We are devoted to the study of the following sub-Laplacian system with Hardy-type potentials and critical nonlinearities
{−ΔGu−μ1ψ2ud(z)2=λ1ψα|u|2∗(α)−2ud(z)α+βp1f(z)ψγ|u|p1−2u|v|p2d(z)γin G,−ΔGv−μ2ψ2vd(z)2=λ2ψα|v|2∗(α)−2vd(z)α+βp2f(z)ψγ|u|p1|v|p2−2vd(z)γin G,
where −ΔG is the sub-Laplacian on Carnot group G, μ1, μ2∈[0,μG), α,γ∈(0,2), λ1, λ2, β, p1, p2>0 with 1<p1+p2<2, d(z) is the ΔG-gauge, ψ=|∇Gd(z)|, 2∗(α):=2(Q−α)Q−2 is the critical Sobolev-Hardy exponents, and μG=(Q−22)2 is the best Hardy constant on G. By combining a variant of the symmetric mountain pass theorem with the genus theory, we prove the existence of infinitely many weak solutions whose energy tends to zero when β or λ1, λ2 belong to a suitable range.
Citation: Hongying Jiao, Shuhai Zhu, Jinguo Zhang. Existence of infinitely many solutions for critical sub-elliptic systems via genus theory[J]. Communications in Analysis and Mechanics, 2024, 16(2): 237-261. doi: 10.3934/cam.2024011
[1] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[2] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[3] | Miguel Vivas-Cortez, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor . Some new generalized κ–fractional Hermite–Hadamard–Mercer type integral inequalities and their applications. AIMS Mathematics, 2022, 7(2): 3203-3220. doi: 10.3934/math.2022177 |
[4] | Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121 |
[5] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[6] | Yamin Sayyari, Mana Donganont, Mehdi Dehghanian, Morteza Afshar Jahanshahi . Strongly convex functions and extensions of related inequalities with applications to entropy. AIMS Mathematics, 2024, 9(5): 10997-11006. doi: 10.3934/math.2024538 |
[7] | Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506 |
[8] | Tahir Ullah Khan, Muhammad Adil Khan . Hermite-Hadamard inequality for new generalized conformable fractional operators. AIMS Mathematics, 2021, 6(1): 23-38. doi: 10.3934/math.2021002 |
[9] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201 |
[10] | Paul Bosch, Héctor J. Carmenate, José M. Rodríguez, José M. Sigarreta . Generalized inequalities involving fractional operators of the Riemann-Liouville type. AIMS Mathematics, 2022, 7(1): 1470-1485. doi: 10.3934/math.2022087 |
We are devoted to the study of the following sub-Laplacian system with Hardy-type potentials and critical nonlinearities
{−ΔGu−μ1ψ2ud(z)2=λ1ψα|u|2∗(α)−2ud(z)α+βp1f(z)ψγ|u|p1−2u|v|p2d(z)γin G,−ΔGv−μ2ψ2vd(z)2=λ2ψα|v|2∗(α)−2vd(z)α+βp2f(z)ψγ|u|p1|v|p2−2vd(z)γin G,
where −ΔG is the sub-Laplacian on Carnot group G, μ1, μ2∈[0,μG), α,γ∈(0,2), λ1, λ2, β, p1, p2>0 with 1<p1+p2<2, d(z) is the ΔG-gauge, ψ=|∇Gd(z)|, 2∗(α):=2(Q−α)Q−2 is the critical Sobolev-Hardy exponents, and μG=(Q−22)2 is the best Hardy constant on G. By combining a variant of the symmetric mountain pass theorem with the genus theory, we prove the existence of infinitely many weak solutions whose energy tends to zero when β or λ1, λ2 belong to a suitable range.
For a convex function σ:I⊆R→R on I with ν1,ν2∈I and ν1<ν2, the Hermite-Hadamard inequality is defined by [1]:
σ(ν1+ν22)≤1ν2−ν1∫ν2ν1σ(η)dη≤σ(ν1)+σ(ν2)2. | (1.1) |
The Hermite-Hadamard integral inequality (1.1) is one of the most famous and commonly used inequalities. The recently published papers [2,3,4] are focused on extending and generalizing the convexity and Hermite-Hadamard inequality.
The situation of the fractional calculus (integrals and derivatives) has won vast popularity and significance throughout the previous five decades or so, due generally to its demonstrated applications in numerous seemingly numerous and great fields of science and engineering [5,6,7].
Now, we recall the definitions of Riemann-Liouville fractional integrals.
Definition 1.1 ([5,6,7]). Let σ∈L1[ν1,ν2]. The Riemann-Liouville integrals Jϑν1+σ and Jϑν2−σ of order ϑ>0 with ν1≥0 are defined by
Jϑν1+σ(x)=1Γ(ϑ)∫xν1(x−η)ϑ−1σ(η)dη, ν1<x | (1.2) |
and
Jϑν2−σ(x)=1Γ(ϑ)∫ν2x(η−x)ϑ−1σ(η)dη, x<ν2, | (1.3) |
respectively. Here Γ(ϑ) is the well-known Gamma function and J0ν1+σ(x)=J0ν2−σ(x)=σ(x).
With a huge application of fractional integration and Hermite-Hadamard inequality, many researchers in the field of fractional calculus extended their research to the Hermite-Hadamard inequality, including fractional integration rather than ordinary integration; for example see [8,9,10,11,12,13,14,15,16,17,18,19,20,21].
In this paper, we consider the integral inequality of Hermite-Hadamard-Mercer type that relies on the Hermite-Hadamard and Jensen-Mercer inequalities. For this purpose, we recall the Jensen-Mercer inequality: Let 0<x1≤x2≤⋯≤xn and μ=(μ1,μ2,…,μn) nonnegative weights such that ∑ni=1μi=1. Then, the Jensen inequality [22,23] is as follows, for a convex function σ on the interval [ν1,ν2], we have
σ(n∑i=1μixi)≤n∑i=1μiσ(xi), | (1.4) |
where for all xi∈[ν1,ν2] and μi∈[0,1], (i=¯1,n).
Theorem 1.1 ([2,23]). If σ is convex function on [ν1,ν2], then
σ(ν1+ν2−n∑i=1μixi)≤σ(ν1)+σ(ν2)−n∑i=1μiσ(xi), | (1.5) |
for each xi∈[ν1,ν2] and μi∈[0,1], (i=¯1,n) with ∑ni=1μi=1. For some results related with Jensen-Mercer inequality, see [24,25,26].
In view of above indices, we establish new integral inequalities of Hermite-Hadamard-Mercer type for convex functions via the Riemann-Liouville fractional integrals in the current project. Particularly, we see that our results can cover the previous researches.
Theorem 2.1. For a convex function σ:[ν1,ν2]⊆R→R with x,y∈[ν1,ν2], we have:
σ(ν1+ν2−x+y2)≤2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]≤σ(ν1)+σ(ν2)−σ(x)+σ(y)2. | (2.1) |
Proof. By using the convexity of σ, we have
σ(ν1+ν2−u+v2)≤12[σ(ν1+ν2−u)+σ(ν1+ν2−v)], | (2.2) |
and above with u=1−η2x+1+η2y, v=1+η2x+1−η2y, where x,y∈[ν1,ν2] and η∈[0,1], leads to
σ(ν1+ν2−x+y2)≤12[σ(ν1+ν2−(1−η2x+1+η2y))+σ(ν1+ν2−(1+η2x+1−η2y))]. | (2.3) |
Multiplying both sides of (2.3) by ηϑ−1 and then integrating with respect to η over [0,1], we get
1ϑσ(ν1+ν2−x+y2)≤12[∫10ηϑ−1σ(ν1+ν2−(1−η2x+1+η2y))dη+∫10ηϑ−1σ(ν1+ν2−(1+η2x+1−η2y))dη]=12[2ϑ(y−x)ϑ∫ν1+ν2−x+y2ν1+ν2−y((ν1+ν2−x+y2)−w)ϑ−1σ(w)dw+2ϑ(y−x)ϑ∫ν1+ν2−xν1+ν2−x+y2(w−(ν1+ν2−x+y2))ϑ−1σ(w)dw]=2ϑ−1Γ(ϑ)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)], |
and thus the proof of first inequality in (2.1) is completed.
On the other hand, we have by using the Jensen-Mercer inequality:
σ(ν1+ν2−(1−η2x+1+η2y))≤σ(ν1)+σ(ν2)−(1−η2σ(x)+1+η2σ(y)) | (2.4) |
σ(ν1+ν2−(1+η2x+1−η2y))≤σ(ν1)+σ(ν2)−(1+η2σ(x)+1−η2σ(y)). | (2.5) |
Adding inequalities (2.4) and (2.5) to get
σ(ν1+ν2−(1−η2x+1+η2y))+σ(ν1+ν2−(1+η2x+1−η2y))≤2[σ(ν1)+σ(ν2)]−[σ(x)+σ(y)]. | (2.6) |
Multiplying both sides of (2.6) by ηϑ−1 and then integrating with respect to η over [0,1] to obtain
∫10ηϑ−1σ(ν1+ν2−(1−η2x+1+η2y))dη+∫10ηϑ−1σ(ν1+ν2−(1+η2x+1−η2y))dη≤2ϑ[σ(ν1)+σ(ν2)]−1ϑ[σ(x)+σ(y)]. |
By making use of change of variables and then multiplying by ϑ2, we get the second inequality in (2.1).
Remark 2.1. If we choose ϑ=1, x=ν1 and y=ν2 in Theorem 2.1, then the inequality (2.1) reduces to (1.1).
Corollary 2.1. Theorem 2.1 with
● ϑ=1 becomes [24, Theorem 2.1].
● x=ν1 and y=ν2 becomes:
σ(ν1+ν22)≤2ϑ−1Γ(ϑ+1)(ν2−ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2−σ(ν1+ν22)]≤σ(ν1)+σ(ν2)2, |
which is obtained by Mohammed and Brevik in [10].
The following Lemma linked with the left inequality of (2.1) is useful to obtain our next results.
Lemma 2.1. Let σ:[ν1,ν2]⊆R→R be a differentiable function on (ν1,ν2) and σ′∈L[ν1,ν2] with ν1≤ν2 and x,y∈[ν1,ν2]. Then, we have:
2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)=(y−x)4∫10ηϑ[σ′(ν1+ν2−(1−η2x+1+η2y))−σ′(ν1+ν2−(1+η2x+1−η2y))]dη. | (2.7) |
Proof. From right hand side of (2.7), we set
ϖ1−ϖ2:=∫10ηϑ[σ′(ν1+ν2−(1−η2x+1+η2y))−σ′(ν1+ν2−(1+η2x+1−η2y))]dη=∫10ηϑσ′(ν1+ν2−(1−η2x+1+η2y))dη−∫10ηϑσ′(ν1+ν2−(1+η2x+1−η2y))dη. | (2.8) |
By integrating by parts with w=ν1+ν2−(1−η2x+1+η2y), we can deduce:
ϖ1=−2(y−x)σ(ν1+ν2−y)+2ϑ(y−x)∫10ηϑ−1σ(ν1+ν2−(1−η2x+1+η2y))dη=−2(y−x)σ(ν1+ν2−y)+2ϑ+1ϑ(y−x)ϑ+1∫ν1+ν2−x+y2ν1+ν2−yσ((ν1+ν2−x+y2)−w)ϑ−1σ(w)dw=−2(y−x)σ(ν1+ν2−y)+2ϑ+1Γ(ϑ+1)(y−x)ϑ+1Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2). |
Similarly, we can deduce:
ϖ2=2y−xσ(ν1+ν2−x)−2ϑ+1Γ(ϑ+1)(y−x)ϑ+1Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2). |
By substituting ϖ1 and ϖ2 in (2.8) and then multiplying by (y−x)4, we obtain required identity (2.7).
Corollary 2.2. Lemma 2.1 with
● ϑ=1 becomes:
1y−x∫ν1+ν2−xν1+ν2−yσ(w)dw−σ(ν1+ν2−x+y2)=(y−x)4∫10η[σ′(ν1+ν2−(1−η2x+1+η2y))−σ′(ν1+ν2−(1+η2x+1−η2y))]dη. |
● ϑ=1, x=ν1 and y=ν2 becomes:
1ν2−ν1∫ν2ν1σ(w)dw−σ(ν1+ν22)=(ν2−ν1)4∫10η[σ′(ν1+ν2−(1−η2ν1+1+η2ν2))−σ′(ν1+ν2−(1+η2ν1+1−η2ν2))]dη. |
● x=ν1 and y=ν2 becomes:
2ϑ−1Γ(ϑ+1)(ν2−ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2−σ(ν1+ν22)]−σ(ν1+ν22)=(ν2−ν1)4∫10ηϑ[σ′(ν1+ν2−(1−η2ν1+1+η2ν2))−σ′(ν1+ν2−(1+η2ν1+1−η2ν2))]dη. |
Theorem 2.2. Let σ:[ν1,ν2]⊆R→R be a differentiable function on (ν1,ν2) and |σ′| is convex on [ν1,ν2] with ν1≤ν2 and x,y∈[ν1,ν2]. Then, we have:
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)2(1+ϑ)[|σ′(ν1)|+|σ′(ν2)|−|σ′(x)|+|σ′(y)|2]. | (2.9) |
Proof. By taking modulus of identity (2.7), we get
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4[∫10ηϑ|σ′(ν1+ν2−(1−η2x+1+η2y))|dη+∫10ηϑ|σ′(ν1+ν2−(1+η2x+1−η2y))|dη]. |
Then, by applying the convexity of |σ′| and the Jensen-Mercer inequality on above inequality, we get
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4[∫10ηϑ[|σ′(ν1)|+|σ′(ν2)|−(1+η2|σ′(x)|+1−η2)|σ′(y)|]dη+∫10ηϑ[|σ′(ν1)|+|σ′(ν2)|−(1−η2|σ′(x)|+1+η2)|σ′(y)|]dη]=(y−x)2(1+ϑ)[|σ′(ν1)|+|σ′(ν2)|−|σ′(x)|+|σ′(y)|2], |
which completes the proof of Theorem 2.2.
Corollary 2.3. Theorem 2.2 with
● ϑ=1 becomes:
|1y−x∫ν1+ν2−xν1+ν2−yσ(w)dw−σ(ν1+ν2−x+y2)|≤(y−x)4[|σ′(ν1)|+|σ′(ν2)|−|σ′(x)|+|σ′(y)|2]. |
● ϑ=1, x=ν1 and y=ν2 becomes [27, Theorem 2.2].
● x=ν1 and y=ν2 becomes:
|1ν2−ν1∫ν2ν1σ(w)dw−σ(ν1+ν22)|≤(ν2−ν1)4[|σ′(ν1)|+|σ′(ν2)|2]. |
Theorem 2.3. Let σ:[ν1,ν2]⊆R→R be a differentiable function on (ν1,ν2) and |σ′|q,q>1 is convex on [ν1,ν2] with ν1≤ν2 and x,y∈[ν1,ν2]. Then, we have:
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4p√ϑp+1[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+3|σ′(y)|q4))1q+(|σ′(ν1)|q+|σ′(ν2)|q−(3|σ′(x)|q+|σ′(y)|q4))1q], | (2.10) |
where 1p+1q=1.
Proof. By taking modulus of identity (2.7) and using Hölder's inequality, we get
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(∫10ηϑp)1p{(∫10|σ′(ν1+ν2−(1−η2x+1+η2y))|qdη)1q+(∫10|σ′(ν1+ν2−(1+η2x+1−η2y))|qdη)1q}. |
Then, by applying the Jensen-Mercer inequality with the convexity of |σ′|q, we can deduce
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(∫10ηϑp)1p{(∫10|σ′(ν1)|q+|σ′(ν2)|q−(1−η2|σ′(x)|q+1+η2|σ′(y)|q))1q+(∫10|σ′(ν1)|q+|σ′(ν2)|q−(1+η2|σ′(x)|q+1−η2|σ′(y)|q))1q}=(y−x)4p√ϑp+1[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+3|σ′(y)|q4))1q+(|σ′(ν1)|q+|σ′(ν2)|q−(3|σ′(x)|q+|σ′(y)|q4))1q], |
which completes the proof of Theorem 2.3.
Corollary 2.4. Theorem 2.3 with
● ϑ=1 becomes:
|1y−x∫ν1+ν2−xν1+ν2−yσ(w)dw−σ(ν1+ν2−x+y2)|≤(y−x)4p√p+1[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+3|σ′(y)|q4))1q+(|σ′(ν1)|q+|σ′(ν2)|q−(3|σ′(x)|q+|σ′(y)|q4))1q]. |
● ϑ=1, x=ν1 and y=ν2 becomes:
|1ν2−ν1∫ν2ν1σ(w)dw−σ(ν1+ν22)|≤(ν2−ν1)22p(1p+1)1p[|σ′(ν1)|+|σ′(ν2)|]. |
● x=ν1 and y=ν2 becomes:
|2ϑ−1Γ(ϑ+1)(ν2−ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2−σ(ν1+ν22)]−σ(ν1+ν22)|≤2ϑ−1−2qν2−ν1(1p+1)1p[|σ′(ν1)|+|σ′(ν2)|]. |
Theorem 2.4. Let σ:[ν1,ν2]⊆R→R be a differentiable function on (ν1,ν2) and |σ′|q,q≥1 is convex on [ν1,ν2] with ν1≤ν2 and x,y∈[ν1,ν2]. Then, we have:
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(ϑ+1)[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+(2ϑ+3)|σ′(y)|q2(ϑ+2)))1q+(|σ′(ν1)|q+|σ′(ν2)|q−((2ϑ+3)|σ′(x)|q+|σ′(y)|q2(ϑ+2)))1q]. | (2.11) |
Proof. By taking modulus of identity (2.7) with the well-known power mean inequality, we can deduce
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(∫10ηϑ)1−1q{(∫10ηϑ|σ′(ν1+ν2−(1−η2x+1+η2y))|qdη)1q+(∫10ηϑ|σ′(ν1+ν2−(1+η2x+1−η2y))|qdη)1q}. |
By applying the Jensen-Mercer inequality with the convexity of |σ′|q, we can deduce
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(∫10ηϑ)1−1q{(∫10ηϑ[|σ′(ν1)|q+|σ′(ν2)|q−(1−η2|σ′(x)|q+1+η2|σ′(y)|q)])1q+(∫10ηϑ[|σ′(ν1)|q+|σ′(ν2)|q−(1+η2|σ′(x)|q+1−η2|σ′(y)|q)])1q}=(y−x)4(ϑ+1)[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+(2ϑ+3)|σ′(y)|q2(ϑ+2)))1q+(|σ′(ν1)|q+|σ′(ν2)|q−((2ϑ+3)|σ′(x)|q+|σ′(y)|q2(ϑ+2)))1q], |
which completes the proof of Theorem 2.4.
Corollary 5. Theorem 2.4 with
● q=1 becomes Theorem 2.2.
● ϑ=1 becomes:
|1y−x∫ν1+ν2−xν1+ν2−yσ(w)dw−σ(ν1+ν2−x+y2)|≤(y−x)8[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+5|σ′(y)|q6))1q+(|σ′(ν1)|q+|σ′(ν2)|q−(5|σ′(x)|q+|σ′(y)|q6))1q]. |
● ϑ=1, x=ν1 and y=ν2 becomes:
|1ν2−ν1∫ν2ν1σ(w)dw−σ(ν1+ν22)|≤(y−x)8[(5|σ′(ν1)|q+|σ′(ν2)|q6)1q+(|σ′(ν1)|q+5|σ′(ν2)|q6)1q]. |
● x=ν1 and y=ν2 becomes:
|2ϑ−1Γ(ϑ+1)(ν2−ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2−σ(ν1+ν22)]−σ(ν1+ν22)|≤(ν2−ν1)4(ϑ+1)[((2ϑ+3)|σ′(ν1)|q+|σ′(ν2)|q2(ϑ+2))1q+(|σ′(ν1)|q+(2ϑ+3)|σ′(ν2)|q2(ϑ+2))1q]. |
Here, we consider the following special means:
● The arithmetic mean:
A(ν1,ν2)=ν1+ν22,ν1,ν2≥0. |
● The harmonic mean:
H(ν1,ν2)=2ν1ν2ν1+ν2,ν1,ν2>0. |
● The logarithmic mean:
L(ν1,ν2)={ν2−ν1lnν2−lnν1,ifν1≠ν2,ν1,ifν1=ν2,ν1,ν2>0. |
● The generalized logarithmic mean:
Ln(ν1,ν2)={[νn+12−νn+11(n+1)(ν2−ν1)]1n,ifν1≠ν2ν1,ifν1=ν2,ν1,ν2>0;n∈Z∖{−1,0}. |
Proposition 3.1. Let 0<ν1<ν2 and n∈N, n≥2. Then, for all x,y∈[ν1,ν2], we have:
|Lnn(ν1+ν2−y,ν1+ν2−x)−(2A(ν1,ν2)−A(x,y))n|≤n(y−x)4[2A(νn−11,νn−12)−A(xn−1,yn−1)]. | (3.1) |
Proof. By applying Corollary 2.3 (first item) for the convex function σ(x)=xn,x>0, one can obtain the result directly.
Proposition 3.2. Let 0<ν1<ν2. Then, for all x,y∈[ν1,ν2], we have:
|L−1(ν1+ν2−y,ν1+ν2−x)−(2A(ν1,ν2)−A(x,y))−1|≤(y−x)4[2H−1(ν21,ν22)−H−1(x2,y2)]. | (3.2) |
Proof. By applying Corollary 2.3 (first item) for the convex function σ(x)=1x,x>0, one can obtain the result directly.
Proposition 3.3. Let 0<ν1<ν2 and n∈N, n≥2. Then, we have:
|Lnn(ν1,ν2)−An(ν1,ν2)|≤n(ν2−ν1)4[A(νn−11,νn−12)], | (3.3) |
and
|L−1(ν1,ν2)−A−1(ν1,ν2)|≤(ν2−ν1)4H−1(ν21,ν22). | (3.4) |
Proof. By setting x=ν1 and y=ν2 in results of Proposition 3.1 and Proposition 3.2, one can obtain the Proposition 3.3.
Proposition 3.4. Let 0<ν1<ν2 and n∈N, n≥2. Then, for q>1,1p+1q=1 and for all x,y∈[ν1,ν2], we have:
|Lnn(ν1+ν2−y,ν1+ν2−x)−(2A(ν1,ν2)−A(x,y))n|≤n(y−x)4p√p+1{[2A(νq(n−1)1,νq(n−1)2)−12A(xq(n−1),3yq(n−1))]1q+[2A(νq(n−1)1,νq(n−1)2)−12A(3xq(n−1),yq(n−1))]1q}. | (3.5) |
Proof. By applying Corollary 2.4 (first item) for convex function σ(x)=xn,x>0, one can obtain the result directly.
Proposition 3.5. Let 0<ν1<ν2. Then, for q>1,1p+1q=1 and for all x,y∈[ν1,ν2], we have:
|L−1(ν1+ν2−y,ν1+ν2−x)−(2A(ν1,ν2)−A(x,y))−1|≤q√2(y−x)4p√p+1{[H−1(ν2q1,ν2q2)−34H−1(x2q,3y2q)]1q+[H−1(ν2q1,ν2q2)−34H−1(3x2q,y2q)]1q}. | (3.6) |
Proof. By applying Corollary 2.4 (first item) for the convex function σ(x)=1x,x>0, one can obtain the result directly.
Proposition 3.6. Let 0<ν1<ν2 and n∈N, n≥2. Then, for q>1 and 1p+1q=1, we have:
|Lnn(ν1,ν2)−An(ν1,ν2)|≤n(ν2−ν1)4p√p+1{[2A(νq(n−1)1,νq(n−1)2)−12A(νq(n−1)1,3νq(n−1)2)]1q+[2A(νq(n−1)1,νq(n−1)2)−12A(3νq(n−1)1,νq(n−1)2)]1q}, | (3.7) |
and
|L−1(ν1,ν2)−A−1(ν1,ν2)|≤q√2(ν2−ν1)4p√p+1{[H−1(ν2q1,ν2q2)−34H−1(ν2q1,3ν2q2)]1q+[H−1(ν2q1,ν2q2)−34H−1(3ν2q1,ν2q2)]1q}. | (3.8) |
Proof. By setting x=ν1 and y=ν2 in results of Proposition 3.4 and Proposition 3.5, one can obtain the Proposition 3.6.
As we emphasized in the introduction, integral inequality is the most important field of mathematical analysis and fractional calculus. By using the well-known Jensen-Mercer and power mean inequalities, we have proved new inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional operators. In the last section, we have considered some propositions in the context of special functions; these confirm the efficiency of our results.
We would like to express our special thanks to the editor and referees. Also, the first author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.
The authors declare no conflict of interest.
[1] |
N. Garofalo, E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier, 40 (1990), 313–356. https://doi.org/10.5802/aif.1215 doi: 10.5802/aif.1215
![]() |
[2] |
L. D'Ambrosio, Some Hardy inequalities on the Heisenberg group, Differ. Equ., 40 (2004), 552–564. https://doi.org/10.1023/B:DIEQ.0000035792.47401.2a doi: 10.1023/B:DIEQ.0000035792.47401.2a
![]() |
[3] |
L. D'Ambrosio, Hardy-type inequalities related to degenerate elliptic differential operators, Ann. Sc. Norm. Super. Pisa Cl. Sci., 5 (2005), 451–486. https://doi.org/10.2422/2036-2145.2005.3.04 doi: 10.2422/2036-2145.2005.3.04
![]() |
[4] |
D. Cao, P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potential, J. Diff. Equ., 205 (2004), 521–537. https://doi.org/10.1016/j.jde.2004.03.005 doi: 10.1016/j.jde.2004.03.005
![]() |
[5] |
N. Ghoussoub, F. Robert, The effect of curvature on the best constant in the Hardy-Sobolev inequality, Geom. Funct. Anal., 16 (2006), 897–908. https://doi.org/10.1007/s00039-006-0579-2 doi: 10.1007/s00039-006-0579-2
![]() |
[6] |
N. Ghoussoub, F. Robert, Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth, Int. Math.Res. Pap. IMRP, 2006 (2006), 1–85. https://doi.org/10.1155/IMRP/2006/21867 doi: 10.1155/IMRP/2006/21867
![]() |
[7] |
D. Kang, S. Peng, Existence of solutions for elliptic problems with critical Sobolev-Hardy exponents, Israel J. Math., 143 (2004), 281–297. https://doi.org/10.1007/BF02803503 doi: 10.1007/BF02803503
![]() |
[8] |
D. Kang, S. Peng, Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential, Appl. Math. Lett., 18 (2005), 1094–1100. https://doi.org/10.1016/j.aml.2004.09.016 doi: 10.1016/j.aml.2004.09.016
![]() |
[9] |
D. Cao, D. Kang, Solutions of quasilinear elliptic problems involving a Sobolev exponent and multiple Hardy-type terms, J. Math. Anal. Appl., 333 (2007), 889–903. https://doi.org/10.1016/j.jmaa.2006.12.005 doi: 10.1016/j.jmaa.2006.12.005
![]() |
[10] |
F. Demengel, E. Hebey, On some nonlinear equations involving the p-Laplacian with critical Sobolev growth, Adv. Diff. Equ., 3 (1998), 533–574. https://doi.org/10.57262/ade/1366292563 doi: 10.57262/ade/1366292563
![]() |
[11] |
N. Ghoussoub, C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703–5743. https://doi.org/10.1090/S0002-9947-00-02560-5 doi: 10.1090/S0002-9947-00-02560-5
![]() |
[12] |
P. Han, Quasilinear elliptic problems with critical exponents and Hardy terms, Nonlinear Anal., 61 (2005), 735–758. https://doi.org/10.1016/j.na.2005.01.030 doi: 10.1016/j.na.2005.01.030
![]() |
[13] |
B. Abdellaoui, V. Felli, I. Peral, Some remarks on systems of elliptic equations doubly critical in the whole RN, Calc. Var., 34 (2009), 97–137. https://doi.org/10.1007/s00526-008-0177-2 doi: 10.1007/s00526-008-0177-2
![]() |
[14] |
E. Colorado, R. Lopez-Soriano, A. Ortega, Existence of bound and ground states for an elliptic system with double criticality, Nonlinear Anal., 216 (2022), 112730. https://doi.org/10.1016/j.na.2021.112730 doi: 10.1016/j.na.2021.112730
![]() |
[15] |
V. Felli, S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity, Comm. Partial Diff. Equ., 31 (2006), 469–495. https://doi.org/10.1080/03605300500394439 doi: 10.1080/03605300500394439
![]() |
[16] | B. Abdellaoui, V. Felli, I. Peral, Existence and non-existence results for quasilinear elliptic equations involving the p-Laplacian, Bollettino U. M. I., 9 (2006), 445–484. |
[17] |
R. Filippucci, P. Pucci, F. Robert, On a p-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl., 91 (2009), 156–177. https://doi.org/10.1016/j.matpur.2008.09.008 doi: 10.1016/j.matpur.2008.09.008
![]() |
[18] |
P. Pucci, R. Servadei, Existence, non-existence and regularity of radial ground states for p-Laplacian equations with singular weights, Ann. Inst. H. Poincare A.N.L., 25 (2008), 505–537. https://doi.org/10.1016/J.ANIHPC.2007.02.004 doi: 10.1016/J.ANIHPC.2007.02.004
![]() |
[19] |
V. Ambrosio, T. Isernia, On a Fractional p&q Laplacian Problem with Critical Sobolev-Hardy Exponents, Mediterr. J. Math., 15 (2018), 219. https://doi.org/10.1007/s00009-018-1259-9 doi: 10.1007/s00009-018-1259-9
![]() |
[20] |
S. Bordoni, R. Filippucci, P. Pucci, Existence problems on Heisenberg groups involving Hardy and critical terms, J. Geom. Anal., 30 (2020), 1887–1917. https://doi.org/10.1007/s12220-019-00295-z doi: 10.1007/s12220-019-00295-z
![]() |
[21] |
A. Loiudice, Local behavior of solutions to sunelliptic problems with Hardy potential on Carnot groups, Mediterr. J. Math., 15 (2018), 81. https://doi.org/10.1007/s00009-018-1126-8 doi: 10.1007/s00009-018-1126-8
![]() |
[22] |
A. Loiudice, Critical problems with hardy potential on Stratified Lie groups, Advances in Differential Equations, 28 (2023), 1–33. https://doi.org/10.57262/ade028-0102-1 doi: 10.57262/ade028-0102-1
![]() |
[23] |
A. Loiudice, Critical growth problems with singular nonlinearities on Carnot groups, Nonlinear Anal., 126 (2015), 415–436. https://doi.org/10.1016/j.na.2015.06.010 doi: 10.1016/j.na.2015.06.010
![]() |
[24] |
J. Zhang, Sub-elliptic problems with multiple critical Sobolev- Hardy exponents on Carnot groups, Manuscripta Math., 172 (2023), 1–29. https://doi.org/10.1007/s00229-022-01406-x doi: 10.1007/s00229-022-01406-x
![]() |
[25] |
J. Zhang, S. Zhu, On criticality coupled sub-Laplacian systems with Hardy type potentials on Stratified Lie groups, Comm. Anal. Mech., 15(2023), 70–90. doi:10.3934/cam.2023005 doi: 10.3934/cam.2023005
![]() |
[26] |
R. Kajikiya, A critical point theore related to the symmetric mountain pass lemma and its applications to elliptic equation, J. Funct. Anal., 225 (2005), 352–370. https://doi.org/10.1016/j.jfa.2005.04.005 doi: 10.1016/j.jfa.2005.04.005
![]() |
[27] |
X. He, W. Zou, Infinitely many arbitrarily small solutions for singular elliptic problems with critical Sobolev-Hardy exponents, Proceedings Edin. math. Soc., 52 (2009), 97–108. https://doi.org/10.1017/S0013091506001568 doi: 10.1017/S0013091506001568
![]() |
[28] |
L. Baldelli, R. Filippucci, Singular quasilinear critical Schródinger equations in RN, Commun. Pure Appl. Anal., 21 (2022), 2561–2586. https://doi.org/10.3934/cpaa.2022060 doi: 10.3934/cpaa.2022060
![]() |
[29] | S. Liang, J. Zhang, Multiplicity of solutions for a class of quasilinear elliptic equation involving the critical Sobolev and Hardy exponents Nonlinear Differ. Equ. Appl., 17 (2010), 55–67. https://doi.org/10.1007/s00030-009-0039-4 |
[30] |
S. Liang, J. Zhang, Infinitely many small solutions for the p(x)-Laplacian operator with nonlinear boundary conditions, Annali di Matematica, 192 (2013), 1–16. https://doi.org/10.1007/s10231-011-0209-y doi: 10.1007/s10231-011-0209-y
![]() |
[31] |
S. Liang, S. Shi, Soliton solutions to Kirchhoff type problems involving the critical growth in RN, Nonlinear Analysis: TMA, 81 (2013), 31–41. https://doi.org/10.1016/j.na.2012.12.003 doi: 10.1016/j.na.2012.12.003
![]() |
[32] | A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub-Laplacians, in: Springer Monographs in Mathematics, Springer, Berlin, 2007. https://doi.org/10.1007/978-3-540-71897-0 |
[33] |
G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161–207. https://doi.org/10.1007/BF02386204 doi: 10.1007/BF02386204
![]() |
[34] | G. B. Folland, E. Stein, Hardy Spaces on Homogeneous Groups, in: Mathematical Notes, vol. 28, University Press, Princeton, NJ, 1982. https://doi.org/10.1515/9780691222455 |
[35] |
N. Garofalo, D. Vassilev, Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot Groups, Math. Ann., 318 (2000), 453–516. https://doi.org/10.1007/s002080000127 doi: 10.1007/s002080000127
![]() |
[36] | E. Lanconelli, Nonlinear equations on Carnot groups and curvature problems for CR manifolds, Rend. Mat. Acc. Lincei, 14 (2003), 227–238. |
[37] | M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Mac Millan, New York, 1964. |
[38] | P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics. Vol. 65, American Mathematical Society, Providence, RI 1986. https://doi.org/10.1007/978-1-4612-4146-1 |
[39] |
P. Pucci, T. Temperini, On the concentration-compactness principle for Folland-Stein spaces and for fractional horizontal Sobolev spaces, Math. Engineering, 5 (2023), 1–21. https://doi.org/10.3934/mine.2023007 doi: 10.3934/mine.2023007
![]() |
[40] |
P. Pucci, T. Temperini, Concentration-compactness results for systems in the Heisenberg group, Opuscula Math., 40 (2020), 151–162. https://doi.org/10.7494/OpMath.2020.40.1.151 doi: 10.7494/OpMath.2020.40.1.151
![]() |
[41] |
J. Zhang, On the existence and multiplicity of solutions for a class of sub-Laplacian problems involving critical Sobolev- Hardy exponents on Carnot groups, Appl. Anal., 102 (2023), 4209–4229. https://doi.org/10.1080/00036811.2022.2107910 doi: 10.1080/00036811.2022.2107910
![]() |
[42] |
J. Chabrowski, Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calc. Var., 3 (1995), 493–512. https://doi.org/10.1007/BF01187898 doi: 10.1007/BF01187898
![]() |
1. | Tariq A. Aljaaidi, Deepak B. Pachpatte, Ram N. Mohapatra, The Hermite–Hadamard–Mercer Type Inequalities via Generalized Proportional Fractional Integral Concerning Another Function, 2022, 2022, 1687-0425, 1, 10.1155/2022/6716830 | |
2. | Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad, (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates, 2021, 6, 2473-6988, 4677, 10.3934/math.2021275 | |
3. | Ifra Bashir Sial, Nichaphat Patanarapeelert, Muhammad Aamir Ali, Hüseyin Budak, Thanin Sitthiwirattham, On Some New Ostrowski–Mercer-Type Inequalities for Differentiable Functions, 2022, 11, 2075-1680, 132, 10.3390/axioms11030132 | |
4. | Deniz Uçar, Inequalities for different type of functions via Caputo fractional derivative, 2022, 7, 2473-6988, 12815, 10.3934/math.2022709 | |
5. | Soubhagya Kumar Sahoo, Y.S. Hamed, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, New midpoint type Hermite-Hadamard-Mercer inequalities pertaining to Caputo-Fabrizio fractional operators, 2023, 65, 11100168, 689, 10.1016/j.aej.2022.10.019 | |
6. | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf, The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator, 2022, 7, 2473-6988, 7040, 10.3934/math.2022392 | |
7. | Churong Chen, Discrete Caputo Delta Fractional Economic Cobweb Models, 2023, 22, 1575-5460, 10.1007/s12346-022-00708-5 | |
8. | Soubhagya Kumar Sahoo, Ravi P. Agarwal, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja, Hadamard–Mercer, Dragomir–Agarwal–Mercer, and Pachpatte–Mercer Type Fractional Inclusions for Convex Functions with an Exponential Kernel and Their Applications, 2022, 14, 2073-8994, 836, 10.3390/sym14040836 | |
9. | Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators, 2023, 11, 2227-7390, 1953, 10.3390/math11081953 | |
10. | Loredana Ciurdariu, Eugenia Grecu, Hermite–Hadamard–Mercer-Type Inequalities for Three-Times Differentiable Functions, 2024, 13, 2075-1680, 413, 10.3390/axioms13060413 | |
11. | Muhammad Aamir Ali, Thanin Sitthiwirattham, Elisabeth Köbis, Asma Hanif, Hermite–Hadamard–Mercer Inequalities Associated with Twice-Differentiable Functions with Applications, 2024, 13, 2075-1680, 114, 10.3390/axioms13020114 | |
12. | Muhammad Aamir Ali, Christopher S. Goodrich, On some new inequalities of Hermite–Hadamard–Mercer midpoint and trapezoidal type in q-calculus, 2024, 44, 0174-4747, 35, 10.1515/anly-2023-0019 | |
13. | Thanin Sitthiwirattham, Ifra Sial, Muhammad Ali, Hüseyin Budak, Jiraporn Reunsumrit, A new variant of Jensen inclusion and Hermite-Hadamard type inclusions for interval-valued functions, 2023, 37, 0354-5180, 5553, 10.2298/FIL2317553S | |
14. | Muhammad Aamir Ali, Zhiyue Zhang, Michal Fečkan, GENERALIZATION OF HERMITE–HADAMARD–MERCER AND TRAPEZOID FORMULA TYPE INEQUALITIES INVOLVING THE BETA FUNCTION, 2024, 54, 0035-7596, 10.1216/rmj.2024.54.331 | |
15. | Bahtiyar Bayraktar, Péter Kórus, Juan Eduardo Nápoles Valdés, Some New Jensen–Mercer Type Integral Inequalities via Fractional Operators, 2023, 12, 2075-1680, 517, 10.3390/axioms12060517 | |
16. | THANIN SITTHIWIRATTHAM, MIGUEL VIVAS-CORTEZ, MUHAMMAD AAMIR ALI, HÜSEYIN BUDAK, İBRAHIM AVCI, A STUDY OF FRACTIONAL HERMITE–HADAMARD–MERCER INEQUALITIES FOR DIFFERENTIABLE FUNCTIONS, 2024, 32, 0218-348X, 10.1142/S0218348X24400164 | |
17. | Muhammad Ali, Hüseyin Budak, Elisabeth Köbis, Some new and general versions of q-Hermite-Hadamard-Mercer inequalities, 2023, 37, 0354-5180, 4531, 10.2298/FIL2314531A |