Citation: Martina Grifoni, Francesca Pedron, Gianniantonio Petruzzelli, Irene Rosellini, Meri Barbafieri, Elisabetta Franchi, Roberto Bagatin. Assessment of repeated harvests on mercury and arsenic phytoextraction in a multi-contaminated industrial soil[J]. AIMS Environmental Science, 2017, 4(2): 187-205. doi: 10.3934/environsci.2017.2.187
[1] | Hongying Jiao, Shuhai Zhu, Jinguo Zhang . Existence of infinitely many solutions for critical sub-elliptic systems via genus theory. Communications in Analysis and Mechanics, 2024, 16(2): 237-261. doi: 10.3934/cam.2024011 |
[2] | Jizheng Huang, Shuangshuang Ying . Hardy-Sobolev spaces of higher order associated to Hermite operator. Communications in Analysis and Mechanics, 2024, 16(4): 858-871. doi: 10.3934/cam.2024037 |
[3] | Xiulan Wu, Yaxin Zhao, Xiaoxin Yang . On a singular parabolic p-Laplacian equation with logarithmic nonlinearity. Communications in Analysis and Mechanics, 2024, 16(3): 528-553. doi: 10.3934/cam.2024025 |
[4] | Erlend Grong, Irina Markina . Harmonic maps into sub-Riemannian Lie groups. Communications in Analysis and Mechanics, 2023, 15(3): 515-532. doi: 10.3934/cam.2023025 |
[5] | Leandro Tavares . Solutions for a class of problems driven by an anisotropic (p,q)-Laplacian type operator. Communications in Analysis and Mechanics, 2023, 15(3): 533-550. doi: 10.3934/cam.2023026 |
[6] | Velimir Jurdjevic . Time optimal problems on Lie groups and applications to quantum control. Communications in Analysis and Mechanics, 2024, 16(2): 345-387. doi: 10.3934/cam.2024017 |
[7] | Zhiyong Wang, Kai Zhao, Pengtao Li, Yu Liu . Boundedness of square functions related with fractional Schrödinger semigroups on stratified Lie groups. Communications in Analysis and Mechanics, 2023, 15(3): 410-435. doi: 10.3934/cam.2023020 |
[8] | Ming Liu, Binhua Feng . Grand weighted variable Herz-Morrey spaces estimate for some operators. Communications in Analysis and Mechanics, 2025, 17(1): 290-316. doi: 10.3934/cam.2025012 |
[9] | Xiaotian Hao, Lingzhong Zeng . Eigenvalues of the bi-Xin-Laplacian on complete Riemannian manifolds. Communications in Analysis and Mechanics, 2023, 15(2): 162-176. doi: 10.3934/cam.2023009 |
[10] | Eleonora Amoroso, Angela Sciammetta, Patrick Winkert . Anisotropic (→p,→q)-Laplacian problems with superlinear nonlinearities. Communications in Analysis and Mechanics, 2024, 16(1): 1-23. doi: 10.3934/cam.2024001 |
The fundamental work of Hansen and Spies [4] modeled a two-layer beam with a structural damping due to the interfacial slip through the following system
{ρφtt+G(ψ−φx)x=0,Iρ(3w−ψ)tt−D(3w−ψ)xx−G(ψ−φx)=0,Iρwtt−Dwxx+3G(ψ−φx)+4γw+4βwt=0, | (1.1) |
where φ=φ(x,t) is the transverse displacement, ψ=ψ(x,t) is the rotation angle, w=w(x,t) is proportional to the amount of slip along the interface, 3w−ψ denotes the effective rotation angle. The physical quantities ρ,Iρ,G,D,β and γ are respectively: the density, mass moment of inertia, shear stiffness, flexural rigidity, adhesive damping and adhesive stiffness. Equation (1.1)3 describes the dynamics of the slip. For β=0, system (1.1) describes the coupled laminated beams without structural damping at the interface. In the recent result [1], Apalara considered the thermoelastic-laminated beam system without structural damping, namely
{ρφtt+G(ψ−φx)x=0,Iρ(3s−ψ)tt−D(3s−ψ)xx−G(ψ−φx)=0,Iρstt−Dsxx+3G(ψ−φx)+4γs+δθx=0,ρ3θt−λθxx+δstx=0, | (1.2) |
where (x,t)∈(0,1)×(0,+∞), θ=θ(x,t) is the difference temperature. The positive quantities γ,β,k,λ are adhesive stiffness, adhesive damping, heat capacity and the diffusivity respectively. The author proved that (1.2) is exponential stable provided
Gρ=DIρ. | (1.3) |
When β>0, the adhesion at the interface supplies a restoring force proportion to the interfacial slip. But this is not enough to stabilize system (1.1), see for instance [2]. To achieve exponential or general stabilization of system (1.1), many authors in literature have used additional damping. In this direction, Gang et al. [9] studied the following memory-type laminated beam system
{ρφtt+G(ψ−φx)x=0,Iρ(3w−ψ)tt−D(3w−ψ)xx+∫t0g(t−s)(3w−ψ)xx(x,s)ds−G(ψ−φx)=03Iρwtt−3Dwxx+3G(ψ−φx)+4γw+4βwt=0 | (1.4) |
and established a general decay result for more regular solutions and Gρ≠DIρ. Mustafa [15] also considered the structural damped laminated beam system (1.4) and established a general decay result provided Gρ=DIρ. Feng et al. [8] investigated the following laminated beam system
{ρwtt+Gφx+g1(wt)+f1(w,ξ,s)=h1,Iρξtt−Gφ−Dξxx+g2(ξt)+f2(w,ξ,s)=h2,Iρstt+Gφ−Dsxx+g3(st)+f2(w,ξ,s)=h3 | (1.5) |
and established the well-posedness, smooth global attractor of finite fractal dimension as well as existence of generalized exponential attractors. See also, recent results by Enyi et al. [20]. We refer the reader to [5,6,7,11,13,14,17,18] and the references cited therein for more related results.
In this present paper, we consider a thermoelastic laminated beam problem with a viscoelastic damping
{ρwtt+G(ψ−wx)x=0,Iρ(3s−ψ)tt−D(3s−ψ)xx+∫t0g(t−τ)(3s−ψ)xx(x,τ)dτ−G(ψ−wx)=03Iρstt−3Dsxx+3G(ψ−wx)+4γs+δθx=0,kθt−λθxx+δsxt=0 | (1.6) |
under initial conditions
{w(x,0)=w0(x), ψ(x,0)=ψ0(x), s(x,0)=s0(x), θ(x,0)=θ0(x), x∈[0,1],wt(x,0)=w1(x), ψt(x,0)=ψ1(x), st(x,0)=s1(x), x∈[0,1] | (1.7) |
and boundary conditions
{w(0,t)=ψx(0,t)=sx(0,t)=θ(0,t)=0,t∈[0,+∞),wx(1,t)=ψ(1,t)=s(1,t)=θx(1,t)=0,t∈[0,+∞). | (1.8) |
In the system (1.6), the integral represents the viscoelastic damping, and g is the relaxation function satisfying some suitable assumptions specified in the next section. According to the Boltzmann Principle, the viscoelastic damping (see [21] for details) is represented by a memory term in the form of convolution. It acts as a damper to reduce the internal/external forces like the beam's weight, heavy loads, wind, etc., that cause undesirable vibrations.
In most of the above works, the authors have established their decay result by including the structural damping along with other dampings. So, the natural question that comes to mind.
Is it possible to obtain general/optimal decay result (decay rates that agrees with that of g) to the thermoelastic laminated beam system (1.6)–(1.8), in the absence of the structural damping.
The novelty of this article is to answer this question in a consenting way, by using the ideas developed in [10] to establish general and optimal decay results for Problem 1.6. Moreover, we establish a weaker decay result in the case of a non-equal wave of speed propagation. To the best of our knowledge, there is no stability result for the latter in the literature.
The rest of work is organized as follows: In Section 2, we recall some preliminaries and assumptions on the memory term. In Section 3, we state and prove the main stability result for the case equal-speed and in the case of non-equal-speed of propagation. We also give some examples to illustrate our findings. Finally, in Section 4, we give the proofs of the lemmas used our main results.
In this section, we recall some useful materials and conditions. Through out this paper, C is a positive constant that may change through lines, ⟨.,.⟩ and ‖.‖2 denote respectively the inner product and the norm in L2(0,1). We assume the relaxation function g obeys the assumptions:
(G1). g:[0,+∞)⟶(0,+∞) is a non-inecreasing C1− function such that
g(0)>0,D−∫∞0g(τ)dτ=l0>0. | (2.1) |
(G2). There exist a C1 function H:[0,+∞)→(0,+∞) which is linear or is strictly convex C2 function on (0,ϵ0), ϵ0≤g(0), with H(0)=H′(0)=0 and a positive nonincreasing differentiable function ξ:[0,+∞)→(0,+∞), such that
g′(t)≤−ξ(t)H(g(t)),t≥0, | (2.2) |
Remark 2.1. As in [10], we note here that, if H is a strictly increasing convex C2− function on (0,r], with H(0)=H′(0)=0, then H has an extension ˉH, which is strictly increasing and strictly convex C2-function on (0,+∞). For example, ˉH can be defined by
ˉH(s)=H″(r)2s2+(H′(r)−H″(r)r)s+H(r)−H′(r)r+H″(r)2r2, s>r. | (2.3) |
Let
H1∗(0,1)={u∈H1(0,1)/u(0)=0}, ˉH1∗(0,1)={u∈H1(0,1)/u(1)=0}, |
H2∗(0,1)={u∈H2(0,1)/ux∈H1∗(0,1)}, ˉH2∗(0,1)={u∈H2(0,1)/ux∈ˉH1∗(0,1)}. |
The existence and regularity result of problem (1.6) is the following
Theorem 2.1. Let (w0,3s0−ψ0,s0,θ0)∈H1∗(0,1)×ˉH1∗(0,1)×ˉH1∗(0,1)×H1∗(0,1) and (w1,3s1−ψ1,s1)∈L2(0,1)×L2(0,1)×L2(0,1) be given. Suppose (G1) and (G2) hold. Then problem (1.6) has a unique global weak solution (w,3s−ψ,s,θ) which satisfies
w∈C(R+,H1∗(0,1))∩C1(R+,L2(0,1)), (3s−ψ)∈C(R+,ˉH1∗(0,1))∩C1(R+,L2(0,1)), |
s∈C(R+,ˉH1∗(0,1))∩C1(R+,L2(0,1)), θ∈C(R+,L2(0,1))∩L2(R+,H1(0,1)). |
Furthermore, if (w0,(3s0−ψ0),s0,θ0)∈H2∗(0,1)×ˉH2∗(0,1)×ˉH2∗(0,1)×H2(0,1)∩H1∗(0,1) and (w1,(3s1−ψ1),s1)∈H1∗(0,1)×ˉH1∗(0,1)×ˉH1∗(0,1), then the solution of (1.6) satisfies
w∈C(R+,H2∗(0,1))∩C1(R+,H1∗(0,1))∩C2(R+,L2(0,1)), |
(3s−ψ)∈C(R+,ˉH2∗(0,1))∩C1(R+,ˉH1∗(0,1))∩C2(R+,L2(0,1)), |
s∈C(R+,ˉH2∗(0,1))∩C1(R+,ˉH1∗(0,1))∩C2(R+,L2(0,1)), |
θ∈C(R+,H2(0,1)∩H2∗(0,1))∩C1(R+,H1∗(0,1)). |
The proof of Theorem 2.1 can be established using the Galerkin approximation method as in [16]. Throughout this paper, we denote by ⋄ the binary operator, defined by
(g⋄ν)(t)=∫t0g(t−τ)‖ν(t)−ν(τ)‖22dτ,t≥0. |
We also define h(t) and Cα as follow
h(t)=αg(t)−g′(t) and Cα=∫+∞0g2(τ)αg(τ)−g′(τ)dτ. |
The following lemmas will be applied repeatedly throughout this paper
Lemma 2.1. For any function f∈L2loc([0,+∞),L2(0,1)), we have
∫10(∫t0g(t−s)(f(t)−f(s))ds)2dx≤(1−l0)(g⋄f)(t), | (2.4) |
∫10(∫x0f(y,t)dy)2dx≤‖f(t)‖22. | (2.5) |
Lemma 2.2. Let v∈H1∗(0,1) or ˉH1∗(0,1), we have
∫10(∫t0g(t−s)(v(t)−v(τ))dτ)2dx≤Cp(1−l0)(g⋄v)(t), | (2.6) |
where Cp>0 is the poincaré constant.
Lemma 2.3. Let (w,3s−ψ,s,θ) be the solution of (1.6). Then, for any 0<α<1 we have
∫10(∫t0g(t−τ)((3s−ψ)x(τ)−(3s−ψ)x(t))dτ)2dx≤Cα(h⋄(3s−ψ)x)(t). | (2.7) |
Proof. Using Cauchy-Schwarz inequality, we have
∫10(∫t0g(t−τ)((3s−ψ)x(τ)−(3s−ψ)x(t))dτ)2dx=∫10(∫t0g(t−τ)√h(t−τ)√h(t−τ)((3s−ψ)x(τ)−(3s−ψ)x(t))dτ)2dx≤(∫+∞0g2(τ)h(τ)ds)∫10∫t0h(t−τ)((3s−ψ)x(τ)−(3s−ψ)x(t))2dτdx=Cα(h⋄(3s−ψ)x)(t). | (2.8) |
Lemma 2.4. [12] Let F be a convex function on the close interval [a,b], f,j:Ω→[a,b] be integrable functions on Ω, such that j(x)≥0 and ∫Ωj(x)dx=α1>0. Then, we have the following Jensen inequality
F(1α1∫Ωf(y)j(y)dy)≤1α1∫ΩF(f(y))j(y)dy. | (2.9) |
In particular if F(y)=y1p, y≥0, p>1, then
(1α1∫Ωf(y)j(y)dy)1p≤1α1∫Ω(f(y))1pj(y)dy. | (2.10) |
Lemma 2.5. The energy functional E(t) of the system (1.6)-(1.8) defined by
E(t)=12[ρ‖wt‖22+3Iρ‖st‖22+Iρ‖3st−ψt‖22+3D‖sx‖22+G‖ψ−wx‖22]+12[(D−∫t0g(τ)dτ)‖3sx−ψx‖22+(g⋄(3sx−ψx))(t)+4γ‖s‖22+k‖θ‖22], | (2.11) |
satisfies
E′(t)=12(g′⋄(3sx−ψx))(t)−12g(t)‖3sx−ψx‖22−λ‖θx‖22≤12(g′⋄(3sx−ψx))(t)≤0, ∀ t≥0. | (2.12) |
Proof. Multiplying (1.6)1, (1.6)2, (1.6)3 and (1.6)4, respectively, by wt, (3st−ψt), st and θ, integrating over (0,1), and using integration by parts and the boundary conditions (1.7), we arrive at
12ddt(ρ‖wt‖22+G‖ψ−wx‖22)=G⟨(ψ−wx),ψt⟩, | (2.13) |
12ddt[Iρ‖3st−ψt‖22+(D−∫t0g(τ)dτ)‖3sx−ψx‖22+(g⋄(3sx−ψx))(t)]=G⟨(ψ−wx),(3s−ψ)t⟩+12(g′⋄(3sx−ψx))(t)−12g(t)‖3sx−ψx‖22, | (2.14) |
12ddt[3Iρ‖st‖22+3D‖sx‖22+4γ‖s‖22]=−3G⟨(ψ−wx),st⟩−δ⟨θx,st⟩, | (2.15) |
and
12ddt(k‖θ‖22)=−λ‖θx‖22+δ⟨θx,st⟩. | (2.16) |
Adding the equations (2.13)–(2.16), taking into account (G1) and (G2), we obtain (2.12) for regular solutions. The result remains valid for weak solutions by a density argument. This implies the energy functional is non-increasing and
E(t)≤E(0), ∀t≥0. |
This section is subdivided into two. In the first subsection, we prove the stability result for equal-wave-speed of propagation, whereas in the second subsection, we focus on the stability result for non-equal-wave-speed of propagation.
Our aim, in this subsection, is to prove an explicit, general and optimal decay rate of solutions for system (1.6)–(1.8). To achieve this, we define a Lyapunov functional
L(t)=NE(t)+6∑j=1NjIj(t), | (3.1) |
where N, Nj, j=1,2,3,4,5,6 are positive constants to be specified later and
I1(t)=−Iρ∫10(3s−ψ)t∫t0g(t−τ)((3s−ψ)(t)−(3s−ψ)(τ))dτdx,t≥0, |
I2(t)=3Iρ∫10sstdx+3ρ∫10wt∫x0s(y)dydx,I3(t)=−3kIρ∫10θ∫x0st(y)dydx,t≥0, |
I4(t)=−ρ∫10wtwdx,I5(t)=Iρ∫10(3s−ψ)(3s−ψ)tdx,t≥0, |
I6(t)=3IρG∫10(ψ−wx)stdx−3ρD∫10wtsxdx,I7(t)=∫10∫t0J(t−τ)(3sx−ψx)2(τ)dτdx,t≥0, |
where
J(t)=∫+∞tg(τ)dτ. |
The following lemma is very important in the proof of our stability result.
Lemma 3.1. Suppose Gρ=DIρ. Under suitable choice of t0,N, Nj, j=1,2,3,4,5,6, the Lyapunov functional L satisfies, along the solution of (1.6)−(1.8), the estimate
L′(t)≤−β(‖wt‖22+‖st‖22+‖3st−ψt‖22+‖sx‖22+‖3wx−ψx‖22+‖ψ−wx‖22)−β(‖s‖22+‖θx‖22)+12(g⋄(3sx−ψx))(t),∀ t≥t0 | (3.2) |
and the equivalence relation
α1E(t)≤L(t)≤α2E(t) | (3.3) |
holds for some β>0, α1, α2>0.
Proof. By virtue of assumption (3.1) and using h(t)=αg(t)−g′(t), it follows from Lemmas 2.5, 4.1-4.6 (see the Appendix for detailed derivations) that, for all t≥t0>0,
L′(t)≤−[N4ρ−N2δ4]‖wt‖22−[N3δIρ2−N2C(1+1ϵ2)−N6C(1+1ϵ1)]‖st‖22−3N2γ‖s‖22−[N1Iρg0−N5Iρ−N6ϵ1]‖3st−ψt‖22−[3DN2−N3ϵ3−N4C−N6C]‖sx‖22−[N6G2−N1ϵ2−N3ϵ3−N4Cϵ4−N5C]‖ψ−wx‖22−[N5l04−N1ϵ1−N4ϵ4]‖3sx−ψx‖22−[λN−N2C−N3C(1+1ϵ3)−N6C]‖θx‖22+Nα2(g⋄(3sx−ψx))(t)−[N2−CCα(N5+N1(1+1ϵ1+1ϵ2))](h⋄(3sx−ψx))(t). | (3.4) |
Now, we choose
N4=N5=1, ϵ4=l08 | (3.5) |
and select N1 large enough such that
μ1:=N1Iρg0−Iρ>0. | (3.6) |
Next, we choose N6 large so that
μ2:=N6G2−C>0. | (3.7) |
Also, we select N2 large enough so that
μ3:=3DN2−C−N6C>0. | (3.8) |
After fixing N1,N2,N6, and letting ϵ3=μ12N3, we then select ϵ1,ϵ2, and δ4 very small such that
ρ−N2δ4>0, μ1−N6ϵ1>0, μ4:=μ22−N1ϵ2>0 | (3.9) |
and select N3 large enough so that
N3δIρ2−N2C(1+1ϵ2)−N6C(1+1ϵ1)>0. | (3.10) |
Now, we note that αg2(s)h(s)=αg2(s)αg(s)−g′(s)<g(s); thus the dominated convergence theorem gives
αCα=∫+∞0αg2(s)αg(s)−g′(s)ds→0 as α→0. | (3.11) |
Therefore, we can choose some 0<α0<1 such that for all 0<α≤α0,
αCα<14C(1+N1(1+1ϵ1+1ϵ2)). | (3.12) |
Finally, we select N so large enough and take α=1N So that
λN−N2C−N3C(1+1ϵ3)−N6C>0,N2−CCα(1+N1(1+1ϵ1+1ϵ2))>0. | (3.13) |
Combination of (3.6) - (3.13) yields the estimate (3.2). The equivalent relation (3.3) can be obtain easily by using Young's, Cauchy-Schwarz, and Poincaré's inequalities.
Now, we state and prove our stability result for this subsection.
Theorem 3.1. Assume Gρ=DIρ and (G1) and (G2) hold. Then, there exist positive constants a1 and a2 such that the energy solution (2.11) satisfies
E(t)≤a2H−11(a1∫tt0ξ(τ)dτ), where H1(t)=∫rt1τH′(τ)dτ | (3.14) |
and H1 is a strictly decreasing and strictly convex function on (0,r], with limt→0H1(t)=+∞.
Proof. Using the fact that g and ξ are positive, non-increasing and continuous, and H is positive and continuous, we have that for all t∈[0,t0]
0<g(t0)≤g(t)≤g(0), 0<ξ(t0)≤ξ(t)≤ξ(0). |
Thus for some constants a,b>0, we obtain
a≤ξ(t)H(g(t))≤b. |
Therefore, for any t∈[0,t0], we get
g′(t)≤−ξ(t)H(g(t))≤−ag(0)g(0)≤−ag(0)g(t) | (3.15) |
and
ξ(t)g(t)≤−g(0)ag′(t). | (3.16) |
From (2.12) and (3.15), it follows that
∫t00g(τ)‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ≤−g(0)a∫t00g′(τ)‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ≤−CE′(t), ∀t≥t0. | (3.17) |
From (3.2) and (3.17), we have
L′(t)≤−βE(t)+12(g⋄(3sx−ψx))(t)=−βE(t)+12∫t00g(τ)‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ+12∫tt0g(τ)‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ≤−βE(t)−CE′(t)+12∫tt0g(τ)‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ. |
Thus, we get
L′1(t)≤−βE(t)+12∫tt0g(τ)‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ, ∀t≥t0, | (3.18) |
where L1=L+CE∼E by virtue of (3.3). To finish our proof, we distinct two cases:
Case 1: H(t) is linear. In this case, we multiply (3.18) by ξ(t), keeping in mind (2.12) and (G2), to get
ξ(t)L′1(t)≤−βξ(t)E(t)+12ξ(t)∫tt0g(τ)‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ≤−βξ(t)E(t)+12∫tt0ξ(τ)g(τ)‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ≤−βξ(t)E(t)−12∫tt0g′(τ)‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ≤−βξ(t)E(t)−CE′(t), ∀ t≥t0. | (3.19) |
Therefore
(ξL1+CE)′(t)≤−βξ(t)E(t), ∀ t≥t0. | (3.20) |
Since ξ is non-increasing and L1∼E, we have
L2=ξL1+CE∼E. | (3.21) |
Thus, from (3.20), we get for some positive constant α
L′2(t)≤−βξ(t)E(t)≤−αξ(t)L2(t), ∀ t≥t0. | (3.22) |
Integrating (3.22) over (t0,t) and recalling (3.21), we obtain
E(t)≤a1e−a2∫tt0ξ(s)ds=a1H−11(a2∫tt0ξ(s)ds). |
Case 2: H(t) is nonlinear. In this case, we consider the functional L(t)=L(t)+I7(t). From (3.2) and Lemma 4.7 (see the Appendix), we obtain
L′(t)≤−dE(t), ∀t≥t0, | (3.23) |
where d>0 is a positive constant. Therefore,
d∫tt0E(s)ds≤L(t0)−L(t)≤L(t0). |
Hence, we get
∫+∞0E(s)ds<∞. | (3.24) |
Using (3.24), we define p(t) by
p(t):=η∫tt0‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ, |
where 0<η<1 so that
p(t)<1,∀t≥t0. | (3.25) |
Moreover, we can assume p(t)>0 for all t≥t0; otherwise using (3.18), we obtain an exponential decay rate. We also define q(t) by
q(t)=−∫tt0g′(τ)‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ. |
Then q(t)≤−CE′(t), ∀t≥t0. Now, we have that H is strictly convex on (0,r] (where r=g(t0)) and H(0)=0. Thus,
H(στ)≤σH(τ), 0≤σ≤1 and τ∈(0,r]. | (3.26) |
Using (3.26), condition (G2), (3.25), and Jensen's inequality, we get
q(t)=1ηp(t)∫tt0p(t)(−g′(τ))η‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ≥1ηp(t)∫tt0p(t)ξ(τ)H(g(τ))η‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ≥ξ(t)ηp(t)∫tt0H(p(t)g(τ))η‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ≥ξ(t)ηH(η∫tt0g(τ)η‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ)=ξ(t)ηˉH(η∫tt0g(τ)η‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ), | (3.27) |
where ˉH is the convex extention of H on (0,+∞) (see remark 2.1). From (3.27), we have
∫tt0g(τ)η‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ≤1ηˉH−1(ηq(t)ξ(t)). |
Therefore, (3.18) yields
L′1(t)≤−βE(t)+CˉH−1(ηq(t)ξ(t)), ∀ t≥t0. | (3.28) |
For r0<r, we define L3(t) by
L3(t):=ˉH′(r0E(t)E(0))L1(t)+E(t)∼E(t) |
since L1∼E. From (3.28) and using the fact that
E′(t)≤0, ˉH′(t)>0, ˉH″(t)>0, |
we obtain for all t≥t0
L′3(t)=r0E′(t)E(0)ˉH″(r0E(t)E(0))L1(t)+ˉH′(r0E(t)E(0))L′1(t)+E′(t)≤−βE(t)ˉH′(r0E(t)E(0))+CˉH′(r0E(t)E(0))ˉH−1(ηq(t)ξ(t))+E′(t). | (3.29) |
Let us consider the convex conjugate of ˉH denoted by ˉH∗ in the sense of Young (see [3] page 61-64). Thus,
ˉH∗(τ)=τ(ˉH′)−1(τ)−ˉH[(ˉH′)(τ)] | (3.30) |
and ˉH∗ satisfies the generalized Young inequality
AB≤ˉH∗(A)+ˉH(B). | (3.31) |
Let A=ˉH′(r0E(t)E(0)) and B=ˉH−1(μz(t)ξ(t)), It follows from (2.12) and (3.29)-(3.31) that
L′3(t)≤−βE(t)ˉH′(r0E(t)E(0))+CˉH∗(ˉH′(r0E(t)E(0)))+Cηq(t)ξ(t)+E′(t)≤−βE(t)ˉH′(r0E(t)E(0))+Cr0E(t)E(0)ˉH′(r0E(t)E(0))+Cηq(t)ξ(t)+E′(t). | (3.32) |
Next, we multiply (3.32) by ξ(t) and recall that r0E(t)E(0)<r and
ˉH′(r0E(t)E(0))=H′(r0E(t)E(0)), |
we arrive at
ξ(t)L′3(t)≤−βξ(t)E(t)H′(r0E(t)E(0))+Cr0E(t)E(0)ξ(t)H′(r0E(t)E(0))+Cηq(t)+ξ(t)E′(t)≤−βξ(t)E(t)H′(r0E(t)E(0))+Cr0E(t)E(0)ξ(t)H′(r0E(t)E(0))−CE′(t). | (3.33) |
Let L4(t)=ξ(t)L3(t)+CE(t). Since L3∼E, it follows that
b0L4(t)≤E(t)≤b1L4(t), | (3.34) |
for some b0,b1>0. Thus (3.33) gives
L′4(t)≤−(βE(0)−Cr0)ξ(t)E(t)E(0)ξ(t)H′(r0E(t)E(0)), ∀t≥t0. |
We select r0<r small enough so that βE(0)−Cr0>0, we get
L′4(t)≤−mξ(t)E(t)E(0)ξ(t)H′(r0E(t)E(0))=−mξ(t)H2(E(t)E(0)), ∀t≥t0, | (3.35) |
for some constant m>0 and H2(τ)=τH′(r0τ). We note here that
H′2(τ)=H′(r0τ)+r0tH″(r0τ), |
thus the strict convexity of H on (0,r], yields H2(τ)>0,H′2(τ)>0 on (0,r]. Let
F(t)=b0L4(t)E(0). |
From (3.34) and (3.35), we obtain
F(t)∼E(t) | (3.36) |
and
F′(t)=a0L′4(t)(t)E(0)≤−m1ξ(t)H2(F(t)), ∀t≥t0. | (3.37) |
Integrating (3.37) over (t0,t), we arrive at
m1∫tt0ξ(τ)dτ≤−∫tt0F′(τ)H2(F(τ))dτ=1r0∫r0F(t0)r0F(t)1τH′(τ)dτ. | (3.38) |
This implies
F(t)≤1r0H−11(¯m1∫tt0ξ(τ)dτ), where H1(t)=∫rt1τH′(τ)dτ. | (3.39) |
Using the properties of H, we see easily that H1 is strictly decreasing function on (0,r] and
limt⟶0H1(t)=+∞. |
Hence, (3.14) follows from (3.36) and (3.39). This completes the proof.
Remark 3.1. The stability result in (3.1) is general and optimal in the sense that it agrees with the decay rate of g, see [10], Remark 2.3.
Corollary 3.2. Suppose Gρ=DIρ, and (G1), and (G2) hold. Let the function H in (G2) be defined by
H(τ)=τp, 1≤p<2, | (3.40) |
then the solution energy (2.11) satisfies
E(t)≤a2exp(−a1∫t0ξ(τ)dτ), for p=1,E(t)≤C(1+∫tt0ξ(τ)dτ)1p−1, for 1<p<2 | (3.41) |
for some positive constants a2,a1 and C.
In this subsection, we establish another stability result in the case non-equal speeds of wave propagation. To achieve this, we consider a stronger solution of (1.6). Let (w,3s−ψ,s,θ) be the strong solution of problem (1.6)–(1.8), then differentiation of 1.6 with respect to t gives
{ρwttt+G(ψ−wx)xt=0,Iρ(3s−ψ)ttt−D(3s−ψ)xxt+∫t0g(τ)(3s−ψ)xxt(x,t−τ)dτ+g(t)(3s0−ψ0)xx−G(ψ−wx)t=03Iρsttt−3Dsxxt+3G(ψ−wx)t+4γst+δθxt=0,kθtt−λθxxt+δsxtt=0, | (3.42) |
where (x,t)∈(0,1)×(0,+∞) and (3s−ψ)xx(x,0)=(3s0−ψ0)xx. The modified energy functional associated to (3.42) is defined by
E1(t)=12[ρ‖wtt‖22+3Iρ‖stt‖22+Iρ‖3stt−ψtt‖22+3D‖sxt‖22+G‖ψt−wxt‖22]+12[4γ‖st‖22+k‖θt‖22+(D−∫t0g(τ)dτ)‖3sxt−ψxt‖22+(g⋄(3sxt−ψxt))(t)]. | (3.43) |
Lemma 3.2. Let (w,3s−ψ,s,θ) be the strong solution of problem (1.6)-(1.8). Then, the energy functional (3.43) satisfies, for all t≥0
E′1(t)=12(g′⋄(3sxt−ψxt))(t)−12g(t)‖3sxt−ψxt‖22−g(t)⟨(3stt−ψtt),(3s0−ψ0)xx⟩−λ‖θxt‖22 | (3.44) |
and
E1(t)≤C(E1(0)+‖(3s0−ψ0)xx‖22). | (3.45) |
Proof. The proof of (3.44) follows the same steps as in the proof of Lemma 2.5. From (3.44), it is obvious that
E′1(t)≤−g(t)⟨(3stt−ψtt),(3s0−ψ0)xx⟩. |
So, using Cauchy-Schwarz inequality, we obtain
E′1(t)≤Iρg(t)2‖3stt−ψtt‖22+g(t)2Iρ‖(3s0−ψ0)xx‖22≤g(t)E1(t)+g(t)2Iρ‖(3s0−ψ0)xx‖22. | (3.46) |
This implies
ddt(E1(t)e−∫t0g(τ)dτ)≤e−∫t0g(τ)dτg(t)2Iρ‖(3s0−ψ0)xx‖22≤g(t)2Iρ‖(3s0−ψ0)xx‖22 | (3.47) |
Integrating (3.47) over (0,t) yields
E1(t)e−∫+∞0g(τ)dτ≤E1(t)e−∫t0g(τ)dτ≤E1(0)+12Iρ(∫t0g(τ)dτ)‖(3s0−ψ0)xx‖22≤E1(0)+12Iρ(∫+∞0g(τ)dτ)‖(3s0−ψ0)xx‖22. | (3.48) |
Hence, (3.45) follows.
Remark 3.2. Using Young's inequality, we observe from (3.44) and (3.45) that
λ‖θxt‖22=−E′1(t)+12(g′⋄(3sxt−ψxt))(t)−12g(t)‖3sxt−ψxt‖22−g(t)⟨(3stt−ψtt),(3s0−ψ0)xx⟩≤−E′1(t)−g(t)⟨(3stt−ψtt),(3s0−ψ0)xx⟩≤−E′1(t)+g(t)(‖3stt−ψtt‖22+‖(3s0−ψ0)xx‖22)≤−E′1(t)+g(t)(2IρE1(t)+‖(3s0−ψ0)xx‖22)≤C(−E′1(t)+c1g(t)) | (3.49) |
for some fixed positive constant c1. Similarly, we obtain
0≤−(g′⋄(3sxt−ψxt))(t)≤C(−E′1(t)+c1g(t)). | (3.50) |
As in the case of equal-wave-speed of propagation, we define a Lyapunov functional
˜L(t)=˜NE(t)+6∑j=1~NjIj(t)+~N6I8(t), | (3.51) |
where ˜N, ~Nj, j=1,2,3,4,5,6, are positive constants to be specified later and
I8(t)=3λδ(IρG−ρD)∫10θxwxdx. |
Lemma 3.3. Suppose Gρ≠DIρ. Then, under suitable choice of ˜N, ~Nj, j=1,2,3,4,5,6, the Lyapunov functional ˜L satisfies, along the solution of (1.6), the estimate
˜L′(t)≤−˜βE(t)+12(g⋄(3sx−ψx))(t)+C(−E′1(t)+c1g(t)),∀ t≥t0, | (3.52) |
for some positive constants ˜β and c1.
Proof. Following the proof of Lemma 3.1, we end up with (3.52).
Lemma 3.4. Suppose assumptions (G1) and (G2) hold and the function H in (G2) is linear. Let (w,3s−ψ,s,θ) be the strong solution of problem (1.6)-(1.8). Then,
ξ(t)(g⋄(3sxt−ψxt))(t)≤C(−E′1(t)+c1g(t)), ∀ t≥0, | (3.53) |
where c1 is a fixed positive constant.
Proof. Using (3.50) and the fact that ξ is decreasing, we have
ξ(t)(g⋄(3sxt−ψxt))(t)=ξ(t)∫t0g(t−τ)(‖(3sxt−ψxt)(t)−(3sxt−ψxt)(τ)‖22)dτ≤∫t0ξ(t−τ)g(t−τ)(‖(3sxt−ψxt)(t)−(3sxt−ψxt)(τ)‖22)dτ≤−∫t0g′(t−τ)(‖(3sxt−ψxt)(t)−(3sxt−ψxt)(τ)‖22)dτ=−(g′⋄(3sxt−ψxt))(t)≤C(−E′1(t)+c1g(t)). | (3.54) |
Our stability result of this subsection is
Theorem 3.3. Assume (G1) and (G2) hold and Gρ≠DIρ. Then, there exist positive constants a1,a2 and t2>t0 such that the energy solution (2.11) satisfies
E(t)≤a2(t−t0)H−12(a1(t−t0)∫tt2ξ(τ)dτ),∀t>t2, where H2(τ)=τH′(τ). | (3.55) |
Proof. Case 1: H is linear. Multiplying (3.52) by ξ(t) and using (G1), we get
ξ(t)˜L′(t)≤−˜βξ(t)E(t)+12ξ(t)(g⋄(3sx−ψx))(t)+Cξ(t)(−E′1(t)+c1g(t))≤−˜βξ(t)E(t)−CE′(t)−Cξ(0)E′1(t)+ξ(0)c1g(t), ∀ t≥t0 |
Using the fact that ξ non-increasing, we obtain
(ξ˜L+CE+E1)′(t)≤−˜βξ(t)E(t)+c2g(t), ∀ t≥t0. |
for some fixed positive constant c2. This implies
˜βξ(t)E(t)≤−(ξ˜L+CE+E1)′(t)+c2g(t), ∀ t≥t0. | (3.56) |
Integrating (3.56) over (t0,t), using the fact that E is non-increasing and the inequality (3.45), we arrive at
˜βE(t)∫tt0ξ(τ)dτ≤˜β∫tt0ξ(τ)E(τ)dτ≤−(ξ˜L+CE+E1)(t)+(ξ˜L+CE+E1)(t0)+c2∫tt0g(τ)dτ≤(ξ˜L+CE+E1)(0)+C‖(3s0−ψ0)xx‖22+c2∫∞0g(τ)dτ=(ξ˜L+CE+E1)(0)+C‖(3s0−ψ0)xx‖22+c2(D−l0). | (3.57) |
Thus, we have
E(t)≤C∫tt0ξ(τ)dτ, ∀ t≥t0. | (3.58) |
Case II: H is nonlinear. First, we observe from (3.52) that
˜L′(t)≤−˜βE(t)+12(g⋄(3sx−ψx))(t)+C(−E′1(t)+c1g(t))≤−˜βE(t)+C((g⋄(3sx−ψx))(t)+(g⋄(3sxt−ψxt))(t))+C(−E′1(t)+c1g(t)), ∀ t≥t0. | (3.59) |
From (2.12), (3.16) and (3.50), we have for any t≥t0
∫t00g(τ)‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ+∫t00g(τ)‖(3sxt−ψxt)(t)−(3sxt−ψxt)(t−τ)‖22dτ≤1ξ(t0)∫t00ξ(τ)g(τ)‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ+1ξ(t0)∫t00ξ(τ)g(τ)‖(3sxt−ψxt)(t)−(3sxt−ψxt)(t−τ)‖22dτ≤−g(0)aξ(t0)∫t00g′(τ)‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ−g(0)aξ(t0)∫t00g′(τ)‖(3sxt−ψxt)(t)−(3sxt−ψxt)(t−τ)‖22dτ≤−C(E′(t)+E′1(t))+c2g(t), | (3.60) |
where c2 is a fixed positive constant. Substituting (3.60) into (3.59), we obtain for any t≥t0
˜L′(t)≤−˜βE(t)−C(E′(t)+E′1(t))+c3g(t)+C∫tt0g(τ)‖(3sx−ψx)(t)−(3sx−ψx)(t−τ)‖22dτ+C∫tt0g(τ)‖(3sxt−ψxt)(t)−(3sxt−ψxt)(t−τ)‖22dτ, | (3.61) |
where c_3 is a fixed positive constant. Now, we define the functional \Phi by
\begin{equation} \begin{aligned} \Phi(t) = &\frac{\sigma}{t-t_0}\int_{t_0}^{t}\|(3s_x -\psi_x)(t)-(3s_x -\psi_x)(t-\tau)\|_2^2 d\tau\\ &+\frac{\sigma}{t-t_0} \int_{t_0}^{t}\|(3s_{xt} -\psi_{xt})(t)-(3s_{xt} -\psi_{xt})(t-\tau)\|_2^2 d\tau, \ \forall \ t \gt t_0. \end{aligned} \end{equation} | (3.62) |
Using (2.11), (2.12), (3.43) and (3.45), we easily get
\begin{equation} \begin{aligned} \frac{1}{t-t_0}\int_{t_0}^{t} \|(3s_x -\psi_x)(t)-&(3s_x -\psi_x)(t-\tau)\|_2^2 d\tau+\frac{1}{t-t_0} \int_{t_0}^{t}\|(3s_{xt} -\psi_{xt})(t)-(3s_{xt} -\psi_{xt})(t-\tau)\|_2^2 d\tau\\ &\leq \frac{2}{t-t_0}\int_{t_0}^{t}\left( \|(3s_x -\psi_x)(t)\|_2^2+\|(3s_x -\psi_x)(t-\tau)\|_2^2\right) d\tau\\ & \quad +\frac{2}{t-t_0}\int_{t_0}^{t}\left( \|(3s_{xt} -\psi_{xt})(t)\|_2^2+\|(3s_{xt} -\psi_{xt})(t-\tau)\|_2^2\right) d\tau\\ &\leq \frac{4}{l_0(t-t_0)}\int_{t_0}^{t}\left(E(t)+E(t-\tau)+E_1(t)+ E_1(t-\tau) \right)d\tau \\ &\leq \frac{8}{l_0(t-t_0)}\int_{t_0}^{t}\left(E(0)+ C\left( E_1(0)+ \|(3s_0-\psi_0)_{xx}\|_2^2 \right) \right)d\tau \\ &\leq \frac{8}{l_0}\left(E(0)+ C\left( E_1(0)+ \|(3s_0-\psi_0)_{xx}\|_2^2\right) \right) \lt \infty, \ \forall \ t \gt t_0. \end{aligned} \end{equation} | (3.63) |
This last inequality allows us to choose 0 < \sigma < 1 such that
\begin{equation} \Phi(t) \lt 1, \ \ \forall \ t \gt t_0. \end{equation} | (3.64) |
Hence forth, we assume \Phi(t) > 0 , otherwise, we get immediately from (3.61)
\begin{equation} \nonumber E(t)\leq \frac{C}{t-t_0}, \ \ \forall \ t \gt t_0. \end{equation} |
Next, we define the functional \mu by
\begin{equation} \begin{aligned} \mu(t) = -&\int_{t_0}^{t}g'(\tau)\|(3s_x -\psi_x)(t)-(3s_x -\psi_x)(t-\tau)\|_2^2 d\tau\\ &-\int_{t_0}^{t}g'(\tau)\|(3s_{xt} -\psi_{xt})(t)-(3s_{xt} -\psi_{xt})(t-\tau)\|_2^2 d\tau \end{aligned} \end{equation} | (3.65) |
and observe that
\begin{equation} \mu(t)\leq -C\left(E'(t)+ E'_1(t) \right) + c_4g(t), \ \ \ \ \forall \ t \gt t_0, \end{equation} | (3.66) |
where c_4 is a fixed positive constant. The fact that H is strictly convex and H(0) = 0 implies
\begin{equation} H(\nu \tau)\leq \nu H(\tau), \ \ 0\leq \nu\leq 1 \ {\rm and}\ \tau\in (0, r]. \end{equation} | (3.67) |
Using assumption (G1) , (3.67), Jensen’s inequality and (3.64), we get for any t > t_0
\begin{equation} \begin{aligned} \mu(t) = &-\frac{1}{\Phi(t)}\int_{t_0}^{t}\Phi(t)g'(\tau)\|(3s_x -\psi_x)(t)-(3s_x -\psi_x)(t-\tau)\|_2^2 d\tau\\ & \quad -\frac{1}{\Phi(t)}\int_{t_0}^{t}\Phi(t)g'(\tau)\|(3s_{xt} -\psi_{xt})(t)-(3s_{xt} -\psi_{xt})(t-\tau)\|_2^2 d\tau\\ &\geq \frac{1}{\Phi(t)}\int_{t_0}^{t}\Phi(t)\xi(\tau)H(g(\tau))\|(3s_x -\psi_x)(t)-(3s_x -\psi_x)(t-\tau)\|_2^2 d\tau\\ & \quad +\frac{1}{\Phi(t)}\int_{t_0}^{t}\Phi(t)\xi(\tau)H(g(\tau))\|(3s_{xt} -\psi_{xt})(t)-(3s_{xt} -\psi_{xt})(t-\tau)\|_2^2 d\tau\\ &\geq \frac{\xi(t)}{\Phi(t)}\int_{t_0}^{t}H(\Phi(t)g(\tau))\|(3s_x -\psi_x)(t)-(3s_x -\psi_x)(t-\tau)\|_2^2 d\tau\\ & \quad +\frac{\xi(t)}{\Phi(t)}\int_{t_0}^{t}H(\Phi(t)g(\tau))\|(3s_{xt} -\psi_{xt})(t)-(3s_{xt} -\psi_{xt})(t-\tau)\|_2^2 d\tau\\ &\geq \frac{\xi(t)(t-t_0)}{\sigma}H\left(\frac{\sigma}{t-t_0} \int_{t_0}^{t}g(\tau)(\Omega_1(t-\tau)+\Omega_2(t-\tau)) d\tau\right) \\ & = \frac{\xi(t)(t-t_0)}{\sigma}\bar{H}\left(\frac{\sigma}{t-t_0} \int_{t_0}^{t}\left( \Omega_1(t-\tau)+\Omega_2(t-\tau)\right) d\tau\right), \end{aligned} \end{equation} | (3.68) |
where
\begin{equation} \nonumber \begin{aligned} &\Omega_1(t-\tau) = \|(3s_x -\psi_x)(t)-(3s_x -\psi_x)(t-\tau)\|_2^2 , \\ &\Omega_2(t-\tau) = \|(3s_{xt} -\psi_{xt})(t)-(3s_{xt} -\psi_{xt})(t-\tau)\|_2^2 \end{aligned} \end{equation} |
and \bar{H} is the C^2- strictly increasing and convex extension of H on (0, +\infty). This implies
\begin{equation} \begin{aligned} \int_{t_0}^{t}g(\tau)\|(3s_x -\psi_x)(t)&-(3s_x -\psi_x)(t-\tau)\|_2^2 d\tau +\int_{t_0}^{t}g(\tau)\|(3s_{xt} -\psi_{xt})(t)-(3s_{xt} -\psi_{xt})(t-\tau)\|_2^2 d\tau\\ &\leq \frac{(t-t_0)}{\sigma}\bar{H}^{-1}\left(\frac{\sigma \mu(t)}{\xi(t)(t-t_0)} \right), \ \forall\ t \gt t_0. \end{aligned} \end{equation} | (3.69) |
Thus, the inequality (3.61) becomes
\begin{equation} \begin{aligned} \tilde{L}'(t)\leq &-\tilde{\beta} E(t)-C\left(E'(t)+ E'_1(t) \right) + c_3g(t)+ \frac{C(t-t_0)}{\sigma}\bar{H}^{-1}\left(\frac{\sigma \mu(t)}{\xi(t)(t-t_0)} \right), \ \forall\ t \gt t_0. \end{aligned} \end{equation} | (3.70) |
Let \tilde{L}_1(t): = \tilde{L}(t)+C\left(E(t)+ E_1(t) \right). Then (3.70) becomes
\begin{equation} \tilde{L}'_1(t)\leq -\tilde{\beta} E(t) + \frac{C(t-t_0)}{\sigma}\bar{H}^{-1}\left(\frac{\sigma \mu(t)}{\xi(t)(t-t_0)} \right) + c_3g(t), \ \forall\ t \gt t_0. \end{equation} | (3.71) |
For 0 < r_1 < r, we define the functional \tilde{L}_2 by
\begin{equation} \tilde{L}_2(t): = \bar{H}'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)\tilde{L}_1(t), , \ \forall\ t \gt t_0. \end{equation} | (3.72) |
From (3.71) and the fact that
E'(t)\leq 0, \ \bar{H}'(t) \gt 0, \ \bar{H}''(t) \gt 0, |
we obtain, for all t > t_0,
\begin{align} \tilde{L}'_2(t) = &\left(-\frac{r_1}{(t-t_0)^2} .\frac{E(t)}{E(0)}+\frac{r_1}{t-t_0}.\frac{E'(t)}{E(0)}\right) \bar{H}''\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)\tilde{L}_1(t)+\bar{H}'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)\tilde{L}'_1(t)\\ \leq&-\tilde{\beta} E(t)\bar{H}'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)+c_3g(t)\bar{H}'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)+\frac{C(t-t_0)}{\sigma}\bar{H}'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)\bar{H}^{-1}\left(\frac{\sigma \mu(t)}{\xi(t)(t-t_0)} \right). \end{align} | (3.73) |
Let \bar{H}^{\ast} be the convex conjugate of \bar{H} as in (3.30) and let
A = \bar{H}'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)\ \ {\rm and}\ \ B = \bar{H}^{-1}\left(\frac{\sigma \mu(t)}{\xi(t)(t-t_0)} \right). |
Then, (3.30), (3.31) and (3.73) yield, for all t > t_0,
\begin{align} \tilde{L}'_2(t) \leq&-\tilde{\beta} E(t)\bar{H}'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)+c_3g(t)\bar{H}'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)\\ &+\frac{C(t-t_0)}{\sigma}\bar{H}^{\ast}\left(\bar{H}'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)\right)+\frac{C(t-t_0)}{\sigma}.\frac{\sigma \mu(t)}{\xi(t)(t-t_0)}\\ \leq &-\tilde{\beta} E(t)\bar{H}'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)+c_3g(t)\bar{H}'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)+Cr_1\frac{E(t)}{E(0)}\bar{H}'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)+C\frac{\mu(t)}{\xi(t)}\\ \leq&-(\tilde{\beta}E(0)-Cr_1)\frac{E(t)}{E(0)}\bar{H}'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)+C\frac{\mu(t)}{\xi(t)}+c_3g(t)\bar{H}'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right) \end{align} | (3.74) |
By selecting r_1 small enough so that (\tilde{\beta}E(0)-Cr_1) > 0 , we arrive at
\begin{equation} \begin{aligned} \tilde{L}'_2(t)\leq &-\tilde{\beta}_2\frac{E(t)}{E(0)}\bar{H}'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)+C\frac{\mu(t)}{\xi(t)}+c_3g(t)\bar{H}'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right), \ \forall\ t \gt t_0, \end{aligned} \end{equation} | (3.75) |
for some positive constant \tilde{\beta}_2.
Now, multiplying (3.75) by \xi(t) and recalling that r_1\frac{E(t)}{E(0)} < r , we arrive at
\begin{align} \xi(t)\tilde{L}'_2(t)&\leq-\tilde{\beta}_2 \xi(t)\frac{E(t)}{E(0)}\bar{H}'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right) + C\mu(t)+c_3g(t)\xi(t)H'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)\\ &\leq -\tilde{\beta}_2 \xi(t)\frac{E(t)}{E(0)}H'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)-C(E'(t)+E'_1(t))+c_4g(t)+c_3g(t)H'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right), \ \forall\ t \gt t_0. \end{align} | (3.76) |
Since \frac{r_1}{t-t_0}\longrightarrow 0 as t\longrightarrow \infty, there exists t_2 > t_0 such that \frac{r_1}{t-t_0} < r_1 , whenever t > t_2 . Using this fact and observing that H' strictly increasing, and E and \xi are non-decreasing, we get
\begin{equation} H'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)\leq H'(r_1), \ \forall\ t \gt t_2. \end{equation} | (3.77) |
Using (3.77), it follows from (3.76) that
\begin{equation} \tilde{L}_3'(t)\leq-\tilde{\beta}_2 \xi(t)\frac{E(t)}{E(0)}H'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right) + c_5g(t), \ \forall\ t \gt t_2, \end{equation} | (3.78) |
where \tilde{L}_3 = (\xi\tilde{L}_2+CE+ CE_1) and c_5 > 0 is a constant. Using the non-increasing property of \xi, we have
\begin{equation} \tilde{\beta}_2 \xi(t)\frac{E(t)}{E(0)}H'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)\leq -\tilde{L}_3'(t) + c_5g(t), \ \forall\ t \gt t_2. \end{equation} | (3.79) |
Using the fact that E is non-increasing and H'' > 0 we conclude that the map
\begin{equation} \nonumber t\longmapsto E(t)H'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right) \end{equation} |
is non-increasing. Therefore, integrating (3.79) over (t_2, t) yields
\begin{equation} \begin{aligned} \tilde{\beta}_2\frac{E(t)}{E(0)}H'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)\int_{t_2}^{t} \xi(\tau)d\tau &\leq \tilde{\beta}_2\int_{t_2}^{t} \xi(\tau)\frac{E(\tau)}{E(0)}H'\left( \frac{r_1}{\tau-t_0}.\frac{E(\tau)}{E(0)}\right)d\tau\\ &\leq -\tilde{L}_3(t)+\tilde{L}_3(t_2) + c_5\int_{t_2}^tg(\tau)d\tau\\ &\leq \tilde{L}_3(t_2) + c_5\int_{0}^{\infty} g(\tau)d\tau\\ & = \tilde{L}_3(t_2) + c_5(b-l_0), \ \forall\ t \gt t_2. \end{aligned} \end{equation} | (3.80) |
Next, we multiply both sides of (3.80) by \frac{1}{t-t_0} , for t > t_2, we get
\begin{equation} \frac{\tilde{\beta}_2}{(t-t_0)}.\frac{E(t)}{E(0)}H'\left( \frac{r_1}{t-t_0}.\frac{E(t)}{E(0)}\right)\int_{t_2}^{t} \xi(\tau)d\tau\leq \frac{\tilde{L}_3(t_2) + c_5(b-l_0)}{t-t_0}, \ \ \forall\ t \gt t_2. \end{equation} | (3.81) |
Since H' is strictly increasing, then H_2(\tau) = \tau H'(\tau) is a strictly increasing function. It follows from (3.81) that
\begin{equation} \nonumber E(t)\leq a_2(t-t_0) H_2^{-1} \left(\frac{a_1}{ (t-t_0)\int_{t_2}^t \xi (\tau)d\tau }\right), \ \forall\ t \gt t_2. \end{equation} |
for some positive constants a_1 and a_2. This completes the proof.
(1). Let g(t) = ae^{-bt}, \ t\geq 0, \ \ a, \ b > 0 are constants and a is chosen such that ( G_1) holds. Then
\begin{equation} \nonumber g'(t) = - abe^{-bt} = -bH(g(t)) \ \ {\rm with } \ \ H(t) = t. \end{equation} |
Therefore, from (3.14), the energy function (2.11) satisfies
\begin{equation} E(t)\leq a_2e^{-\alpha t}, \ \forall \ t\geq 0, \ {\rm where}\ \ \alpha = ba_1. \end{equation} | (3.82) |
Also, for H_2(\tau) = \tau , it follows from (3.55) that, there exists t_2 > 0 such that the energy function (2.11) satisfies
\begin{equation} E(t)\leq \frac{C}{t-t_2}, \ \ \forall\ t \gt t_2, \end{equation} | (3.83) |
for some positive constant C.
(2). Let g(t) = ae^{-(1+t)^{b}}, \ t\geq 0, \ \ a > 0, \ 0 < b < 1 are constants and a is chosen such that ( G_1) holds. Then,
\begin{equation} \nonumber g'(t) = -ab(1+t)^{b-1}e^{-(1+t)^{b}} = -\xi(t) H(g(t)), \end{equation} |
where \xi(t) = b(1+t)^{b-1} and H(t) = t. Thus, we get from (3.14) that
\begin{equation} E(t)\leq a_2e^{-a_1(1+t)^b}, \ \forall \ t\geq 0. \end{equation} | (3.84) |
Likewise, for H_2(t) = t , then estimate (3.55) implies there exists t_2 > 0 such that the energy function (2.11) satisfies
\begin{equation} E(t)\leq \frac{C}{(1+t)^{b}}, \ \ \forall\ t \gt t_2, \end{equation} | (3.85) |
for some positive constant C.
(3). Let g(t) = \frac{a}{(1+t)^{b}}, \ t\geq 0, \ \ a > 0, \ b > 1 are constants and a is chosen in such a way that ( G_1) holds. We have
\begin{equation} \nonumber g'(t) = \frac{-ab}{(1+t)^{b+1}} = -\xi\left(\frac{a}{(1+t)^b} \right)^{\frac{b+1}{b}} = -\xi g^q(t) = -\xi H(g(t)), \end{equation} |
where
\begin{equation} \nonumber H(t) = t^q, \ \ q = \frac{b +1}{b} \ \ {\rm satisfying} \ \ 1 \lt q \lt 2 \ \ {\rm and }\ \ \xi = \frac{b}{a^\frac{1}{b}} \gt 0. \end{equation} |
Hence, we deduce from (3.41) that
\begin{equation} E(t)\leq \frac{C}{(1+t)^b}, \ \forall \ t\geq 0. \end{equation} | (3.86) |
Furthermore, for H_2(t) = qt^q , estimate (3.55) implies there exists t_2 > 0 such that the energy function (2.11) satisfies
\begin{equation} E(t) \leq \frac{C}{(1+t)^{(b-1)/(b+1)}}, \ \forall\ t \gt t_2, \end{equation} | (3.87) |
for some positive constant C.
In this section, we prove the functionals L_i, i = 1\cdots8, used in the proof of our stability results.
Lemma 4.1. The functional I_1(t) satisfies, along the solution of (1.6)-(1.8), for all t\geq t_0 > 0 and for any \epsilon_1, \epsilon_2 > 0 , the estimate
\begin{align} I_1'(t)\leq -\frac{I_{\rho}g_0}{2} &\| 3s_t-\psi_t\|_2^2+\epsilon_1\|3s_x -\psi_x\|_2^2 + \epsilon_2\|\psi-w_x\|_2^2+ C C_{\alpha}\left( 1+\frac{1}{\epsilon_1}+\frac{1}{\epsilon_2}\right)\left(h\diamond (3s_x-\psi_x) \right)(t), \end{align} | (4.1) |
where g_0 = \int_0^{t_0}g(\tau)d\tau\leq \int_0^{t}g(\tau)d\tau.
Proof. Differentiating I_1(t) , using (1.6)_2 and integrating by part, we have
\begin{align} I_1'(t) = - &I_{\rho}\int_0^1(3s_t-\psi_t) \int_0^t g'(t-\tau)\left((3s-\psi)(t)- (3s-\psi)(\tau)\right)d\tau dx\\ & + D(t) \int_0^1(3s_x-\psi_x)\int_0^t g(t-\tau)\left((3s_x-\psi_x)(t)- (3s_x-\psi_x)(\tau)\right)d\tau dx\\ & +\int_0^1 \left(\int_0^t g(t-\tau)\left( (3s_x-\psi_x)(t)- (3s_x-\psi_x)(\tau)\right)d\tau \right)^2dx-I_{\rho}\left( \int_0^t g(\tau)d\tau \right) \int_0^1(3s_t-\psi_t)^2 dx \\ &-G\int_0^1(\psi-w_x) \int_0^t g(t-\tau)\left(( 3s-\psi)(t)- (3s-\psi)(\tau)\right)d\tau dx, \end{align} | (4.2) |
where D(t) = \left(D-\int_0^t g(\tau)d\tau\right). Now, we estimate the terms on the right hand-side of (4.2). Exploiting Young's and Poincaré's inequalities, Lemmas 2.1-2.6 and performing similar computations as in (2.8), we have for any \epsilon_1 > 0 ,
\begin{align} D(t)\int_0^1(3s_x-\psi_x)&\int_0^t g(t-\tau)\left((3s_x-\psi_x)(t)- (3s_x-\psi_x)(\tau)\right)d\tau dx\\ &\leq \epsilon_1 \|(3s_x-\psi_x\|_2^2 + \frac{C C_{\alpha}}{\epsilon_1}\left(h\diamond (3s_x-\psi_x)\right)(t) \end{align} | (4.3) |
and
\begin{equation} \int_0^1 \left(\int_0^t g(t-\tau)\left( (3s_x-\psi_x)(t)- (3s_x-\psi_x)(\tau)\right)d\tau \right)^2dx\leq C_{\alpha}\left(h\diamond (3s_x-\psi_x)\right)(t). \end{equation} | (4.4) |
Also, for \delta_1 > 0, we have
\begin{align} - I_{\rho}&\int_0^1(3s_t-\psi_t) \int_0^t g'(t-\tau)\left((3s-\psi)(t)- (3s-\psi)(\tau)\right)d\tau dx\\ = &I_{\rho}\int_0^1(3s_t-\psi_t) \int_0^t h(t-\tau)\left((3s-\psi)(t)- (3s-\psi)(\tau)\right)d\tau dx\\ &-I_{\rho}\alpha\int_0^1(3s_t-\psi_t) \int_0^t g(t-\tau)\left((3s-\psi)(t)- (3s-\psi)(\tau)\right)d\tau dx\\ \leq&\delta_1\|3s_t-\psi_t\|_2^2 + \frac{I_{\rho}^2}{2\delta_1} \int_0^1 \left(\int_0^t h(t-\tau)\left( (3s-\psi)(t)- (3s-\psi)(\tau)\right)d\tau \right)^2dx\\ &+\frac{\alpha^2 I_{\rho}^2}{2\delta_1}\int_0^1 \left(\int_0^t g(t-\tau)\left( (3s-\psi)(t)- (3s-\psi)(\tau)\right)d\tau\right)^2dx\\ \leq& \delta_1\|3s_t-\psi_t\|_2^2 + \frac{ I_{\rho}^2}{2\delta_1}\left( \int_0^t h(\tau)d\tau\right) \left(h\diamond (3s-\psi)\right)(t)+\frac{\alpha^2 I_{\rho}^2 C_{\alpha}}{2\delta_1} \left(h\diamond (3s-\psi)\right)(t)\\ \leq& \delta_1\|3s_t-\psi_t\|_2^2 + \frac{C(C_{\alpha}+1)}{\delta_1} \left(h\diamond (3s-\psi)_x\right)(t). \end{align} | (4.5) |
For the last term, we have
\begin{align} -G\int_0^1(\psi-w_x)& \int_0^t g(t-\tau)\left(( 3s-\psi)(t)- (3s-\psi)(\tau)\right)d\tau dx\leq \epsilon_2\|\psi-w_x\|_2^2 + \frac{G^2 C_{\alpha}}{4\epsilon_2}\left(h\diamond (3s-\psi)_x\right)(t). \end{align} | (4.6) |
Combination of (4.2)-(4.6) lead to
\begin{align} I_1'(t)\leq -&\left( I_{\rho} \int_0^t g(\tau)d\tau-\delta_1\right) \|3w_t-\psi_t\|_2^2 +\epsilon_1\|3s_x -\psi_x\|_2^2+\epsilon_2\|\psi-w_x\|_2^2 \\ & + CC_{\alpha}\left( 1+\frac{1}{\delta_1}+\frac{1}{\epsilon_1}+\frac{1}{\epsilon_2}\right)\left(h\diamond (3s_x-\psi_x) \right)(t). \end{align} | (4.7) |
Since g(0) > 0 and g is continuous. Thus for any t\geq t_0 > 0, we get
\begin{equation} \int_0^{t}g(\tau)d\tau\geq \int_0^{t_0}g(\tau)d\tau = g_0 \gt 0. \end{equation} | (4.8) |
We select \delta_1 = \dfrac{I_{\rho}g_0}{2} to get (4.1).
Lemma 4.2. The functional I_2(t) satisfies, along the solution of (1.6)-(1.8) and for any \delta_4 > 0 , the estimate
\begin{equation} \begin{aligned} I'_2(t)&\leq-3D\|s_x\|_2^2 -3\gamma \|s\|_2^2 + \delta_4\|w_t\|_2^2 + C\left(1+\frac{1}{\delta_4} \right) \|s_t\|_2^2 +C \|\theta_x\|_2^2, \ \ \forall t\geq 0. \end{aligned} \end{equation} | (4.9) |
Proof. Differentiation of I_2(t) , using (1.6)_1 and (1.6)_3 and integration by part, leads to
\begin{equation} \nonumber I_2'(t) = 3I_{\rho}\|s_t\|_2^2-3D\|s_x\|_2^2-4\gamma \|s\|_2^2-\delta\int_0^t s\theta_x dx + 3\rho\int_0^1w_t\int_0^x s_t (y)dy dx. \end{equation} |
Applying Cauchy-Schwarz and Young's inequalities and (2.5), we get for any \delta_4 > 0,
\begin{eqnarray} I_2'(t)&\leq & 3I_{\rho}\|s_t\|_2^2-3D\|s_x\|_2^2-4\gamma \|s\|_2^2 + \gamma \|s\|_2^2 +\frac{\delta^2}{4\gamma} \|\theta_x\|_2^2 +\delta_4\|w_t\|_2^2 + \frac{9\rho^2}{4\delta_4}\int_0^1\left(\int_0^x s_t(y)dy \right)^2dx\\ &\leq& -3D\|s_x\|_2^2 -3\gamma \|s\|_2^2 + \delta_4\|w_t\|_2^2 + C\left(1+\frac{1}{\delta_4} \right) \|s_t\|_2^2 + C \|\theta_x\|_2^2. \end{eqnarray} |
This completes the proof.
Lemma 4.3. The functional I_3(t) satisfies, along the solution of (1.6)-(1.8) and for any \epsilon_3 > 0, the estimate
\begin{equation} \begin{aligned} I_3'(t)\leq& - \frac{\delta I_{\rho}}{2}\|s_t\|_2^2 + \epsilon_3 \|s_x\|_2^2 + \epsilon_3\|\psi-w_x\|_2^2 + C\left(1+\frac{1}{\epsilon_3} \right)\|\theta_x\|_2^2, \ \ \forall t\geq 0. \end{aligned} \end{equation} | (4.10) |
Proof. Differentiation of I_3 , using (1.6)_3 , (1.6)_4 and integration by parts, yields
\begin{align*} \nonumber I_3'(t) = 3&\lambda I_{\rho}\int_0^1 \theta_x s_t dx -3I_{\rho}\delta\|s_t\|_2^2 -3kD\int_0^1 \theta s_x dx +k\delta\|\theta\|_2^2\\ \nonumber &+ 3kG\int_0^1\theta\int_0^x (\psi-w_y)(y)dy dx +4\gamma k\int_0^1\theta\int_0^t s(y)dydx . \end{align*} |
Using Cauchy-Schwarz, Young's and Poincaré's inequalities together with Lemmas 2.1-2.6, we have
\begin{eqnarray} I_3'(t)&\leq& \delta_2\|s_t\|_2^2 + C_{\delta_2}\|\theta_x\|_2^2 -3I_{\rho}\delta\|s_t\|_2^2 + \frac{\epsilon_3}{2}\|s_x\|_2^2 + C\left( 1+\frac{1}{\epsilon_3}\right) \|\theta\|_2^2 \\ &&+\epsilon_3\int_0^1\left(\int_0^x (\psi-w_y)(y)dy \right)^2 dx +\frac{\epsilon_3}{2}\int_0^1\left(\int_0^x s(y)dy \right)^2dx\\ &\leq & \delta_2\|s_t\|_2^2 + C_{\delta_2}\|\theta_x\|_2^2 -3I_{\rho}\delta\|s_t\|_2^2 + \epsilon_3\|s_x\|_2^2 +\epsilon_3\|\psi-w_x\|_2^2 +C\left( 1+\frac{1}{\epsilon_3}\right) \|\theta_x\|_2^2 . \end{eqnarray} |
We choose \delta_2 = \dfrac{5I_{\rho}\delta}{2} to get (4.10).
Lemma 4.4. The functional I_4(t) satisfies, along the solution of (1.6)-(1.8) and for any \epsilon_4 > 0, the estimate
\begin{equation} \begin{aligned} I_4'(t)\leq& -\rho\|w_t\|_2^2 + \epsilon_4\|3s_x-\psi_x\|_2^2+ C\|s_x\|_2^2 + C_{\epsilon_4} \|\psi-w_x\|_2^2 , \ \ \forall t\geq 0. \end{aligned} \end{equation} | (4.11) |
Proof. Using (1.6)_1 and integration by parts, we have
\begin{equation*} I_4'(t) = -\rho\|w_t\|_2^2- G\int_0^1(\psi-w_x) w_x dx. \end{equation*} |
We note that w_x = -(\psi-w_x)-(3s-\psi)+3s to arrive at
\begin{equation} \nonumber I_4'(t) = -\rho\|w_t\|_2^2 + G\|\psi-w_x\|^2_2 + G\int_0^1(\psi-w_x)(3s-\psi)dx -3G\int_0^1(\psi-w_x)s dx. \end{equation} |
It follows from Young's and Poincaré's inequalities that
\begin{align*} I_4'(t)&\leq -\rho\|w_t\|_2^2 + G\|\psi-w_x\|^2_2 + \epsilon_4\|3s-\psi\|_2^2 +\frac{C}{\epsilon_4}\|\psi-w_x\|^2_2+\frac{3G}{2} \|\psi-w_x\|^2_2 + \frac{3G}{2}\|s\|_2^2\\ \nonumber \leq&- \rho\|w_t\|_2^2 + G\|\psi-w_x\|^2_2 + \epsilon_4\|3s_x-\psi_x\|_2^2+ C \|s_x\|_2^2+C\left( 1+\frac{1}{\epsilon_4}\right)\|\psi-w_x\|^2_2. \end{align*} |
This completes the proof.
Lemma 4.5. The functional I_5(t) satisfies, along the solution of (1.6)-(1.8) and for any 0 < \alpha < 1 , the estimate
\begin{equation} I_5'(t)\leq -\frac{l_0}{4}\|3s_x-\psi_x\|_2^2 + I_{\rho} \|3s_t-\psi_t\|_2^2 + C\|\psi-w_x\|_2^2 + CC_{\alpha}\left(h\diamond (3s_x-\psi_x) \right)(t). \end{equation} | (4.12) |
Proof. Differentiating I_5 , using (1.6)_2 , we arrive at
\begin{eqnarray} I'_5(t)& = & I_{\rho} \|3s_t-\psi_t\|_2^2-\left(D-\int_0^t g(\tau)d\tau \right)\|3s_x-\psi_x\|_2^2+ G\int_0^1(3s-\psi)(\psi-w_x)dx \\ &&+\int_0^1(3s_x-\psi_x)\int_0^t g(t-\tau)\left(\left( 3s_x-\psi_x\right)(x, \tau)- \left(3s_x-\psi_x\right)(x, t)\right)d\tau dx. \end{eqnarray} |
Applying Lemmas 2.1-2.6, Cauchy-Schwarz, Young's and Poincaré's inequalities, we obtain any \delta_3 > 0
\begin{eqnarray} I'_5(t)&\leq & I_{\rho} \|3s_t-\psi_t\|_2^2 -l_0\|3s_x-\psi_x\|_2^2 + \delta_3\|3s_x-\psi_x\|_2^2 +\frac{G^2}{4\delta_3}\|\psi-w_x\|_2^2\\ && +\frac{l_0}{2}\|3s_x-\psi_x\|_2^2 +\frac{1}{2l_0}C_{\alpha}\left(h\diamond (3s_x-\psi_x) \right)(t). \end{eqnarray} | (4.13) |
We select \delta_3 = \dfrac{l_0}{4} and obtain the desired result.
Lemma 4.6. The functional I_6(t) satisfies, along the solution of (1.6)-(1.8) and for any for any \epsilon_1 , the estimate
\begin{align} I_6'(t)\leq-&G^2\|\psi-w_x\|_2^2 + \epsilon_1\|3s_t-\psi_t\|_2^2 + C\left(1+\frac{1}{\epsilon_1} \right)\|s_t\|_2^2\\ &+ C\|s_x\|^2_2 +C\|\theta_x\|_2^2+3(I_{\rho}G-\rho D)\int_0^1 w_ts_{xt} dx , \ \ \forall t\geq 0. \end{align} | (4.14) |
Proof. Differentiating I_6(t) , using (1.6)_1 and (1.6)_3 and integration by parts, we obtain
\begin{align} I'_6(t) = -&3G^2\|\psi-w_x\|_2^2-4\gamma G\int_0^1(\psi-w_x)s dx -\delta G \int_0^1 (\psi-w_x) \theta_x dx \\ &-3I_{\rho}G\int_0^t(3s_t-\psi_t)s_t dx + 9I_{\rho}G\|s_t\|_2^2 +3(I_{\rho}G-\rho D)\int_0^1 w_ts_{xt} dx. \end{align} | (4.15) |
Young's and Poincaré's inequalities give
\begin{eqnarray} &&-4\gamma G\int_0^1(\psi-w_x)s dx \leq G^2\|\psi-w_x\|_2^2 + 4\gamma^2 C_p\|s_x\|^2_2, \\ && -\delta G \int_0^1 (\psi-w_x) \theta_x dx\leq G^2\|\psi-w_x\|_2^2 +\frac{\delta^2}{4}\|\theta_x\|_2^2, \\ && -3I_{\rho}G\int_0^t(3s_t-\psi_t)s_t dx \leq \epsilon_1\|3s_t-\psi_t\|_2^2 +\frac{(3I_{\rho}G)^2}{\epsilon_1}\|s_t\|_2^2. \end{eqnarray} | (4.16) |
Substituting (4.16) into (4.15), we obtain (4.14). This completes the proof.
Lemma 4.7. The functional I_7(t) satisfies, along the solution of (1.6)-(1.8), the estimate
\begin{equation} I_7'(t)\leq 3(D-l_0)\|3s_x-\psi_x\|_2^2- \frac{1}{2} (g\diamond (3s_x-\psi_x))(t), \ \forall t\geq 0. \end{equation} | (4.17) |
Proof. Differentiate I_7(t) and use the fact that J'(t) = -g(t) to get
\begin{equation} \begin{aligned} I'_7(t) = & \int_0^1 \int_0^t J'(t-\tau)(3s_x-\psi_x)^2(\tau)d\tau dx + J(0)\|3s_x-\psi_x\|_2^2\\ = & -(g\diamond (3s_x-\psi_x))(t) + J(t)\|3s_x-\psi_x\|_2^2\\ & \ -2\int_0^1 (3s_x-\psi_x)\int_0^t g(t-\tau)\left((3s_x-\psi_x)(\tau)-(3s_x-\psi_x)(t) \right)dx. \end{aligned} \end{equation} | (4.18) |
Using Cauchy-Schwarz and (G1), we have
\begin{equation} \begin{aligned} -2\int_0^1 &(3s_x-\psi_x)\int_0^t g(t-\tau)\left((3s_x-\psi_x)(\tau)-(3s_x-\psi_x)(t) \right)\\ \leq& 2(D-l_0)\|3s_x-\psi_x\|_2^2 +\frac{\int_0^t g(\tau)d\tau}{2(D-l_0)}(g\diamond (3s_x-\psi_x))(t)\\ \leq& 2(D-l_0)\|3s_x-\psi_x\|_2^2 +\frac{1}{2}(g\diamond (3s_x-\psi_x))(t) \end{aligned} \end{equation} | (4.19) |
Thus, we get
\begin{equation} I'_7(t)\le 2(D-l_0)\|3s_x-\psi_x\|_2^2- \frac{1}{2}(g\diamond (3s_x-\psi_x))(t) + J(t)\|3s_x-\psi_x\|_2^2. \end{equation} | (4.20) |
Since J is decreasing (J'(t) = -g(t)\leq 0) , so J(t)\leq J(0) = D-l_0 . Hence, we arrive at
\begin{equation} \nonumber I_7'(t)\leq 3(D-l_0)\|3s_x-\psi_x\|_2^2- \frac{1}{2} (g\diamond (3s_x-\psi_x))(t). \end{equation} |
The next lemma is used only in the proof of the stability result for nonequal-wave-speed of propagation.
Lemma 4.8. Let (w, 3s-\psi, s, \theta) be the strong solution of problem (1.6). Then, for any positive numbers \sigma_1, \sigma_2, \sigma_3 , the functional I_8(t) satisfies
\begin{equation} \begin{aligned} I'_8(t)\leq &-3(I_{\rho}G-\rho D)\int_0^1 w_ts_{xt} dx +\sigma_1\|w_t\|_2^2 + \sigma_2\|\psi-w_x\|_2^2 +\sigma_3\|3s_x-\psi_x\|_2^2\\ &+C\|s_x\|_2^2+C\left(1+\frac{1}{\sigma_1}+\frac{1}{\sigma_2}+\frac{1}{\sigma_3} \right) \|\theta_{xt}\|_2^2, \ \forall \ t\geq t_0. \end{aligned} \end{equation} | (4.21) |
Proof. Differentiation of I_8 , using integration by part and the boundary condition give
\begin{equation} \begin{aligned} I'_8(t)& = \frac{3\lambda}{\delta}(I_{\rho}G-\rho D)\int_0^1\theta_x w_{xt} dx+\frac{3\lambda}{\delta}(I_{\rho}G-\rho D)\int_0^1\theta_{xt} w_x dx\\ & = \frac{3\lambda}{\delta}(I_{\rho} G-\rho D)\left[-\int_0^1\theta_{xx}w_t dx \right] +\frac{3\lambda}{\delta}(I_{\rho}G-\rho D)\int_0^1\theta_{xt} w_x dx. \end{aligned} \end{equation} | (4.22) |
We note that w_x = -(\psi-w_x)-(3s-\psi)+3s and from (1.6)_4, \ \lambda\theta_{xx} = k\theta_t +\delta s_{xt} . So, (4.22) becomes
\begin{equation} \begin{aligned} I'_8(t) = &-\frac{3}{\delta}(I_{\rho}G-\rho D)k\int_0^1\theta_t w_{t} dx- 3(I_{\rho}G-\rho D)\int_0^1s_{xt} w_t dx+ \frac{9\lambda}{\delta}(I_{\rho}G-\rho D)\int_0^1\theta_{xt}s dx\\ &-\frac{3\lambda}{\delta}(I_{\rho}G-\rho D)\int_0^1\theta_{xt}(\psi-w_x) dx -\frac{3\lambda}{\delta}(I_{\rho}G-\rho D)\int_0^1\theta_{xt} (3s-\psi)dx \end{aligned} \end{equation} | (4.23) |
Using Young's and Poincaré's inequalities, we have for any positive numbers \sigma_1, \sigma_2, \sigma_3 ,
\begin{equation} \begin{aligned} &-\frac{3}{\delta}(I_{\rho}G-\rho D)\int_0^1\theta_t w_{t} dx\leq \sigma_1\|w_t\|_2^2 +\frac{C}{\sigma_1} \|\theta_{xt}\|_2^2, \\ &-\frac{3\lambda}{\delta}(I_{\rho}G-\rho D)\int_0^1\theta_{xt}(\psi-w_x) dx\leq \sigma_2\|\psi-w_x\|_2^2 +\frac{C}{\sigma_2} \|\theta_{xt}\|_2^2, \\ &-\frac{3\lambda}{\delta}(I_{\rho}G-\rho D)\int_0^1\theta_{xt} (3s-\psi)dx\leq \sigma_3\|3s_x-\psi_x\|_2^2 + \frac{C}{\sigma_3} \|\theta_{xt}\|_2^2, \\ &\frac{9\lambda}{\delta}(I_{\rho}G-\rho D)\int_0^1\theta_{xt}s dx\leq C\|s_x\|_2^2 + C \|\theta_{xt}\|_2^2. \end{aligned} \end{equation} | (4.24) |
Substituting (4.24) into (4.23), we obtain (4.21).
In this paper, we have established a general and optimal stability estimates for a thermoelastic Laminated system, where the heat conduction is given by Fourier's Law and memory as the only source of damping. Our results are established under weaker conditions on the memory and physical parameters. From our results, we saw that the decay rate is faster provided the wave speeds of the first two equations of the system are equal (see (1.3)). A similar result was established recently in [19] when the heat conduction is given by Maxwell-Cattaneo's Law. An interesting case is when the kernel memory term is couple with the first or third equations in system (1.6). Our expectation is that the stability in both cases will depend on the speed of wave propagation.
The authors appreciate the continuous support of University of Hafr Al Batin, KFUPM and University of Sharjah. The first and second authors are supported by University of Hafr Al Batin under project #G-106-2020 . The third author is sponsored by KFUPM under project #S B181018.
The authors declare no conflict of interest
[1] | Wang D, Shi X, Wei S (2003) Accumulation and transformation of atmospheric mercury in soil. Sci Total Environ 304: 209-214. |
[2] | Xu J, Bravo AG, Lagerkvist A, et al. (2015) Sources and remediation techniques for mercury contaminated soil. Environ Int 74: 42-53. |
[3] |
Pedron F, Petruzzelli G, Barbafieri M, et al. (2013) Remediation of a mercury-contaminated industrial soil using bioavailable contaminant stripping. Pedosphere 23: 104-110. doi: 10.1016/S1002-0160(12)60085-X
![]() |
[4] | Su Y, Han FX, Chen J, et al. (2008) Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). Int J Phytoremediat 10: 547-560. |
[5] |
Moreno FN, Anderson CW, Stewart RB, et al. (2005) Induced plant uptake and transport of mercury in the presence of sulphur‐containing ligands and humic acid. New Phytol 166: 445-454. doi: 10.1111/j.1469-8137.2005.01361.x
![]() |
[6] | Moreno FN, Anderson CW, Stewart RB, et al. (2004) Phytoremediation of mercury-contaminated mine tailings by induced plant-mercury accumulation. Environ Pract 6: 165-175. |
[7] | Petruzzelli G, Pedron F, Gorini F, et al., Enhanced Bioavailable Contaminant Stripping (EBCS): metal bioavailability for evaluation of phytoextraction success; 2013; Roma. EDP Sciences. |
[8] |
Tassi E, Pedron F, Barbafieri M, et al. (2004) Phosphate‐assisted phytoextraction in As‐contaminated soil. Eng Life Sci 4: 341-346. doi: 10.1002/elsc.200420037
![]() |
[9] | Rungwa S, Arpa G, Sakulas H, et al. (2013) Phytoremediation—an eco-friendly and sustainable method of heavy metal removal from closed mine environments in Papua New Guinea. Procedia Earth Planet Sci 6: 269-277. |
[10] | Sas-Nowosielska A, Kucharski R, Pogrzeba M, et al. (2008) Phytoremediation technologies used to reduce environmental threat posed by metal-contaminated soils: Theory and reality. In: Barnes I, Kharytonov MM, editors. Simulation and assessment of chemical processes in a multiphase environment: Springer Netherlands. pp. 285-297. |
[11] |
McGrath SP, Zhao J, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75: 1-56. doi: 10.1016/S0065-2113(02)75002-5
![]() |
[12] | Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2: 1-25. |
[13] | Parisien MA, Rutter A, Smith BM, et al. (2016) Ecological risk associated with phytoextraction of soil contaminants. J Environ Chem Eng 4: 651-656. |
[14] | Bolan N, Kunhikrishnan A, Thangarajan R, et al. (2014) Remediation of heavy metal (loid) s contaminated soils-to mobilize or to immobilize? J Hazard Mater 266: 141-166. |
[15] |
Van Gestel CA (2008) Physico-chemical and biological parameters determine metal bioavailability in soils. Sci Total Environ 406: 385-395. doi: 10.1016/j.scitotenv.2008.05.050
![]() |
[16] | Petruzzelli G, Pedron F, Rosellini I, et al. (2015) The bioavailability processes as a key to evaluate phytoremediation efficiency. In: Ansari AA, Gill SS, Gill R, et al., editors. Phytoremediation: Springer International Publishing. pp. 31-43. |
[17] | Wu G, Kang H, Zhang X, et al. (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174: 1-8. |
[18] | Mahar A, Wang P, Ali A, et al. (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol Environ Saf 126: 111-121. |
[19] | Ahmadpour P, Ahmadpour F, Mahmud TMM, et al. (2012) Phytoremediation of heavy metals: A green technology. Afr J Biotechnol 11: 14036-14043. |
[20] | Franchi E, Rolli E, Marasco R, et al. (2016) Phytoremediation of a multi contaminated soil: mercury and arsenic phytoextraction assisted by mobilizing agent and plant growth promoting bacteria. J Soils Sediments: 1-13. |
[21] | Eapen S, D'souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23: 97-114. |
[22] | Evangelou MW, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68: 989-1003. |
[23] | Bhargava A, Carmona FF, Bhargava M, et al. (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105: 103-120. |
[24] |
Seth CS, Misra V, Singh RR, et al. (2011) EDTA-enhanced lead phytoremediation in sunflower (Helianthus annuus L.) hydroponic culture. Plant Soil 347: 231-242. doi: 10.1007/s11104-011-0841-8
![]() |
[25] |
Wu LH, Luo YM, Xing XR, et al. (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric Ecosyst Environ 102: 307-318. doi: 10.1016/j.agee.2003.09.002
![]() |
[26] | Cao A, Carucci A, Lai T, et al. (2007) Effect of biodegradable chelating agents on heavy metals phytoextraction with Mirabilis jalapa and on its associated bacteria. Eur J Soil Biol 43: 200-206. |
[27] | Santos FS, Hernández-Allica J, Becerril JM, et al. (2006) Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere 65: 43-50. |
[28] |
Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59: 1-11. doi: 10.1016/j.chemosphere.2004.09.100
![]() |
[29] | Wang J, Xia J, Feng X (2016) Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction. J Environ Manag: In press. |
[30] |
Meers E, Tack FMG, Van Slycken S, et al. (2008) Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals. Int J Phytoremediation 10: 390-414. doi: 10.1080/15226510802100515
![]() |
[31] | Cooper EM, Sims JT, Cunningham SD, et al. (1999). Chelate-assisted phytoextraction of lead from contaminated soils. J Environ Qual 28: 1709-1719. |
[32] |
Doumett S, Fibbi D, Azzarello E, et al. (2010) Influence of the application renewal of glutamate and tartrate on Cd, Cu, Pb and Zn distribution between contaminated soil and Paulownia tomentosa in a pilot-scale assisted phytoremediation study. Int J Phytoremediation 13: 1-17. doi: 10.1080/15226510903567455
![]() |
[33] |
Leštan D, Luo CL, Li XD (2008) The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut 153: 3-13. doi: 10.1016/j.envpol.2007.11.015
![]() |
[34] |
Karczewska A, Orlow K, Kabala C, et al. (2011) Effects of chelating compounds on mobilization and phytoextraction of copper and lead in contaminated soils. Commun Soil Sci Plant Anal 42: 1379-1389. doi: 10.1080/00103624.2011.577858
![]() |
[35] |
Epelde L, Becerril JM, Hernández-Allica J, et al. (2008) Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction. Appl Soil Ecol 39: 299-310. doi: 10.1016/j.apsoil.2008.01.005
![]() |
[36] |
Raskin I, Kumar PN, Dushenkov S, et al. (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5: 285-290. doi: 10.1016/0958-1669(94)90030-2
![]() |
[37] |
Shelmerdine PA, Black CR, McGrath SP, et al. (2009) Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic. Environ Pollut 157: 1589-1596. doi: 10.1016/j.envpol.2008.12.029
![]() |
[38] | Sparks DL (1998) Methods of soil analysis. Part 3. Chemical methods. Madison, USA: Soil Science Society of America. |
[39] | EPA - U.S. Environmental Protection Agency (1995) Method 3051A, Microwave assisted acid digestion of sediments, sludges, soils and oils. In: Test Methods for Evaluating Solid Waste, 3rd Edition, 3rd Update, U.S. EPA, Washington D.C. |
[40] |
Millán R, Gamarra R, Schmid T, et al. (2006) Mercury content in vegetation and soils of the Almadén mining area (Spain). Sci Total Environ 368: 79-87. doi: 10.1016/j.scitotenv.2005.09.096
![]() |
[41] |
Wenzel WW, Kirchbaumer N, Prohaska T, et al. (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436: 309-323. doi: 10.1016/S0003-2670(01)00924-2
![]() |
[42] | Petruzzelli G, Pedron F, Tassi E, et al. (2014) The effect of thiosulphate on arsenic bioavailability in a multi contaminated soil. A novel contribution to phytoextraction. Res J Environ Earth Sci 6: 38-43. |
[43] |
Pedron F, Petruzzelli G, Barbafieri M, et al. (2011) Mercury mobilization in a contaminated industrial soil for phytoremediation. Commun Soil Sci Plant Anal 42: 2767-2777. doi: 10.1080/00103624.2011.622823
![]() |
[44] |
Pedron F, Petruzzelli G, Barbafieri M, et al. (2009) Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Chemosphere 75: 808-814. doi: 10.1016/j.chemosphere.2009.01.044
![]() |
[45] |
Grifoni M, Schiavon M, Pezzarossa B, et al. (2015) Effects of phosphate and thiosulphate on arsenic accumulation in the species Brassica juncea. Environ Sci Pollut Res Int 22: 2423-2433. doi: 10.1007/s11356-014-2811-1
![]() |
[46] | Pedron F, Petruzzelli G, Rosellini I, et al. (2015) Ammonium thiosulphate assisted phytoextraction of mercury and arsenic in multi-polluted industrial soil. Resour Environ 5: 173-181. |
[47] | EPA - U.S. Environmental Protection Agency (1995) Method 3052, microwave assisted acid digestion of siliceous and organically based matrices. In: Test Methods for Evaluating Solid Waste, 3rd Edition, 3rd Update, U.S. EPA, Washington D.C. |
[48] |
Peijnenburg WJGM, Jager T (2003) Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicol Environ Saf 56: 63-77. doi: 10.1016/S0147-6513(03)00051-4
![]() |
[49] |
Kamnev AA, Van Der Lelie D (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci Rep 20: 239-258. doi: 10.1023/A:1026436806319
![]() |
[50] | Wallschläger D, Desai MV, Spengler M, et al. (1998) Mercury speciation in floodplain soils and sediments along a contaminated river transect. J Environ Qual 27: 1034-1044. |
[51] | Smolinska B, Rowe S (2015) The potential of Lepidium sativum L. for phytoextraction of Hg-contaminated soil assisted by thiosulphate. J Soils Sediments 15: 393-400. |
[52] | Muddarisna N, Krisnayanti BD, Utami SR, et al. (2013) Phytoremediation of mercury-contaminated soil using three wild plant species and its effect on maize growth. Appl Ecol Environ Sci 1: 27-32. |
[53] |
Wang J, Feng X, Anderson CW, et al. (2011) Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil—Results from a greenhouse study. J Hazard Mater 186: 119-127. doi: 10.1016/j.jhazmat.2010.10.097
![]() |
[54] |
Moreno FN, Anderson CW, Stewart RB, et al. (2005). Effect of thioligands on plant-Hg accumulation and volatilisation from mercury-contaminated mine tailings. Plant Soil 275: 233-246. doi: 10.1007/s11104-005-1755-0
![]() |
[55] |
Gao Y, Mucci A (2001) Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution. Geochim Cosmochim Acta 65: 2361-2378. doi: 10.1016/S0016-7037(01)00589-0
![]() |
[56] |
Liu F, De Cristofaro A, Violante A (2001) Effect of pH, phosphate and oxalate on the adsorption/desorption of arsenate on/from goethite. Soil Sci 166: 197-208. doi: 10.1097/00010694-200103000-00005
![]() |
[57] |
Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43: 519-524. doi: 10.1093/jxb/43.4.519
![]() |
[58] |
Smith E, Naidu R, Alston AM (2002) Chemistry of inorganic arsenic in soils. J Environ Qual 31: 557-563. doi: 10.2134/jeq2002.0557
![]() |
[59] |
Raj A, Singh N (2015) Phytoremediation of arsenic contaminated soil by arsenic accumulators: a three year study. Bull Environ Contam Toxicol 94: 308-313. doi: 10.1007/s00128-015-1486-8
![]() |
[60] |
Fayiga AO, Ma LQ (2006) Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. Sci Total Environ 359: 17-25. doi: 10.1016/j.scitotenv.2005.06.001
![]() |
[61] |
Glick BR, Todorovic B, Czarny J, et al. (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26: 227-242. doi: 10.1080/07352680701572966
![]() |
[62] |
Shen ZG, Li XD, Wang CC, et al. (2002) Lead phytoextraction from contaminated soil with high-biomass plant species. J Environ Qual 31: 1893-1900. doi: 10.2134/jeq2002.1893
![]() |
[63] |
Kayser A, Wenger K, Keller A, et al. (2000) Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol 34: 1778-1783. doi: 10.1021/es990697s
![]() |
[64] |
Duan G, Liu W, Chen X, et al. (2013) Association of arsenic with nutrient elements in rice plants. Metallomics Integr Biomatel Sci 5: 784-792. doi: 10.1039/c3mt20277a
![]() |
[65] |
Srivastava S, D'souza SF (2010) Effect of variable sulfur supply on arsenic tolerance and antioxidant responses in Hydrilla verticillata (Lf) Royle. Ecotoxicol Environ Saf 73: 1314-1322. doi: 10.1016/j.ecoenv.2009.12.023
![]() |
[66] |
Mishra S, Srivastava S, Tripathi RD, et al. (2008) Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquat Toxicol 86: 205-215. doi: 10.1016/j.aquatox.2007.11.001
![]() |
[67] |
Wu SC, Cheung KC, Luo YM, et al. (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140: 124-135. doi: 10.1016/j.envpol.2005.06.023
![]() |
[68] |
Lou LQ, Ye ZH, Lin AJ, et al. (2010) Interaction of arsenic and phosphate on their uptake and accumulation in Chinese brake fern. Int J Phytoremediation 12: 487-502. doi: 10.1080/15226510903051732
![]() |
[69] | Pigna M, Cozzolino V, Violante A, et al. (2009) Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations. Water, Air, Soil Pollut 197: 371-380. |
[70] |
Geng CN, Zhu YG, Hu Y, et al. (2006) Arsenate causes differential acute toxicity to two P-deprived genotypes of rice seedlings (Oryza sativa L.). Plant Soil 279: 297-306. doi: 10.1007/s11104-005-1813-7
![]() |
[71] |
Vázquez Reina S, Esteban E, Goldsbrough P (2005) Arsenate‐induced phytochelatins in white lupin: influence of phosphate status. Physiol Plant 124: 41-49. doi: 10.1111/j.1399-3054.2005.00484.x
![]() |
[72] | Meharg AA (2005) Mechanisms of plant resistance to metal and metalloid ions and potential biotechnological applications. Plant Soil 274: 163-174. |
[73] | Huang ZC, An ZZ, Chen TB, et al. (2007) Arsenic uptake and transport of Pteris vittata L. as influenced by phosphate and inorganic arsenic species under sand culture. J Environ Sci 19: 714-718. |
[74] | Tu S, Ma LQ (2003) Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot 50: 243-251. |
[75] |
Zhong L, Hu C, Tan Q, et al. (2011) Effects of sulfur application on sulfur and arsenic absorption by rapeseed in arsenic-contaminated soil. Plant Soil Environ 57: 429-434. doi: 10.1080/00380768.2011.587202
![]() |
[76] |
Moreno FN, Anderson CW, Stewart RB, et al. (2005) Mercury volatilisation and phytoextraction from base-metal mine tailings. Environ Pollut 136: 341-352. doi: 10.1016/j.envpol.2004.11.020
![]() |
[77] | Lorestani B, Cheraghi M, Yousefi N (2011) Phytoremediation potential of native plants growing on a heavy metals contaminated soil of copper mine in Iran. Proc World Acad Sci Eng Technol 53: 377-382. |
[78] |
Yoon J, Cao X, Zhou Q, et al. (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368: 456-464. doi: 10.1016/j.scitotenv.2006.01.016
![]() |
[79] |
Tu C, Ma LQ, Bondada B (2002) Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J Environ Qual 31: 1671-1675. doi: 10.2134/jeq2002.1671
![]() |
[80] | Cassina L, Tassi E, Pedron F, et al. (2012) Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant. J Hazard Mater 231: 36-42. |
[81] |
Rodriguez L, Rincón J, Asencio I, et al. (2007) Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives. Int J Phytoremediation 9: 1-13. doi: 10.1080/15226510601139359
![]() |
[82] |
Souza LA, Piotto FA, Nogueirol RC, et al. (2013) Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. Sci Agricola 70: 290-295. doi: 10.1590/S0103-90162013000400010
![]() |
[83] |
Jankong P, Visoottiviseth P, Khokiattiwong S (2007) Enhanced phytoremediation of arsenic contaminated land. Chemosphere 68: 1906-1912. doi: 10.1016/j.chemosphere.2007.02.061
![]() |
[84] | Chaturvedi I (2006) Effects of arsenic concentrations and forms on growth and arsenic uptake and accumulation by Indian mustard (Brassica juncea L.) genotypes. J Cent Eur Agric 7: 31-40. |
[85] |
Matschullat J (2000) Arsenic in the geosphere-a review. Sci Total Environ 249: 297-312. doi: 10.1016/S0048-9697(99)00524-0
![]() |
[86] |
Jarrell WM, Beverly RB (1981) The dilution effect in plant nutrition studies. Adv Agron 34: 197-224. doi: 10.1016/S0065-2113(08)60887-1
![]() |
[87] |
Wang J, Feng X, Anderson CW, et al. (2012) Implications of mercury speciation in thiosulfate treated plants. Environ Sci Technol 46: 5361-5368. doi: 10.1021/es204331a
![]() |
[88] | Petruzzelli G, Pedron F, Rosellini I (2014) Effects of thiosulfate on the adsorption of arsenate on hematite with a view to phytoextraction. Res J Environ Earth Sci 6: 326-332. |
[89] | Pedron F, Rosellini I, Petruzzelli G, et al. (2014) Chelant comparison for assisted phytoextraction of lead in two contaminated soils. Resour Environ 4: 209-214. |
1. | Yuxia Guo, Yichen Hu, Infinitely many solutions for Hamiltonian system with critical growth, 2024, 13, 2191-950X, 10.1515/anona-2023-0134 | |
2. | Xingyue He, Chenghua Gao, Jingjing Wang, k-convex solutions for multiparameter Dirichlet systems with k-Hessian operator and Lane-Emden type nonlinearities, 2024, 13, 2191-950X, 10.1515/anona-2023-0136 | |
3. | Hongying Jiao, Shuhai Zhu, Jinguo Zhang, Existence of infinitely many solutions for critical sub-elliptic systems via genus theory, 2024, 16, 2836-3310, 237, 10.3934/cam.2024011 | |
4. | Jinli Yang, Jiajing Miao, Algebraic Schouten solitons of Lorentzian Lie groups with Yano connections, 2023, 15, 2836-3310, 763, 10.3934/cam.2023037 |