgory to be Gorenstein and an Artin algebra to be $ F $-Gorenstein.
[1] | Tate cohomology and Gorensteinness for triangulated categories. J. Algebra (2006) 299: 480-502. |
[2] | Relative homology and representation theory I. Relative homology and homologically finite subcategories. Comm. Algebra (1993) 21: 2995-3031. |
[3] | L. L. Avramov, H.-B. Foxby and S. Halperin, Differential graded homological algebra, preprint, 2009. |
[4] | Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc. London Math. Soc. (2002) 85: 393-440. |
[5] | Relative homological algebra and purity in triangulated categories. J. Algebra (2000) 227: 268-361. |
[6] | Products in negative cohomology. J. Pure Appl. Algebra (1992) 82: 107-129. |
[7] | Exact categories. Expo. Math. (2010) 28: 1-69. |
[8] | L. W. Christensen, H.-B. Foxby and H. Holm, Derived Category methods in commutative Algebra, preprint, 2019. |
[9] | L. W. Christensen and D. A. Jorgensen, Tate (co)homology via pinched complexes, Trans. Amer. Math. Soc., 366 (2014), 667-689. doi: 10.1090/S0002-9947-2013-05746-7 |
[10] | I. Emmanouil, Balance in complete cohomology, J. Pure Appl. Algebra, 218 (2014), 618-623. doi: 10.1016/j.jpaa.2013.08.001 |
[11] | E. E. Enochs, S. Estrada and A. C. Iacob, Balance with unbounded complexes, Bull. Lond. Math. Soc., 44 (2012), 439-442. doi: 10.1112/blms/bdr101 |
[12] | Complete cohomological functors on groups. Topol. Appl. (1987) 25: 203-223. |
[13] | Homologie de Tate-Vogel $\acute{e}$quivariante. J. Pure Appl. Algebra (1992) 82: 39-64. |
[14] | J. Hu, D. Zhang, T. Zhao and P. Zhou, Complete cohomology for extriangulated categories, Algebra Colloq., (to appear), arXiv: 2003.11852v2. |
[15] | Proper classes and Gorensteinness in extriangulated categories. J. Algebra (2020) 551: 23-60. |
[16] | Gorenstein homological dimensions for extriangulated categories. Bull. Malays. Math. Sci. Soc. (2021) 44: 2235-2252. |
[17] | Generalized Tate cohomology. Tsukuba J. Math. (2005) 29: 389-404. |
[18] | Tate cohomology for arbitrary groups via satellites. Topology Appl. (1994) 56: 293-300. |
[19] | Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Géom. Différ. Catég. (2019) 60: 117-193. |
[20] | Complete cohomology for arbitrary rings using injectives. J. Pure Appl. Algebra (1998) 131: 297-318. |
[21] | Balance of Tate cohomology in triangulated categories. Appl. Categ. Structures. (2015) 23: 819-828. |
[22] | Cohomology theoreies in triangulated categories. Acta Math. Sin. (Engl. Ser.) (2016) 32: 1377-1390. |
[23] | X. Tang, On $F$-Gorenstein dimensions, J. Algebra Appl., 13 (2014), 1450022, 14 pages. doi: 10.1142/S0219498814500224 |
[24] | Relative homological dimensions and Tate cohomology of complexes with respect to cotorsion pairs. Comm. Algebra (2017) 45: 2875-2888. |