Balance of complete cohomology in extriangulated categories

  • Received: 01 September 2020 Revised: 01 May 2021 Published: 24 June 2021
  • Primary: 16E30, 18G25; Secondary: 18G10

  • Let $ (\mathcal{C}, \mathbb{E}, \mathfrak{s}) $ be an extriangulated category with a proper class $ \xi $ of $ \mathbb{E} $-triangles. In this paper, we study the balance of complete cohomology in $ (\mathcal{C}, \mathbb{E}, \mathfrak{s}) $, which is motivated by a result of Nucinkis that complete cohomology of modules is not balanced in the way the absolute cohomology Ext is balanced. As an application, we give some criteria for identifying a triangulated catgory to be Gorenstein and an Artin algebra to be $ F $-Gorenstein.

    Citation: Jiangsheng Hu, Dongdong Zhang, Tiwei Zhao, Panyue Zhou. Balance of complete cohomology in extriangulated categories[J]. Electronic Research Archive, 2021, 29(5): 3341-3359. doi: 10.3934/era.2021042

    Related Papers:

  • Let $ (\mathcal{C}, \mathbb{E}, \mathfrak{s}) $ be an extriangulated category with a proper class $ \xi $ of $ \mathbb{E} $-triangles. In this paper, we study the balance of complete cohomology in $ (\mathcal{C}, \mathbb{E}, \mathfrak{s}) $, which is motivated by a result of Nucinkis that complete cohomology of modules is not balanced in the way the absolute cohomology Ext is balanced. As an application, we give some criteria for identifying a triangulated catgory to be Gorenstein and an Artin algebra to be $ F $-Gorenstein.



    加载中


    [1] Tate cohomology and Gorensteinness for triangulated categories. J. Algebra (2006) 299: 480-502.
    [2] Relative homology and representation theory I. Relative homology and homologically finite subcategories. Comm. Algebra (1993) 21: 2995-3031.
    [3] L. L. Avramov, H.-B. Foxby and S. Halperin, Differential graded homological algebra, preprint, 2009.
    [4] Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc. London Math. Soc. (2002) 85: 393-440.
    [5] Relative homological algebra and purity in triangulated categories. J. Algebra (2000) 227: 268-361.
    [6] Products in negative cohomology. J. Pure Appl. Algebra (1992) 82: 107-129.
    [7] Exact categories. Expo. Math. (2010) 28: 1-69.
    [8] L. W. Christensen, H.-B. Foxby and H. Holm, Derived Category methods in commutative Algebra, preprint, 2019.
    [9] L. W. Christensen and D. A. Jorgensen, Tate (co)homology via pinched complexes, Trans. Amer. Math. Soc., 366 (2014), 667-689. doi: 10.1090/S0002-9947-2013-05746-7
    [10] I. Emmanouil, Balance in complete cohomology, J. Pure Appl. Algebra, 218 (2014), 618-623. doi: 10.1016/j.jpaa.2013.08.001
    [11] E. E. Enochs, S. Estrada and A. C. Iacob, Balance with unbounded complexes, Bull. Lond. Math. Soc., 44 (2012), 439-442. doi: 10.1112/blms/bdr101
    [12] Complete cohomological functors on groups. Topol. Appl. (1987) 25: 203-223.
    [13] Homologie de Tate-Vogel $\acute{e}$quivariante. J. Pure Appl. Algebra (1992) 82: 39-64.
    [14] J. Hu, D. Zhang, T. Zhao and P. Zhou, Complete cohomology for extriangulated categories, Algebra Colloq., (to appear), arXiv: 2003.11852v2.
    [15] Proper classes and Gorensteinness in extriangulated categories. J. Algebra (2020) 551: 23-60.
    [16] Gorenstein homological dimensions for extriangulated categories. Bull. Malays. Math. Sci. Soc. (2021) 44: 2235-2252.
    [17] Generalized Tate cohomology. Tsukuba J. Math. (2005) 29: 389-404.
    [18] Tate cohomology for arbitrary groups via satellites. Topology Appl. (1994) 56: 293-300.
    [19] Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Géom. Différ. Catég. (2019) 60: 117-193.
    [20] Complete cohomology for arbitrary rings using injectives. J. Pure Appl. Algebra (1998) 131: 297-318.
    [21] Balance of Tate cohomology in triangulated categories. Appl. Categ. Structures. (2015) 23: 819-828.
    [22] Cohomology theoreies in triangulated categories. Acta Math. Sin. (Engl. Ser.) (2016) 32: 1377-1390.
    [23] X. Tang, On $F$-Gorenstein dimensions, J. Algebra Appl., 13 (2014), 1450022, 14 pages. doi: 10.1142/S0219498814500224
    [24] Relative homological dimensions and Tate cohomology of complexes with respect to cotorsion pairs. Comm. Algebra (2017) 45: 2875-2888.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1840) PDF downloads(184) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog