Mini review Special Issues

Recent advances in acid-free dissolution and separation of rare earth elements from the magnet waste

  • Received: 08 June 2021 Accepted: 25 October 2021 Published: 02 November 2021
  • The availability of REEs is limiting the successful deployment of some environmentally friendly and energy-efficient technologies. In 2019, the U.S. generated more than 15.25 billion pounds of e-waste. Only ~15% of it was handled, leaving ~13 billion pounds of e-waste as potential pollutants. Of the 15% collected, the lack of robust technology limited REE recovery for re-use. Key factors that drive the recycling of permanent magnets based on rare earth elements (REEs) and the results of our research on magnet recycling will be discussed, with emphasis on neodymium and samarium-based rare earth permanent magnets.

    Citation: Grace Inman, Denis Prodius, Ikenna C. Nlebedim. Recent advances in acid-free dissolution and separation of rare earth elements from the magnet waste[J]. Clean Technologies and Recycling, 2021, 1(2): 112-123. doi: 10.3934/ctr.2021006

    Related Papers:

  • The availability of REEs is limiting the successful deployment of some environmentally friendly and energy-efficient technologies. In 2019, the U.S. generated more than 15.25 billion pounds of e-waste. Only ~15% of it was handled, leaving ~13 billion pounds of e-waste as potential pollutants. Of the 15% collected, the lack of robust technology limited REE recovery for re-use. Key factors that drive the recycling of permanent magnets based on rare earth elements (REEs) and the results of our research on magnet recycling will be discussed, with emphasis on neodymium and samarium-based rare earth permanent magnets.



    加载中


    [1] U.S. Department of Energy (2011) Critical Materials Strategy. Washington DC, 1–171. Available from: https://www.osti.gov/servlets/purl/1000846.
    [2] European Commission communication, Brussels (2017) 13.9.2017, COM 490 final. Available from: https://ec.europa.eu/transparency/regdoc/rep/1/2017/EN/COM-2017-490-F1-EN-MAIN-PART-1.PDF.
    [3] Nassar NT, Brainard J, Gulley A, et al. (2020) Evaluating the mineral commodity supply risk of the US manufacturing sector. Sci Adv 6.
    [4] Rollat A, Guyonnet D, Planchon M, et al. (2016) Prospective analysis of the flows of certain rare earths in Europe at the 2020 horizon. Waste Manag 49: 427–436. doi: 10.1016/j.wasman.2016.01.011
    [5] Nguyen RT, Fishman T, Zhao F, et al. (2018) Analyzing critical material demand: A revised approach. Sci Total Environ 630: 1143–1148. doi: 10.1016/j.scitotenv.2018.02.283
    [6] Byrne L, Bach V, Finkbeiner M (2021) Urban transport assessment of emissions and resource demand of climate protection scenarios. Cleaner Environ Syst 2: 100019. doi: 10.1016/j.cesys.2021.100019
    [7] Van Gosen BS, Verplanck PL, Seal RR, et al. (2017) Rare-earth Elements. Available from: https://pubs.usgs.gov/pp/1802/o/pp1802o.pdf.
    [8] Jowitt SM, Werner TT, Weng Z, et al. (2018) Recycling of the rare earth elements. Curr Opin Green Sustain Chem 13: 1–7. doi: 10.1016/j.cogsc.2018.02.008
    [9] Sethurajan M, van Hullebusch ED, Fontana D, et al. (2019) Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes-a review. Crit Rev Environ Sci Technol 49: 212–275. doi: 10.1080/10643389.2018.1540760
    [10] Binnemans K, Jones PT, Blanpain B, et al. (2013) Recycling of rare earths: a critical review. J Clean Prod 51: 1–22. doi: 10.1016/j.jclepro.2012.12.037
    [11] Golev A, Scott M, Erskine PD, et al. (2014) Rare earths supply chains: Current status, constraints and opportunities. Resour Policy 41: 52–59. doi: 10.1016/j.resourpol.2014.03.004
    [12] James C (1912) The separation of the rare earths. J Am Chem Soc 34: 757–771. doi: 10.1021/ja02207a001
    [13] Spedding FH, Voigt AF, Gladrow EM, et al. (1947) The separation of rare earths by ion exchange. J Am Chem Soc 69: 2777–2781. doi: 10.1021/ja01203a058
    [14] Yin X, Wang Y, Bai X, et al. (2017) Rare earth separations by selective borate crystallization. Nat Commun 8: 14438–14446. doi: 10.1038/ncomms14438
    [15] Cheisson T, Schelter EJ (2019) Rare earth elements: Mendeleev's bane, modern marvels. Science 363: 489–493. doi: 10.1126/science.aau7628
    [16] Kołodyńska D, Fila D, Gajda B, et al. (2019) Applications of Ion Exchange Materials in the Environment: Rare Earth Elements - Separation Methods Yesterday and Today, ed. Inamuddin AM, Asiri A, Springer, Switzerland, 161–185.
    [17] Jha MK, Kumari A, Panda R, et al. (2016) Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 165: 2−26. doi: 10.1016/j.hydromet.2016.01.035
    [18] Yoon HS, Kim CJ, Chung KW, et al. (2016) Solvent extraction, separation and recovery of dysprosium (Dy) and neodymium (Nd) from aqueous solutions: waste recycling strategies for permanent magnet processing. Hydrometallurgy 165: 27−43. doi: 10.1016/j.hydromet.2016.01.028
    [19] Orefice M, Binnemans K, Hoogerstraete TV (2018) Metal coordination in the high-temperature leaching of roasted NdFeB magnets with the ionic liquid betainium bis(trifluoromethylsulfonyl)imide. RSC Adv 8: 9299–9310. doi: 10.1039/C8RA00198G
    [20] Nockemann P, Ritesh R (2018) Separation of rare earth metals. WO2018109483A1.
    [21] Tunsu C (2018) Hydrometallurgy in the recycling of spent NdFeB permanent magnets. Waste Electr Electron Equip Recycl 8: 175–211.
    [22] Padhan E, Nayak AK, Sarangi K (2017) Recovery of neodymium and dysprosium from NdFeB magnet swarf. Hydrometallurgy 174: 210−215. doi: 10.1016/j.hydromet.2017.10.015
    [23] Jena PK, Brocchi EA (2008) Metal extraction through chlorine metallurgy. Min Proc Ext Met Rev 16: 211–237. doi: 10.1080/08827509708914136
    [24] D'yachenko AN, Kraidenko RI (2010) Processing oxide-sulfide copper ores using ammonium chloride. Russ J Non-Ferrous Met 51: 377–381. doi: 10.3103/S1067821210050019
    [25] Ashcroft EA (1933) Sulfate roasting of copper ores and economic recovery of electrolytic copper from chloride solutions. Trans Electro-Chem Soc 23: 23–44.
    [26] Wallwork SC, Addison WE (1965) The crystal structures of anhydrous nitrates and their complexes. Part I. The α-form of copper(II) nitrate. J Chem Soc 2925–2933.
    [27] Schippers A, Hedrich S, Vasters J, et al. (2014) Metal recovery from ores with microorganisms. In: Geobiotechnology I; Schippers A, Glombitza F, Sand W, Eds., Advances in Biochemical Engineering/Biotechnology, Springer-Verlag: Berlin, 1–47.
    [28] Sethurajan M, van Hullebusch ED, Nancharaiah YV (2018) Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances. J Environ Manage 211: 138–153. doi: 10.1016/j.jenvman.2018.01.035
    [29] Chen BW, Wen JK (2013) Feasibility study on heap bioleaching of chalcopyrite. Rare Met 32: 524–531. doi: 10.1007/s12598-013-0114-1
    [30] Great Planes ElectriFly RimFire. 10 35-30-1250. Outrunner Brushless Motor. Available from: www.amazon.com.
    [31] Önal MA, Borra R, Guo CR, et al. (2015) Recycling of NdFeB magnets using sulfation, selective roasting, and water leaching. J Sustain Metall 1: 199−215. doi: 10.1007/s40831-015-0021-9
    [32] Bandara HMD, Field KD, Emmert MH (2016) Rare earth recovery from end-of-life motors employing green chemistry design principles. Green Chem 18: 753−759. doi: 10.1039/C5GC01255D
    [33] Behera SS, Parhi PK (2016) Leaching kinetics study of neodymium from the scrap magnet using acetic acid. Sep Purif Technol 160: 59–66. doi: 10.1016/j.seppur.2016.01.014
    [34] Kitagawa J, Uemura R (2017) Rare earth extraction from NdFeB magnet using a closed-loop acid process. Sci Rep 7: 8039. doi: 10.1038/s41598-017-08629-z
    [35] Padhan E, Nayak AK, Sarangi K (2017) Recovery of neodymium and dysprosium from NdFeB magnet swarf. Hydrometallurgy 174: 210−215. doi: 10.1016/j.hydromet.2017.10.015
    [36] Yadav KK, Anitha M, Singh DK, et al. (2018) NdFeB magnet recycling: dysprosium recovery by non-dispersive solvent extraction employing hollow fibre membrane contactor. Sep Purif Technol 194: 265–271. doi: 10.1016/j.seppur.2017.11.025
    [37] Gergoric M, Barrier A, Retegan T (2019) Recovery of rare-earth elements from neodymium magnet waste using glycolic, maleic, and ascorbic acids followed by solvent extraction. J Sustain Metall 5: 85−96. doi: 10.1007/s40831-018-0200-6
    [38] Prodius D, Gandha K, Mudring AV, et al. (2020) Sustainable urban mining of critical elements from magnet and electronic wastes. ACS Sustain Chem Eng 8: 1455–1463. doi: 10.1021/acssuschemeng.9b05741
    [39] Prodius D, Klocke M, Smetana V, et al. (2020) Rationally designed rare earth separation by selective oxalate solubilization. Chem Commun 56: 11386–11389. doi: 10.1039/D0CC02270E
    [40] Orefice M, Binnemans K (2020) Solvometallurgical process for the recovery of rare-earth elements from Nd–Fe–B magnets. Sep Purif Technol 258: 117800. doi: 10.1016/j.seppur.2020.117800
    [41] Peppard DF, Mason GW, Maier JL, et al. (1957) Fractional extraction of the lanthanides as their di-alkyl orthophosphates. J Inorg Nucl Chem 4: 334–343. doi: 10.1016/0022-1902(57)80016-5
    [42] Gupta CK, Krishnamurthy N (2005) Extractive Metallurgy of Rare Earths, CRC, New York, 1–484.
    [43] Yuan M, Luo A, Li D (1995) Solvent extraction of lanthanides in aqueous nitrate media by Cyanex 302. Acta Metall Sin 8: 10–14.
    [44] Bhave RR, Islam SZ (2020) Separation of rare earth elements using supported membrane solvent extraction, US2020/0056264A1.
    [45] Dewulf B, Batchu NK, Binnemans K (2020) Enhanced Separation of Neodymium and Dysprosium by Nonaqueous Solvent Extraction from a Polyethylene Glycol 200 Phase Using the Neutral Extractant Cyanex 923. ACS Sustain Chem Eng 8: 19032–19039. doi: 10.1021/acssuschemeng.0c07207
    [46] Bogart JA, Lippincott CA, Carroll PJ, et al. (2015) An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium. Angew Chem 127: 8340–8343. doi: 10.1002/ange.201501659
    [47] Cheisson T, Cole BE, Manor BC, et al. (2019) Phosphoryl-Ligand Adducts of Rare Earth-TriNOx Complexes: Systematic Studies and Implications for Separations Chemistry. ACS Sustain Chem Eng 7: 4993–5001. doi: 10.1021/acssuschemeng.8b05638
    [48] Nelson JJM, Cheisson T, Rugh HJ, et al. (2020) High-throughput screening for discovery of benchtop separations systems for selected rare earth elements. Commun Chem 3: 7. doi: 10.1038/s42004-019-0253-x
    [49] Prodius D, Mudring AV (2018) Rare earth metal-containing ionic liquids. Coord Chem Rev 363: 1–16. doi: 10.1016/j.ccr.2018.02.004
    [50] Dupont D, Binnemans K (2015) Recycling of rare earths from NdFeB magnets using a combined leaching/extraction system based on the acidity and thermomorphism of the ionic liquid [Hbet][Tf2N]. Green Chem 17: 2150–2163. doi: 10.1039/C5GC00155B
    [51] Tanaka M, Oki T, Koyama K, et al. (2013) Recycling of rare earths from scrap. Handb Phys Chem Rare Earths 43: 159–211. doi: 10.1016/B978-0-444-59536-2.00002-7
    [52] Anastas PT, Warner JC (1998) Green Chemistry: Theory and Practice, Oxford University Press, New York, 135.
    [53] Spedding FH, Daane AH (1952) The Preparation of Rare Earth Metals. J Am Chem Soc 74: 2783–2785. doi: 10.1021/ja01131a024
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4683) PDF downloads(577) Cited by(7)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog