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Abstract: We are devoted to the study of the following sub-Laplacian system with Hardy-type potentials
and critical nonlinearities
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where —Ag is the sub-Laplacian on Carnot group G, uy, t € [0, uc), @, y € (0,2), Ay, A2, B, p1, p2 > 0
with 1 < py + py < 2,d(2) is the Ag-gauge, ¢ = [Vad(2)], 2°(@) := &2 is the critical Sobolev-Hardy

exponents, and ug = (%)2 is the best Hardy constant on G. By combining a variant of the symmetric
mountain pass theorem with the genus theory, we prove the existence of infinitely many weak solutions
whose energy tends to zero when g or 4, A, belong to a suitable range.
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1. Introduction

In this paper, we are concerned with the following sub-Laplacian system with Sobolev-Hardy critical
nonlinearities on Carnot group G:

Vu Y ul* @2y W |ulP 2 ulv|P2
— Agu — =+ — G,
TR T T a)e Pt @) d(z)” ! (1.1
1//2\/ ¢a|v|2*(a)—2v o |ulP! |v|pz—2v . .
— Agv — - bt A B
GV~ Moy - dr +6p2f(2) Q) in G,

where Ag stands for the sub-Laplacian operator on Carnot group G, u;, o € [0,uc), @, ¥ € (0,2),
A1, Ay, B are positive parameters, p;, p, > 0 with 1 < p; + p» < 2, ¥ = |Ved(z)|, Vg denotes the
horizontal gradient and d is the natural gauge associated with the fundamental solution of —Ag on G.
Here, ug = (%)2 is the best Hardy constant and 2*(@) := z(g = ) is the Sobolev-Hardy critical exponents,
Q > 3 being the homogeneous dimension of the space G with respect to the dilation ¢,. Moreover, the

function f(z) satisfies the following assumption:

(f) f(2) € L7 (G, I )ydz) and the Lebesgue measure of set {z € G : f(z) > 0} is positive, where

_ 2*(y)
P« = 30"’

Our goal is to prove, by means of variational methods, the existence of weak solutions to (1.1). We
define the energy functional I, ,, s associated to (1.1) as follows

1 Y |ul? Y2 4 v ul* @
I/l],/lz,ﬁ(u’ V) = E L(lVGulz + |VGV|2 — U1 d( )2 — M2 d(Z)2 )dZ - 2*(a,) o d(Z)g dZ

A f L f A4 LI\
- dz
@ Jo o BP0

defined on the product space H := S )(G) X S }(G), where the Folland-Stein space S {(G) = {u € L* (G) :
f@ |Voul|’dz < +o0} is the closure of C o (G) with respect to the norm

0<y<?2.

1
”uHS(l)(G) = (flVGM|2dZ)2-
G

Here, 2" = Q 2 is the Sobolev critical exponent. Further, we endow the product space H with the

following norm
2 244
G, V)l = (lully, + V1,2,

where
Ju, = f (Ve -0 viz 1,2
G /-ll d( )2 B D) .
The above norm is well-defined due to the following Hardy-type inequality on Carnot group
W2 uf? 2 oo
UG sdz < | |Veul'dz, Yue Cy(G), (1.2)
¢ d(@) G

where ug = (%)2 is the optimal constant for (1.2). We can note that the norms || - ||, and || - || 546 for
any u; < ug with i = 1,2 are equivalent due to the Hardy’s inequality (1.2).
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The inequality (1.2) was first proved by Garofalo and Lanconelli in [1] for the Heisenberg group
(see also [2]), and extended it to Carnot groups by D’ Ambrosio, see [3]. In the Euclidean space setting,
the weight function ¢ appearing in the L.h.s. of (1.2) is constant, i.e., ¥ = 1. So, (1.2) becomes the
well-known Hardy inequality:

2
i f bt < f \Vul’dx, Vue CyRY),
Y [ RN
where i = (NT‘Z)2 is the best constant and it is never attained. In the Euclidean space, the existence and
non-existence, as well as qualitative properties, of nontrivial weak solutions for p-Laplacian equations
with singular potentials and critical exponents were recently studied by several authors, we refer, e.g.,
in bounded domains and for p = 2 to [4-8], and for general p > 1 to [9-12]; while in R" and for
p = 2 to [13-15], and for general p > 1 to [16—18], and for fractional (p, g)-Laplacian to [19], and the
references therein. Moreover, a more interesting result can be found in [20], which studies the critical
p-Laplace equation on the Heisenberg group with a Hardy-type term.
In recent years, people have paid much attention to the following singular sub-elliptic problem:

2

u .
aee ~I®w e (1.3)

u=0 on 0€),

—Agu —

where Q is a smooth bounded domain in Carnot group G, 0 € Q. It should be mentioned that [21], by
using Moser-type iteration, the author studied the asymptotic behavior of weak solutions to (1.3) when
the function f satisfies the following condition:

|f@ Ol < C(fl + |t 7" forall (z,1) € Q xR,
and obtained the following asymptotic behavior at origin:
u(z) ~ d(z) e VEET ag d(z) — 0.

Subsequently, in [22] also the behavior at infinity has been determined for the purely critical problem

2

u *
=u*2u on G

d(2)?

for which the asymptotic estimates at the origin and at infinity are then, respectively:

—Agu — u

as d(z) — 0,

1
u(z) ~ A0

u(z)

~ W as d(Z) — 09,

where a(u) = \ug — Ve — i, b(u) = \Jug + Vuc — p and the notation f ~ g means that there exists
a constant C > 0 such that é g(z) < f(z) < Cg(z). From a technical point of view, these asymptotic

estimates have a fundamental role in the study of the associated Brezis-Nirenberg type sub-elliptic
problems on Carnot group. For more details on this topic, please refer to [22], which provides a detailed
analysis of the Brezis-Nirenberg problem on Carnot group.
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Motivated by the aforementioned articles and their results, we are interested in finding existence
and multiplicity results for a system with critical Sobolev-Hardy critical terms. While dealing with the
system (1.1), if we suppose u; =, = u, 41 = 4, = 1 and 8 = 0, problem (1.1) reduces to a sub-elliptic

critical problem

P @2
=y in G. 1.4
ey (4

In 2015, Loiudice in the paper [23] proved the existence of ground state solutions of (1.4) using
variational approach for x = 0 and O < @ < 2, and obtained the asymptotic behavior of this solution at
infinity. Recently, Zhang [24] proved the existence of ground state solutions of (1.4) 0 < ¢ < ug and
0 < @ < 2 and considered the following sub-elliptic system with critical Sobolev-Hardy nonlinearities
on Carnot group

—Agu —

N N N I
ot = g d( =V Tane TYve Taer MY

— Ay — wp’ —WQ|V|2*(Q)_ZV+ O ol in
e i v’ a@r ’

where a € (0,2), A > 0 and 15, 8 > 1. The existence of nontrivial solutions of the above sub-Laplacian

system through variational methods was obtained for the critical case, i.e., n + 8 = 2*(a). Other

subelliptic problems with multiple critical exponents can be found in [25] and the references therein.
Let us recall that solutions of (1.4) arise as minimizers u € S ;(G) of the following Rayleigh quotient:

2 t//lul2
o o [ IVouldz — de@z

ueSH OO ([ *”";(“;(“) d7)T@
<

Actually, up to a normalization, it holds that

Pl - [ @
Veul’d dz e d7=(S,,)".
f Voulde=ut | “qop = J, Tage @7 G

(1.5)

Moreover, for any & > 0, rescaled functions u.(z) = &~ & u(51 (z)) are solutions, up to multiplicative
constants, of the equation (1.4) and satisfy (1.5) too. However, the explicit form of ground state solutions
is unknown, which is also the focus of our future work.

As a natural extension of the above papers, we are mainly interested in searching infinitely many
solutions of singular sub-elliptic problem (1.1). Our point is here a combination of sub-Laplace operator
and critical Sobolev-Hardy terms on the Carnot group. In the Euclidean elliptic setting, i.e., when G is
the ordinary Euclidean space (R", +), starting with the pioneering work of Kajikiya [26], established a
critical point theorem related to the symmetric mountain pass lemma and applied it to find the existence
of infinitely many solutions to elliptic equation. A large number of scholars have investigated the
application of this method and achieved rich results, such as He-Zou [27], Baldelli-Filippucci [28],
Liang-Zhang [29,30], Ambrosio-Isernia [19] and Liang-Shi [31] in this direction.

Motivated by the above results, our aim of this paper is to show the existence of infinitely many
solutions of sub-elliptic problem (1.1), and that there exists a sequence of infinitely many arbitrarily
small solutions converging to zero using the symmetric mountain-pass lemma due to Kajikiya [26]. To

Communications in Analysis and Mechanics Volume 16, Issue 2, 237-261.



241

the best of our knowledge, there are only some results that deal with the sub-Laplacian problem with
Sobolev-Hardy critical exponents and Hardy-type terms on the Carnot group.
Before stating our main result, let us recall the definition of weak solutions to (1.1).

Definition 1.1. We say that (u,v) € H is a weak solutions of (1.1), if (u, v) satisfies

2
Vou-Voprdz + | Vov-Vadodz—p [ L2
G G o d(2)?

2 al,,12%(@)-2 @|,2%(@)-2
_ﬂszwzhdz_/hfwlul u¢1dz_ﬂszIVI 42,
G G G

d(z)? d(z)* d(2)”
W |ul” ~?|vIP2ug, Wl v Pvg,
- Bpi fG f@) a7 dz — Bp> fG f@ BT dz=0

for all (¢1, $>) € H.

By Hardy-Sobolev inequality, it is clear that I, ,, 5 is well-defined on H and belongs to C'(H, R).
Then, from Definition 1.1 we see that any weak solution of (1.1) is just a critical point of I, 4, .
Therefore, we are now in position to state our main result as follows.

Theorem 1.1. Assume that (f) holds, and 1 < p1 + p» <2, 0<a <2,0<7y < 2. Then

(i) for any B > O, there exists 1 > 0 such that ifo< A, < 10< A<, problem (1.1) has a sequence
of solutions {(u,, v,)} C H with I, a, g, v,) < 0 and I, a, p(tty, v,) = 0 asn — oco.

(ii) for any Ay, 4, > 0, there exists;g > 0 such that if 0 < B < E problem (1.1) has a sequence of
solutions {(uy, v,)} € H with Iy, 4, gy, vi) < 0 and Iy, 4, gy, v,) = 0 as n — oo.

Remark 1.1. Using the symmetric mountain pass lemma (see Theorem 2.1) we can conclude that the
solutions obtained from Theorem 1.1 satisfy (u,,v,) — (0,0) as n — oo.

The main idea to prove Theorem 1.1 is based on concentration-compactness result on the Carnot
group and the symmetric mountain pass lemma [26]. One of the main difficulties to prove the existence
and multiplicity of solutions of equation (1.1) using variational methods is that the energy functional
does not satisfy the Palais-Smale condition for large energy levels, since the embedding S ;(G) —
LY @G, d‘(”;;a dz) is not compact. Another difficulty is that every nontrivial solution of (1.1) is singular at
{z = 0} due to the presence of the Hardy terms. Thus, different techniques are needed to deal with the
singular case.

The rest of this paper is organized as follows. In Section 2, the variational setting and some
preliminary are recalled. Finally, Section 3 contains several preliminary lemmas, including the crucial
concentration-compactness lemma, as well as the proof of Theorem 1.1.

2. Preliminary

We devote this section to state some useful facts on the Carnot groups. For more details, we refer the
reader to [32-36] and references therein.

A Carnot group (or Stratified group) (G, o) is a connected, simply connected nilpotent Lie group,
whose Lie algebra g admits a stratification, namely a decomposition g = &;_, V with

[Vi,Vil=Viy for 1<k<r-1 and [V,,V,] ={0}.
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Here, the integer r is called the step of G, dim(V}) = N, and the symbol [V;, V,] denotes the subspace
of g generated by the commutators [X, Y], where X € V; and ¥ € V.

By means of the natural identification of G with its Lie algebra via the exponential map, it is not
restrictive to suppose that G is a homogeneous group, 1.e., Lie group equipped with a family {d,},- of
dilations, acting on z € RY as follows

6,z 2 = (', 9D,y Z),

where z® € RM for every k € {1,--- ,r} and N = }};_; Ni. Then, the structure G := (R", 0,{d,},-0) is
called a homogeneous group with homogeneous dimension Q := }},_, k - N;. Note that the number Q
is naturally associated to the family {d,},-o since, for every y > 0, the Jacobian of the map z = 6,(z)
equals y2. Moreover, the number N := };_, N; is called the topological dimension of G.
Now, let {Xj,- -, Xy,} be any basis of V|, the sub-Laplacian on G is define as the second order
differential operator
Ag:=X]+X;+- + Xy,

The horizontal gradient on G is define as
Vg = (X1, Xz -+, Xw)).
The horizontal divergence on G is define by
divgu = Vg - u.

It is easy to check that Vg and Ag are left-translation invariant with respect to the group action 7, and ¢,-
homogeneous, respectively, of degree one and two, that is, Vg(uot,) = Vguort, Vg(uod,) = yVguod,;
Ag(uot,)=Aguot,and Ag(uod,) = Y*Agu o 0y, where the left translation 7, : G — G is defined by

7(7)=z07, Vz,7 €G.
Let us now define the homogeneous norm Carnot group G.

Definition 2.1. A continuous function d : G — [0, +o0) is said to be a homogeneous norm on G if it
satisfies the following condition:

(i) d(z) =0 ifand only if 7 = 0;
(ii) d(z™") = d(z) for all z € G;
(iii) d(6,(z)) = yd(z) for everyy > 0 and z € G.

Throughout this paper, we almost exclusively work with the homogeneous norm, which is related to
the fundamental solution of the sub-Laplace operator —Ag, that is the function d such that

I'z) = VzeG

()22’

is the fundamental solution of —Ag with pole at 0, for a suitable constant C > 0, see [22,33]. Moreover,
if we define d(z;,z2) := d(z; 07), thendis a pseudo-distence on G. In particular, d satisfies the
pseudo-triangular inequality:

d(z1, 22) < c(d(z1, z3) +d(z3, 22)),  Yz21,22,23 € G
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for a suitable positive constant ¢. The ball of radius R > 0 centered at z € G with respect to the norm d,
calling them d-balls, defined as

B4(z,R) ={y € G: d(z,y) < R}.

In fact, the norm on G can be induced by the Euclidean distance | - | on g through the exponential
mapping, which also induces the homogeneous pseudo-norm | - |, on g, namely, for & € g with
=&+ + &, where & € V,, define a pseudo-norm on g as follows

k
€ly = €1, €0l 1= O €177
i=1

The induced norm on G has the form

gl = lexpg'(9)ly, Vg € G.

The function | - | is usually known as the non-isotropic gauge. It defines a pseudo-distence on G given
by
d(g,h) := |h"" o glg, Vg, heG.
The simplest example of a stratified Lie group is the Heisenberg group HY := (R?V*!, o) with the
composition law as

(xy, D)o (X, Y, )= (X1 + X, Xy + X, i+ Y Yy, T 20X, )) = (X)),
where (x,y,1), (x',y, ') € RY xR¥ xR! and (-, -) represents the inner product on R". The sub-Laplacian

on H" is given by

N
Awv = Y (XP+ YD),
i=1
where 3 3 3 3
Xi:_+2i_a Yi:——Zi—f ‘:1,2,"',N.
ox, T Vi oy, g Ot

In order to prove Theorem 1.1, we will recall some basic facts involved in the so-called Krasnoselskii

genus, which can be found in [37, 38].

For a symmetric group Z, = {id, —id} and let E be a Banach space we set
2={ACE\{0}: Aisclosedand A = —A}.
For any A € X, the Krasnoselskii’s genus of A is defined by
y(A) = inf{k : Ip € C(A,R") ¢ isodd and ¢(z) # 0}.

If k does not exist, we set y(A) = co. By above definition , it is obvious that y(0) = 0.
Let X, denote the family of closed symmetric subsets A of E such that O ¢ E and y(A) > k, that is,

Y, ={A: A C E is closed symmetric, 0 ¢ E and y(A) > k}.

Then we have the following result, see [26,37].
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Proposition 2.1. Let A and B be closed symmetric subsets of E which do not contain the origin. Then
the following statements hold:

(1) If there exists an odd continuous mapping from A to B, then y(A) < y(B).

(2) If A C B, then y(A) < y(B).

(3) If there is an odd homeomorphism from A to B, then y(A) = y(B).

(4) If y(B) < oo, then y(A \ B) = y(A) — y(B).

(5) If S™ is a n-dimensional sphere, then y(S") =n+1.

(6) If A is compact, then y(A) < +oo and there exists a -closed symmetric neighborhood of A, i.e.,
Ns(A) = {u € E : dist(u, A) < 6} such that Ns(A) C Zy and y(Ns(A)) = y(A).

Now, we state the following variant of symmetric mountain-pass lemma due to Kajikiya [26].

Theorem 2.1. Let E be an infinite-dimensional Banach space, and let J € C'(E,R) be a functional
satisfying the conditions below:

(1) J(u) is even, bounded from below, J(0) = 0 and J(u) satisfies the local Palais-Smale condition, i.e.
for some ¢ > 0, every sequence {u,} in E satisfying 11_>r£1<> J(u,) = c < cand 11_)11010 | (u)ller = 0 has a
convergent subsequence; ! !

(2) For each k € N, there exists Ay € Z; such that sup J(u) < 0.

ueAy

Then either (i) or (ii) below holds.

(i) There exists a sequence {u,} such that J'(u,) = 0, J(u,) < 0 and {u,} converges to zero as n — oo.
(ii) There exist two sequences {u,} and {v,} such that J'(u,) = 0, J(u,) = 0, u, # 0, limu, = 0;

n—oo

J'v,)=0,J(v,) <0, lim J(v,) =0, and {v,} converges to a non-zero limit.
3. Proof of Theorem 1.1

In this section, we first discuss a compactness property for the energy functional I,, ;, g, given by the
Palais-Smale condition.

Let ¢ € R, H be a Banach space and I, 4, 5 € C'(H,R). {(u,, v,)} € H is a Palais-Smale sequence
for I}, 4, 5 in H at level c, (PS).-sequence for short, if

. -1
Ly, 8, vi) — ¢ and Iy ) 5(u,v,) = 0 in H™ as n— oo.

We say that I, 4, 4 satisfies (PS).-condition at level c if for any (PS).-sequence {(u,, v,)} C H for I}, 4,5
has a convergent subsequence in H.

In order to apply Theorem 2.1, we need the following preliminary results for (PS).-sequence of
Ly 1o -

Lemma 3.1. Suppose that 1 < p := p;+ p, <2 and a, y € (0,2). Let {(u,,v,)} € H be a (PS).-
sequence for I, 1, 5. Then, {(u,,v,)} is bounded in H.

Proof. Let {(u,,v,)} C H be a (PS).-sequence for I, 4,4, then
Ly o p(ttn,ve) = ¢+ 0,(1) and I} (i, va) = 0,(1) inH™' as n — oo,
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By Young inequality and Holder inequality, we have

Pl bl sl e
ff() o ff()d()y ff()d()y
(y)-p
0w\ fwmnw )
2(y>p = d - d
=D (f'f( e Z) ( s doy ©
Fo g T (e |\
(f A y ) (fG Gy dz)

Pl
<Al .2 dz)(p Sy mllualls, + ?Smnvnnp)

5 p
Ul S i + S Gt v
Then,

on(1) + Icf + 0|l (uy, vn)llw)

2 I/l],/lz,ﬁ(un) < A1, ﬁ(unv Vn) (I/tn, Vn)>

2*( )
M s D Y7 [V, P2
=(5 o il ~p(1 - 57) [ ST
A TIPS G B 1T 2 oS 2 S5 s vl
2(Q @) H 2*(a) L+ (G, Foyd) N Y Yibt2

which implies that {(u,, v,)} is bounded in H since p < 2 < 2*(a) and 8 > 0.

Proposition 3.1. Let 1 < p <2, a, y €(0,2) and let {(u,, v,)} C H be a (PS).-sequence of Iy, 1,3 with
¢ < 0. Then,

(i) for any A, A, > 0, there exists B. > 0 such that if 0 < B < B., I, 1, p satisfies (PS). condition,
where B, is independent on the sequence {(u,,Vv,)} ;

(ii) for any B > O, there exists A, > 0 such that is 0 < A; < A,, 0 < A < A, I}, 4, satisfies (PS),
condition, where A, is independent on the sequence {(u,, v,)}.

Proof. Since the sequence {(u,, v,)} is bounded in H, thanks to Lemma 3.1, then there exists (ug, vy) € H
such that, up to a subsequence, it follows that

(U, V) = (1o, vo) weakly in H,

(U, Vi) — (utg, vo) weakly in [L* (G, d((ﬁ % d2)1%,
(U, V) = (uo, vo) strongly in [L], (G, dl(ﬁ)ydz)] Yt e [1,2°(y)),

(Un(2), va(2)) = (uo(2),vo(2)) a.e. in G.

Then, by the concentration-compactness principle [39—41] and up to a subsequence if necessary, there

AAAAAA

exist positive finite Radon measure [, 9, p, ji, 7, p € R(G U {o0}); at most countable set J and J; real
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numbers fi;, V; (j € J), fix, Vi (k € J), o, V0, Pos o, V0. Po and different points z; € G\{0} (j € J),

Zr € G\{0} (k € J) such that

Vou,Pdz = i 2 [VouoPdz + ) 5.+ Sofho

jeJ
VovaPdz = i 2 [Vovol'dz + ) 8/ + Softo,
keJ
wa | u, |2* (@) ) wa | Uo |2* (@) ) )
—adZ — V= —adZ + 6Z,Vj + 6()1/0,
d(z) d(z) jeZJ !
e v, l* @ I _ _
Wdz V= Wdz + Z 6Zka + 0oV,
keJ
W | Pl .
dz—p= dz + 8¢0o,
vl _ PPl i}
d(z)2 dz —p = d(z)z dz + 6oPo,

3.1

3.2)

(3.3)

(3.4)

(3.5)

(3.6)

where ¢, is the Dirac mass at z. Moreover, by the Sobolev-Hardy and the Hardy inequalities, we get

_2
a; > S(,G)- f/;*(‘” forall j € JU{0}, and fip > uc - Po,
2

x> S(a,G)- v, forallk e JU{O0}, and fip > g - po,

where S (@, G) is the best Hardy-Sobolev constant, i.e.,

[ VeuPdz
S(a,G) = inf —.
ues J(G)\{0} ( Yl @ d )m
G d(Z)‘Y

(3.7)
(3.8)

In order to study the concentration at infinity of {«,} and {v,}, we use a method of concentration-

compactness principle at infinity, which was first established by Chabrowski [42]. We set

R—oo

Ueoo := lim lim sup f \Vou,|*dz,
GN{d(z)>R}

‘ ‘ 104 u 2*((1)
Ve := lim lim sup f %dz,
Roo e Jondesry  d(@)

21, 12
. u
Peo := lim lim sup f udz,
R e Jonidesr) 4(2)
and
o = lim lim sup f IVev,l2dz,
R=eo se Janid@>R)

) ) aly, 2*(a)
Voo := lim lim sup f %dz,
Roeo e Joniesry 4(2)

3.9

(3.10)

(3.11)
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_ W val®
Poo = lim lim sup f dz.
R—co cndesr 4(2)?

n—oo

For the sequence {u,}, let ¢ ;(z) € C7°(G, [0, 1]) be a cut-off function centered atz; € G\{0} with¢; = 1
on By(z;, 1), ¢; = 0 on G\B,(z;,2). Let ¢ .(z) = ¢; (5 (2)). Then |Vgoj.| < = and {¢-u,} is bounded in
S(I)(G). Testing I/’ll’b’ﬁ(un, v,) with (¢;.u,,0), we obtam llm,,_mUM’ Lp (un, vn) (@ sttn, 0)) = 0, that is,

¢2| nl ¢I£ wal n|2 (a)¢]8
11m(f|VGMn| ¢jsdz — ,u]f d(z)? /llf d(z)*

Y P1 P2
- Bpi ff(z)w bl @ el dz) =lim | u,Vou,Veo;.dz.
G G

d(Z)V n—oo

Now, we estimate each term in (3.12). From (3.1)—(3.6), we get

n—oo

U s [P
H«»f Q" f Pied? = f T

2
lim lim ‘ f v ld(nl)fjg < lim lim G
z

e—0 n— £—>0 n—oo Ba(z;,26) d(Z)2

Y Pl . P2
lirg “mf PRI

e—0 n—oco G d(Z)Y

o W P @ j oVl P2
< lim lim flo———"
£—0 n—oo Bq(z;.2¢) d(Z)Y

w7|un|2 » 20
< hm lim || f]| o f —dz
200 11—r00 f Lr+ (Bd(Zj,ZS),WdZ) Ba(z;2¢) d(Z)y

Yy 200 \To
+ ( f Mdz) =0.
Ba(z),2¢) d(z))’

0 < lim lim f Vit Vo0l
G

-0 n—oo

< tinytim ([ Vo) ( [ Vet Plufdz)
G G

e—0 n—oo

1imf|VGMn|2¢j,st:f¢j,edﬂ2f|VGM0|2¢’j,edZ+ﬂj,
G G G

dz =0,

and

From Holder inequality, it follows that

1
. 2 2 2
< Cllm(flVG¢j,s| luto dZ)
e—0 G
< Clim ( Vo;ol%dz)° f Juol* dz)
-0 Ba(zj.2¢) Bqy(zj,2¢)

< Clim( Iuolz*dz)%* = 0.

e—0 Ba(z;.2¢)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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Consequently, from the above arguments (3.13)—(3.17), we get

0= ling(ljh’bﬁ(un, V), ((]5‘9 Uy, 0)> > ﬂj - /119./', V] e J

Combining with (3.7), we have

S(a,G)\ %
either (1) 9, = 0, or (2) 9, > ( (o ))2 :
1

which implies that the set J is finite.
Similarly, for v, and J, the following conclusion holds:

S (@, G)\ &

J is finite, and either (1) % =0, or (2)' ¥ > (

)2_” for k € J.

On the other hand, choosing a suitable cutoff function centered at the origin, by the analogous

argument we can prove that

flo — p1po < A1Vo and fig — pypo < Aivp.

It follows from the definition of S, ,, and S, that

Ho — H1po 2 Sa,/u Y

Ho = 200 = S ap, Yo

Thus, by combining (3.18) and (3.19), (3.20) we get

S o V&S
1

and
Q,

S a2
either (3)' Vo = 0, or (4)/ Vo > ( /l,/vlz)z .
2

5]

Furthermore, the Hardy inequality (1.2) implies that

N A M1y ~ A
0 < pucpo < flo, 0< (1 - M—)ﬂo < flo — H1po,
G

and
_ _ Mo _ _ ~
0 < papo < fo, 0< (1 - u—),uo < flo — H2P0-
G

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

If 99 = 0, from (3.18) and (3.23), it follows that jip = po = 0. Similarly, if ¥y = 0, by (3.18) and (3.24),

we conclude j1y = py = 0.
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To analyze the concentration at infinity, for R > 0, we choose the function ¢ € C°(G) such that 0 <
¢ < 1, ¢(2) = 00n By(0, 1), ¢(z) = 1 on G\By(0,2) and [Vee| < . Set ¢r(z) = ¢(61(2)), then {@ru,} C
(G) is bounded. Testing 7, W ﬁ(un,vn) with (¢ru,, 0) we obtain lim(lﬁl’ i ﬁ(un,vn), (pru,,0)) =0, i.e.,

2 w2|un|2
—lim | (Veu,, Vapriu,dz = hm f(lVGunl Pr — TeE ¢R)dz
n—0oo G
(3.25)
T Y uy | v,
— | ez =B f FO—4ar — ¢Rdz].

Since

t//"lu ¢ |2 ((I) 2%@) f ) l//2|un¢R|2
S < Va(u, - ——)dz,
y ( f o G(| s(undnl’ — =g =3 )dz
we conclude that

'ﬁzl n¢R|2 (f l//all/t ¢R|2 (@) )2%@

Hi G d(Z)2 “#1 d(Z)“

< f Ve (uapp)l*dz (3.26)
G

< f Voual*l¢xl*dz + f IVadrl*lualdz + 2 f |Vau,dru, Vadrldz.
G G G

By Holder inequality, it is easy to get that

Lim lim sup f &V aunlliu,Voprldz

n—oo

1
< lim limsup( f IVGunlzdz)z( f |unVG¢R|2dZ)
R0 oo By(0,2R)\B4(0,R) By(0,2R)\B4(0,R)

< C lim Vel luoPdz)’ (3.27)

R—00 % JB.(0,2R)\B4(0,R)

1 1
< C lim ( f Vag.|%dz)"( f juol* dz)’
R—eo B4(0,2R)\B4(0,R) B4(0,2)\B4(0,R)

1
< C lim |uto|? dz)2 = 0.
R—00t J B4(0,2R)\B4(0,R)

=

Similarly,
lim lim sup f \Vadrl*lu,*dz = 0. (3.28)
G

R0 pseo

Thus, we see from(3.27), (3.28) and (3.26), we have

2

Moo = H1P o > Sa/,ul ' VF- (329)

On the other hand, from Holder inequality and the definition of ¢z we have

Y P v, |P?
ff() @ Prdz
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l//7| nlp f l//)llvnlp
< () dz| + (2)
L\Bd(O,R)f d(z)” P G\Bd(OsR)f d(z )y
2*()-p
2w 2*() « _p_
Y *0)p Yy 12 ) =)
< f Y f ()7 dz (f U |uy| ¢Rdz)
G\B4(0,R) d(z)” c\Byor d@)

AR )zlzy)
+ ——rdz
(v[G}\Bd or d@) P

2*-p

2%
= | (z)|z<wdz) [ alliallr, +S ]||un||"]
(L\Bd(o r d(z)Y f Yt Y

Since f € L"*(G dz) it follows that

’d( )y

28178 L VT L
Lf(Z)W%dZ

2*()-p

fm i
Thus, taking limits by letting n — oo in (3.25), we have

Heo = H1Poo < AVeo-

Hence, it follows from (3.29) and (3.30) that

S o\ &
either (5) veo =0, or (6) v > A’“)Z :
In contrast, the Hardy inequality implies that

0 < pgPeo < Hoos 0< (1 - &),uoo < Heo = H1Pco-
Ha
If voo = 0, by combining (3.30) and (3.31), we get te, = poo = 0.
From above argument the same conclusion holds for v.,, namely,

2
(@)

- = 2
Moo — H20 0 > Sa/,yz Vo >

ﬁoo _ﬂ]ﬁoo < /121_/00,

and

Sa e
either (5) Vo =0, or (6) Ve > (/1_#2)2
2

If v, = 0, we have that i, = po = 0.

N )
< lim C f AACI S 0.
R—eo G\B4(0,R) d(z)”

(3.30)

(3.31)
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Now we claim that (2), (2)’, (4), (4)" and (6), (6)" cannot occur if 4;, A, and 8 are chosen properly. In
fact, applying (f) and Holder inequality, we have

0>c= I}i_{?o(l/ll,/lzﬁ(un’ Vn) < A Azﬁ(un’ vn) (un’ vn)))

1
7@
o o [l

—,152((2 sl =81 = 55) [ 10545 dz)

2%(@) -2
> Sl vl
" b)) -32)
-l o0 g (ol +lIvoll”, )
2*(a) (G, 3vd2) LZ*0G, Wd 2) [XG, )yd 2)
2(a) -
> T"(a)( y;u” 0||L2 “0G, .,y &) +Sy/12|| 0||L2 0@, w d))
JEE@ Py (loll” vl )
25(r) Lp+ (G dz) OG5 ‘W ~d7) L2O)(G, ()yd)
Since
p P
* + V * 9
e 0”L2<><G 157 d2) * v °”zﬂ<”<6 Lyd ~ (” °“L?<”<G Lydo) I 0”zz<w<G & d@)
1 2
Huo”LZ "G d2) v 0”L2 "G, d2) ) (”uO”L2 "0 Ly T Woll 2+ e >) ’
which and (3.32) yield that
25(2'(@) = p) .
W||f||Lp*(G,dﬁ%dZ)(||uo||L2*(y)(G%dz) ol 2o 2,00
2(@) -2 . 2
e min{S . 8 (0l 26, 22 gy + W0l 20, 2 00) -
namely,
1
" . 82'(@) = P o, 7 ) |7 . .
Uoll; 2%y ,/n/ + 1Voll; 2+ ./, < " 2-p, .
LG, g5y 4 @3 dZ) 2*(a) - 2) mm{S%m,SWz}

If (6) or (6)" occurs, we obtain by (3.32) and (3.33) that

0 >c = ,}l_)n; (1/11,/12,,3(”;19 Vn) < A Azﬁ(un, Vn) (un, vn)>)

2*( )
2° -2
2 2(2—)(0[)(/1 ~ H1Poo + floo —,Uzﬁoo)
2 8 % =Y
@ ( s, Sm}) (@@ =Pl ) B
2%(a) -2 T @ @
ZT*(Q/)(SQM 0 +Sa,u2 0 )

2

2 8 % % 2-p %
_2*(a/)((2*(&)—2)min{SW,,SW2}) ((2 (@ = pf ”L”*(G»dﬁvd@) L
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@ 2 Qfoz

(@) — S e\ 177 S e\ Fo 17
=l e AR

L 2

T (Tw ) |
2%(a) \(2*(@) =2)min{S, ,,, Sy 1o}

2%(a) - 2 o 02 o
- - ((S a,ﬂl) 2~a /ll 2-a + (S (I,/Jz) —a /12 2—0)

2

@@= PMlyo 2 g) B

'B

- 2-2%a)
2 8 zpp(<2*( )= pIA ) B
2@ \ 27 (@) = 2) min(S, 1, Sy @ = PN, 22540 :
that 1s,
2*(a)—2( e g2
052925, VELE 4 (5,05 H)
>22*(a,) ( M1 +( M2 2

(3.34)

2
2

_p_ﬁﬁ.

2 8 =
T 2 (@) ((2*(&) ~2) min{SWl,SWz}) ((2 (@ = plf ”U’*MG,%d@)

From the above inequality, we can find that if 8 > 0 is given, there exists 4. > 0 small enough such that
for Ay, A, € (0, A,), the right-hand side of (3.34) is greater than 0, which is a contradiction. Similarly, if
A1, 4, > 01s given, we can take 8. > 0 so small that for 8 € (0, 8.), right-hand side of (3.34) is greater
than 0.

Similarly we can prove that (2) , (2)" and (4), (4)" cannot occur. So

O 7 P O
oo Joo d(z)” ¢ d@"
n Yeval” al> @ ¥ vol* @
lim 7= —
noe Jo o d(z)” ¢ d@*
In view of (u,,v,) — (uy, vo) weakly in H and the Brezis-Lieb lemma [38], we have

) YOlu, — uol* @ . f YOlv, — vol* (a)
lim dz =0, lim =0.
n—o f d(z)* n—eo d(2)”

We are now going to prove that (u,,v,) — (ug, vo) strongly in H. First, we have

1(utn = w0, Vi = vO)llgy = U5, 1y pCttns Vi) = 15, 1, 5 (105 v0)), (i — 1, Vi — V)
104 u 2*(a)— ZM —lu 2%(a)— 21/! U —u
+/11f¢ | nl n | 0| O)( n O)dZ

d(z)”
@ 2% (a)-2 _ 2% ()2 _
R f@ Y ([val Va dl(vzo)la vo)(V, — Vo) iz 335
-2 _ -2 _
. fG f(z)ﬂl’y[lunlpl UV |P? J?g)li‘ uo|vol”*1(u, uo)dz
2. -2 _
s L f(z)t/”[lunll”‘Ivnl”2 Vn Jét;)lj‘l%l”z vol(v, — vo) iz
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For the first term in (3.35), by using Holder inequality, we get that

‘ f YO(ul* O 2w, — uol* 2 up) (uy, — uo)
G d(z)®

dz‘

ap, (2@l g, a2 @=1,
Sfwlnl |4 o|dz+f¢|o| lun — tol -
G G

d(z)* d(z)

2*(0)—1 1
o 2%(@) 2%(a) @ _ 2*(@) @)
s( YOy dz) (f Wy, — uol dz)
e d@)” G d(z)®

. 2*@4 N -
. f Yl N\ f Wl = g N
¢ d@" G d(2)”

— 0 as n — oo.

Similarly,

‘f wa(lvnlz*(a)_zvn - |V0|2*(a)_2V0)(Vn - VO)
G d(z)”

dz'—>0asn—>00.

(3.36)

(3.37)

On the other hand, using the Holder inequality and (u,, v,) — (uo, vo) weakly in H , we get that

‘ f( )l/’y[lunlpl_zunlvn|pz - |u0|pl_2u0|V0|p2](un - MO)d ‘
s Gy ¢

WOl — f ol i — o]
SfG a7 dat | W4y — %

2" )-p
2%(y)

IA

2*)-p

—0 as n— oo,

and

wY[lun|Pllvn|P2—2vn - |u0|pl|V0|p2_2V0](Vn - VO)
| f@ @) Q7

[ VIR ( [ A it dz) ( [ wf
c d@y c d@y s d@y

l//ylf(Z)|723:7()y’)” rm w}/luOlZ*(Y) 217*7;;) l//)/lu _ u0|2*(7)
NI IE R
¢ d@)? ¢ d@) G d(z)”

dz'—>0 as n — oo,

(3.38)

(3.39)

Combining (3.36), (3.37), (3.38), (3.39), (3.35) with im(l} , ,(un, va), (U — to, v, — Vo)) = 0 and

lim (I;1 /123(”0’ vo), (U, — ug, v, — vo)) = 0, we deduce that
n—oo el
Tim |ty = g, v, = vo)lbye = 0.

The proof is completed.

In the end of this section, we will prove the existence of infinitely many weak solutions of (1.1)

which tend to zero. First, by using Holder’s inequality and Young’s inequality, we get

W u)> @ Y@ SEE @), om0t e)

—dz + dz < Sqp lully, ™ +Sau IVIE
¢ d@* ¢ d@* “ H o e
i i 2@

SSapr +Saw MWL,
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and f P f Py f P
Z ——
. d(zy ) a@r “t d(zy
2*(n)-p
Di 24 o l/,y|un|2 » \7®
<=1 (Z)|2*(”"—d2) ( f ———dz
P (fG f dzy ¢ d@Y
O-p p
FAY M, F®  \T® (3.40)
o e o ([ 25
G (2)Y
<l o2, dz)(’;l mn A+ 2282 vl
U2 S i + S Mt v
Then,

| A Qﬁalulz*m) P wwlvlz*((z)
1 == > (2 - B
,11,,12’5(1/[, V) 2”(14 V)”H 2(@) d(z)” < 2% () G d(z)

¢7|M|P1|v|172
-8 f fO—4m 4

2*(a) _ 2*(a)

1 (Said +Sa, .
> I, IZ, = (A + ) “‘2*()’” e, I

2 p
—,BIIfIILp*(G,%d@(SWl +Sm)ll(u gy

\S}

Define the function

1 *
g(t) = => = Ci(A; + )X @ —C,Bt°, V1> 0,

2
where
(S 2* ((Y) S 2 (zr)
+
. aﬂl (Y,uz L 2
Cl . 2*(0’) ) C2 .= ”f”L”*(G,%d )(S)’/JI + S)//lz) > O

Because 1 < p <2 < 2*(a), for the given 8 > 0, there exists A.. > 0 so small that for 4; + 4, € (0, 4...),
there exist t,, £, > 0 with #; < 1, such that g(#;) = g(¢,) = 0, and g(¢) < O for r € (0,1,), g(¢t) > O for
t € (t, 1), g(t) <0 for ¢t € (t,, +00). Similarly, given 4;, 4, > 0, we can choose §.. > 0 small enough
such that for all B € (0, B..), there exist 7;, &, > 0 with ; < 7, such that g(7,) = g(%,) = 0 and g(¢) < 0 for
t€(0,4), g(t) > 0 fort € (f1,5), g(t) < 0 for t € (£, +0).

Let us define a function ¢ € C([0, o0),R) such that 0 < ¢(r) < 1, ¢(—1) = ¢(2) for all 7 € [0, +00),
¢(t) =1ift € [0,1,] and ¢(¢) = 0 if ¢ € [1,, 00). So we consider the equation

2y |y, 2" (@)-2 Y|yy|P1—2 P2
- Bott = 35 = Al o g+ B fO T i
* (3.41)
2y a|y,[2"(@)-2 Yy,1P1 1| P2—2
N df 5 = Al )M)% +ﬁpzf(z>%;)'yv in G,

and we observe that if (#,v) is a weak solution of (3.41) such that ||(u, V)|l < t;, then (i, v) is also a
solution of (1.1). For this reason we look for critical points of the following functional 3, 1,5 : H — R
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defined as

|2 (@) aly, 2%(a@)
Y |ul 1 Yevl )d

1
Tty o s V) = —||<u b~ 5 f $w (5 + g

l!/)/|u|pl |P2
ﬁff( i e YwneH
In view of the definition of ¢ and p < 2 we can see that J,, 1,5(1,v) — o0 as [|[(u,V)llggy — o0,
Tu s, =v) = Ja 18w, v) and Ty, 1,5, v) is bounded from below. Moreover, I, 4, 5(1,v) <
T W, v) for all (u,v) € H.

Next, we show that 7, 4, 4 satisfies the assumptions of Theorem 2.1.

Lemma 3.2. (i) If T4, 58w, v) <0, then ||(u, V)llg < t1 and Ty, 1, 5(it, V) = Iy, 2, g8, V) for all (@i, V) €
Ny, where Ny, denotes the enough neighborhood of (u, v).
(i1) For Ay, Ay > O, there ex1sts/3 min{B., B..} such that if B € (0, ,8) and ¢ € (—0,0), then I, 1,5
satisfies (PS).-condition;
(iii) For B > 0, there exists A= min{A,, A..} such that if A;, A4, € (0, /l) and ¢ € (—0,0), then Jy, 1,5
satisfies (PS).-condition.

Proof. We prove (i) by contradiction, assume ', 1, s(1), v < 0 and [|(u, V)|l > ;. If [|(w, V)llor > 12, then
we have

1
T pv) 2 5l VIl —ﬁlIJ‘IIWG,%UIZ)(Sa,il + SWZ)II(M, Wy, > 0.

This contradicts J, 4, s(u, v) < 0.
If t; < ||(u, V)l < 15, since 0 < ¢(r) < 1, we get

T p,v) 2 1y, 2, p(u,v) > g(|l(u, v)ller) > 0,

which again contradicts 73, 4, 5(u,v) < 0. Hence, [[(,v)llsr < t;. Furthermore, by continuity of
T8 applying Iy, 4, s(u,v) = Ja, 0,50, v) for all ||(u, v)|l < #; there exists a small neighborhood
By € Ba((0,0), R) of (u,v) such that I, 4, s(@, ) = Ja,.,4(i, V) for any (i, V) € B,,,), we conclude the
proof of (i).

Now we prove (ii), let,E = min{p., ..}, and let {(u,, v,)} C H be a (PS).-sequence for [, », 5 With
the level ¢ < 0, then 'y, 4, (U, v,) — ¢ and jx/h,ﬂz,ﬁ(”"’ vy) — 0in H~'. By (i), we have ||(u,, vyl < 11,
hence T3, 4, s(Un, Vi) = Iy, 4, g(ttn, V). By Proposition 3.1, I, ,, s satisfies the (PS).-condition for ¢ < 0.
Thus, 7, 4, satisfies the (PS).-condition for ¢ < 0, (ii) holds.

The proof of (ii1) goes exactly as (ii) with only minor modification, we omit it here.

Let
Tilrap = w,v) € H : oy, v) < =)

Lemma 3.3. Given k € N, there exists € = &(k) > 0 such that y(J,° np) = kforany Ay, A5, B> 0.

Proof. Fix A1, 1; > 0, k € N and let E; be a k-dimensional vectorial subspace of H. Taking (u,v) €
E\{(0,0)} with (u,v) = riy(wy, w,), where (wy, wy) € Ey and ||(wy, wy)|lir = 1. Then, by (3.40) there is a
constant C > 0 such that

Y p1 p2
| [ s 4] < cllan, il = € < o
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which implies that there exists ¢; € (—00, +00) such that

24 P1 P2
ff( )9[’ |w(;i )|;U2| dz > ¢ > —co.

Thus, for each (u,v) = ri(w;, wy) with r, € (0, t), we have

j/ll,/lg,ﬁ(u’ V) = j/l,ﬁ(rk(wl , W)

~ I‘i 7'2 (@) l//alwllz*(a) wa|w2|2*(a)
=2 2@ )¢( k)f(/ll Q" + A, Q" )dz

Wla)1|1"|w2|1’2
—,Br"ff() Q7 dz

—rk — Bery.-

For any & := &(k) > 0, there exists r; € (0,#) small enough such that J,, 1, s(u,v) < —& for any
(u,v) € H with ||(u, V)|l = 1.

Denote S; = {(u,v) € H : ||(u, )|l = ri}. Clearly, S; is homeomorphic to the k£ — 1 dimensional
sphere §*~' and Sy N E;, € J;° 1,5+ BY Proposition 2.1 (2) and (4) it follows that

YT e 2 V(SN E) =k
concluding the proof.

Let us set the number

¢ = inf sup S, 1,51, Vv),
Aerk(uv)IEDA 1f

with
I'i={AcCcH:Aisclosed,A = —A and y(A) > k}.

Clearly, ¢, < ¢4 for each k € N. Before proving our main result, we state the following technical
results.

Lemma 3.4. ¢, <0 forall k € N.

Proof. Fix k € N. By Lemma 3.3, there exists £ > 0 such that y(jﬁ‘mﬂ) > k. This and J,, 1,5 1s @
continuous even functional imply that [, °, ; € I';. Then

0,0) ¢ I,/ 1,5 and sup  Jaup,v) < —-e<0.

(Lt,v)ejzilizﬁ

Therefore, taking into account that 7, ,, s is bounded from below, we get

—oo < ¢y = inf sup Jy 0,5u,v) < sup Ty ap0,v) < —£<0.
Aely (u,v)eA (u,v)ej;lﬁhﬁ

Let
={w,v) € H : T 1,5 v) =0 and Ty, 1, pu,v) = ch.
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Lemma 3.5. For any A,, A, B > 0, the critical values {ci}ien of T a, 1, satisfy cx — 0 as k — oo,

Proof. Fix uy, us € [0, ug) and 4;, A, B > 0. By Lemma 3.4 it follows that ¢, < 0. Since ¢; < ¢x41 We
can assume that lim ¢, — ¢o < 0. Moreover, by Lemma 3.2, it is easy to see that the functional J, ,, s

k—o0

satisfies the (PS),,-condition at level cy.
Now we prove that ¢y = 0. We argue by contradiction and we suppose that ¢y < 0. In view of Lemma
3.2, K., 1s compact. Furthermore, it is easy to see that

K,c&:={AcCH\{(0,0)}: Aisclosed and A = —-A},

which and Proposition 2.1 (6) imply that y(K,,) = ko < co and there exists 6 > 0 such that Ns(K,,)) C &
and

Y(Key) = y(Ns(Ke,)) = ko < o0, (3.42)
where N;(K.,) = {(u,v) € H : dist((u, v), K,,) < 6}. Moreover, By [38, Theorem A.4], there exists an
odd homeomorphism 7 : H — H such that

(T N\ No(Ke,)) € JO°F ,, for some & € (0, —co) (3.43)

1,428 41,287

Taking into account that ¢;,; < ¢, and ¢, — ¢y as k — oo, we can find k € N such that ¢, > ¢) — &

and ¢y, < co, Where kg given in (3.42). Take A € 'y, such that sup Ja, 4,51, V) < Criry < Co + €, by
(.v)eA
using Properties 2.1 (4), we have

YA\ Ns(K,)) = y(A) — y(Ns(K,)) = k and y((A \ Ns(K,,))) = k,
from which we have (A \ Ns(K,,)) € I'y. Hence

sup JupU,v) > cp>co— €. (3.44)
(u,v)en(A\Ns(Kcy))

On the other hand, in view of (3.43)and A Cc AC?JZﬂ we see that

DA\ Ny(K.)) € (T, \ No(Kop) € T,

which gives a contradiction in virtue of (3.44). Hence, cp = 0 and I}im ¢x = 0 hold.

—00

Lemma 3.6. Let Ay, Ay, B be as in (ii) or (iii) of Lemma 3.2. If k, | € N such that ¢ = ¢,y = Cjy1 =+ =
Cikyl, then
v(K.)>1+1.

Proof. From Lemma 3.4 we have that ¢ = ¢x = c11 = ... = ¢y < 0. By Lemma 3.2, 7, 4,4 satisfies
the (PS ).-condition on the compact set K.

Suppose the result is not true, that is, y(K,) < . Then, by Proposition 2.1 (6) there is a neighborhood
of K., say Ns(K,.), such that y(Ns(K.)) = y(K.) < [. By [38, Theorem A.4], there exists an odd
homeomorphism 7 : H — H such that

n(jjlszﬁ \ Ns(K.)) € I35, forsome & € (0, —c). (3.45)
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From the definition of ¢ = ¢,;, we know there exists A € I',,;; such that

sup J a0, v) < cC+ &,
(u,v)eA

thatis, A C J¢*¢ ., and so by (3.45) we get

A1,42,8°
AN Ns(KD) € (TS50 \ No(KD) € 55 5

This yields

sup S upu,v) <c - &, (3.46)
uen(A\Ns(K.))

On the other hand, by parts (1), (3) of Proposition 2.1 we have

YA\ Ns(K))) = (A \ Ns(K)) = y(A) = y(Ns(Kc)) = n.

Hence, we conclude that n(A \ Ns(K.)) € ', and so

sup  Jaup,v)>c, =c,
uen(A\Ny(Ko)

which contradicts (3.46). Thus, we conclude y(K.) > [ + 1.

Proof of Theorem 1.1 Let A, A5, 8 be as in (ii) or (iii) of Lemma 3.2. Putting together Lemma 3.4
and Lemma 3.2 (ii) or (iii) , we can see that the functional 7, ,, s satisfies the (PS ). -condition with
¢, < 0. That is, ¢ s a critical value of [, 4, 5.

We consider two situations.

If all ¢;’s are distinct, thatis, —co < ¢; < ¢y < -+ < ¢ < Cpq1 < -+, then y(K,,) > 1 since K, is a
compact set. Thus, in this case [, 1, s admits infinitely many critical values. By Lemma 3.2 (1) we can
see that I, 4, s has infinitely many critical points, i.e., (1.1) has infinitely many solutions.

If for some k € N there exists / € Nsuch that ¢y = ¢x41 = - = ¢y = ¢, theny(K.) > [+ 1 > 2 by
Lemma 3.6. Thus, the set K. has infinitely many distinct elements, (see [38, Remark 7.3]), i.e., Iy, 1,5
has infinitely many distinct critical point. Thus again, system (1.1) has infinitely many distinct weak
solutions. Moreover, Lemma 3.5 implies that the energy of this solutions converges to zero.
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