The paper deals with the existence and multiplicity of nontrivial solutions for the doubly elliptic problem
$ \begin{cases} \Delta u = 0 \qquad &\text{in}~~ \Omega , \\ u = 0 &\text{on}~~ \Gamma_0 , \\ -\Delta_\Gamma u +\partial_\nu u = |u|^{p-2}u\qquad &\text{on}~~ \Gamma_1 , \end{cases} $
where $ \Omega $ is a bounded open subset of $ \mathbb R^N $ ($ N\ge 2 $) with $ C^1 $ boundary $ \partial\Omega = \Gamma_0\cup\Gamma_1 $, $ \Gamma_0\cap\Gamma_1 = \emptyset $, $ \Gamma_1 $ being nonempty and relatively open on $ \Gamma $, $ \mathcal{H}^{N-1}(\Gamma_0) > 0 $ and $ p > 2 $ being subcritical with respect to Sobolev embedding on $ \partial\Omega $.
We prove that the problem admits nontrivial solutions at the potential-well depth energy level, which is the minimal energy level for nontrivial solutions. We also prove that the problem has infinitely many solutions at higher energy levels.
Citation: Enzo Vitillaro. Nontrivial solutions for the Laplace equation with a nonlinear Goldstein-Wentzell boundary condition[J]. Communications in Analysis and Mechanics, 2023, 15(4): 811-830. doi: 10.3934/cam.2023039
The paper deals with the existence and multiplicity of nontrivial solutions for the doubly elliptic problem
$ \begin{cases} \Delta u = 0 \qquad &\text{in}~~ \Omega , \\ u = 0 &\text{on}~~ \Gamma_0 , \\ -\Delta_\Gamma u +\partial_\nu u = |u|^{p-2}u\qquad &\text{on}~~ \Gamma_1 , \end{cases} $
where $ \Omega $ is a bounded open subset of $ \mathbb R^N $ ($ N\ge 2 $) with $ C^1 $ boundary $ \partial\Omega = \Gamma_0\cup\Gamma_1 $, $ \Gamma_0\cap\Gamma_1 = \emptyset $, $ \Gamma_1 $ being nonempty and relatively open on $ \Gamma $, $ \mathcal{H}^{N-1}(\Gamma_0) > 0 $ and $ p > 2 $ being subcritical with respect to Sobolev embedding on $ \partial\Omega $.
We prove that the problem admits nontrivial solutions at the potential-well depth energy level, which is the minimal energy level for nontrivial solutions. We also prove that the problem has infinitely many solutions at higher energy levels.
[1] | P. Grisvard, Elliptic problems in nonsmooth domains, Society for Industrial and Applied Mathematics (SIAM), 2011. https://doi.org/10.1137/1.9781611972030 |
[2] | K. Atkinson, D. Chien, O. Hansen, A spectral method for an elliptic equation with a nonlinear Neumann boundary condition, Numer. Algorithms, 81 (2019), 313–344. https://doi.org/10.1007/s11075-018-0550-y doi: 10.1007/s11075-018-0550-y |
[3] | M. Ben Ayed, H. Fourti, A. Selmi, Harmonic functions with nonlinear Neumann boundary condition and their Morse indices, Nonlinear Anal. Real World Appl., 38 (2017), 96–112. https://doi.org/10.1016/j.nonrwa.2017.04.012 doi: 10.1016/j.nonrwa.2017.04.012 |
[4] | M. Chlebík, M. Fila, W. Reichel, Positive solutions of linear elliptic equations with critical growth in the Neumann boundary condition, NoDEA Nonlinear Differential Equations Appl., 10 (2003), 329–346. https://doi.org/10.1007/s00030-003-1037-6 doi: 10.1007/s00030-003-1037-6 |
[5] | M. de Souza, W. G. Melo, The Laplace equation in the half-space involving nonlinearities without the Ambrosetti and Rabinowitz condition, Results Math., 77 (2022), 1–28. https://doi.org/10.1007/s00025-021-01574-4 doi: 10.1007/s00025-021-01574-4 |
[6] | P. Quittner, W. Reichel, Very weak solutions to elliptic equations with nonlinear Neumann boundary conditions, Calc. Var. Partial Differential Equations, 32 (2008), 429–452. https://doi.org/10.1007/s00526-007-0155-0 doi: 10.1007/s00526-007-0155-0 |
[7] | T. F. Wu, Existence and multiplicity of positive solutions for a class of nonlinear boundary value problems, J. Differential Equations, 252 (2012), 3403–3435. https://doi.org/10.1016/j.jde.2011.12.006 doi: 10.1016/j.jde.2011.12.006 |
[8] | G. M. Coclite, A. Favini, C. G. Gal, G. R. Goldstein, J. A. Goldstein, E. Obrecht, et al, The role of Wentzell boundary conditions in linear and nonlinear analysis, in Advances in nonlinear analysis: theory methods and applications, Camb. Sci. Publ., Cambridge, 2009,279–292. |
[9] | A. Greco, G. Viglialoro, Existence and uniqueness for a two-dimensional Ventcel problem modeling the equilibrium of a prestressed membrane, Appl. Math., 68 (2023), 123–142. https://doi.org/10.21136/AM.2022.0095-21 doi: 10.21136/AM.2022.0095-21 |
[10] | T. Kashiwabara, C. M. Colciago, L. Dedè, A. Quarteroni, Well-Posedness, Regularity, and Convergence Analysis of the Finite Element Approximation of a Generalized Robin Boundary Value Problem, SIAM J. Numer. Anal., 53 (2015), 105–126. https://doi.org/10.1137/140954477 doi: 10.1137/140954477 |
[11] | S. Nicaise, H. Li, A. Mazzucato, Regularity and a priori error analysis of a Ventcel problem in polyhedral domains, Math. Methods Appl. Sci., 40 (2017), 1625–1636. https://doi.org/10.1002/mma.4083 doi: 10.1002/mma.4083 |
[12] | S. Romanelli, Goldstein-Wentzell boundary conditions: recent results with Jerry and Gisèle Goldstein, Discrete Contin. Dyn. Syst., 34 (2014), 749–760. https://doi.org/10.3934/dcds.2014.34.749 doi: 10.3934/dcds.2014.34.749 |
[13] | J. L. Vázquez, E. Vitillaro, Heat equation with dynamical boundary conditions of reactive-diffusive type, J. Differential Equations, 250 (2011), 2143–2161. https://doi.org/10.1016/j.jde.2010.12.012 doi: 10.1016/j.jde.2010.12.012 |
[14] | J. L. Lions, Lectures on elliptic partial differential equations, Tata Institute of Fundamental Research, Bombay, 1957. |
[15] | M. Dambrine, D. Kateb, J. Lamboley, An extremal eigenvalue problem for the Wentzell-Laplace operator, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 33 (2016), 409–450. https://doi.org/10.1016/j.anihpc.2014.11.002 doi: 10.1016/j.anihpc.2014.11.002 |
[16] | F. Du, Q. Wang, C. Xia, Estimates for eigenvalues of the Wentzell-Laplace operator, J. Geom. Phys., 129 (2018), 25–33. https://doi.org/10.1016/j.geomphys.2018.02.020 doi: 10.1016/j.geomphys.2018.02.020 |
[17] | C. M. Elliott, T. Ranner, Finite element analysis for a coupled bulk-surface partial differential equation, IMA J. Numer. Anal., 33 (2013), 377–402. https://doi.org/10.1093/imanum/drs022 doi: 10.1093/imanum/drs022 |
[18] | P. Knopf, C. Liu, On second-order and fourth-order elliptic systems consisting of bulk and surface PDEs: well-posedness, regularity theory and eigenvalue problems, Interfaces Free Bound., 23 (2021), 507–533. https://doi.org/10.4171/ifb/463 doi: 10.4171/ifb/463 |
[19] | C. Xia, Q. Wang, Eigenvalues of the Wentzell-Laplace operator and of the fourth order Steklov problems, J. Differential Equations, 264 (2018), 6486–6506. https://doi.org/10.1016/j.jde.2018.01.041 doi: 10.1016/j.jde.2018.01.041 |
[20] | J. Li, L. Su, X. Wang, Y. Wang, Bulk-surface coupling: derivation of two models, J. Differential Equations, 289 (2021), 1–34. https://doi.org/10.1016/j.jde.2021.04.011 doi: 10.1016/j.jde.2021.04.011 |
[21] | B. Niethammer, M. Röger, J. J. L. Velázquez, A bulk-surface reaction-diffusion system for cell polarization, Interfaces Free Bound., 22 (2020), 85–117. https://doi.org/10.4171/ifb/433 doi: 10.4171/ifb/433 |
[22] | E. Vitillaro, Strong solutions for the wave equation with a kinetic boundary condition, in Recent trends in nonlinear partial differential equations. I. Evolution problems, 594 (2013), 295–307. http://dx.doi.org/10.1090/conm/594/11793 |
[23] | E. Vitillaro, On the Wave Equation with Hyperbolic Dynamical Boundary Conditions, Interior and Boundary Damping and Source, Arch. Ration. Mech. Anal., 223 (2017), 1183–1237. http://dx.doi.org/10.1007/s00205-016-1055-2 doi: 10.1007/s00205-016-1055-2 |
[24] | E. Vitillaro, On the wave equation with hyperbolic dynamical boundary conditions, interior and boundary damping and supercritical sources, J. Differential Equations, 265 (2018), 4873–4941. https://doi.org/10.1016/j.jde.2018.06.022 doi: 10.1016/j.jde.2018.06.022 |
[25] | E. Vitillaro, Blow-up for the wave equation with hyperbolic dynamical boundary conditions, interior and boundary nonlinear damping and sources, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 4575–4608. https://www.aimsciences.org/article/doi/10.3934/dcdss.2021130 |
[26] | G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457–480. https://doi.org/10.57262/ade/1355867704 doi: 10.57262/ade/1355867704 |
[27] | P. Pucci, E. Vitillaro, Approximation by regular functions in Sobolev spaces arising from doubly elliptic problems, Boll. Unione Mat. Ital., 13 (2020), 487–494. https://doi.org/10.1007/s40574-020-00225-w doi: 10.1007/s40574-020-00225-w |
[28] | L. Jeanjean, K. Tanaka, A note on a mountain pass characterization of least energy solutions, Adv. Nonlinear Stud., 3 (2003), 445–455. https://doi.org/10.1515/ans-2003-0403 doi: 10.1515/ans-2003-0403 |
[29] | L. Jeanjean, K. Tanaka, A remark on least energy solutions in ${\bf{R}}^N$, Proc. Amer. Math. Soc., 131 (2003), 2399–2408. https://doi.org/10.1090/S0002-9939-02-06821-1 doi: 10.1090/S0002-9939-02-06821-1 |
[30] | K. Tanaka, Mountain pass characterization of least energy solutions and its application (variational problems and related topics), Surikaisekikenkyusho Kokyuroku, 149–156. |
[31] | R. A. Adams, Sobolev spaces, Academic Press, New York-London, 1975, Pure and Applied Mathematics, Vol. 65. |
[32] | S. Sternberg, Lectures on differential geometry, 2nd edition, Chelsea Publishing Co., New York, 1983. |
[33] | W. M. Boothby, An introduction to differentiable manifolds and Riemannian geometry, Academic Press, New York-London, 1975. |
[34] | E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, vol. 5 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society. https://doi.org/10.1090/cln/005 |
[35] | J. Jost, Riemannian geometry and geometric analysis, Universitext, Springer-Verlag, Berlin, 2008. https://doi.org/10.1007/978-3-319-61860-9 |
[36] | M. E. Taylor, Partial differential equations, vol. 23 of Texts in Applied Mathematics, Springer-Verlag, New York, 1996. https://doi.org/10.1007/978-1-4684-9320-7 |
[37] | D. Mugnolo, E. Vitillaro, The wave equation with acoustic boundary conditions on non-locally reacting surfaces, arXiv: 2105.09219. https://arXiv.org/abs/2105.09219 |
[38] | W. P. Ziemer, Weakly differentiable functions, vol. 120 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1989. |
[39] | P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, vol. 65 of CBMS Regional Conference Series in Mathematics, American Mathematical Society, 1986. https://doi.org/10.1090/cbms/065 |
[40] | A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7 |
[41] | A. Ambrosetti, G. Prodi, A primer of nonlinear analysis, Cambridge University Press, Cambridge, 1993. |
[42] | A. Ambrosetti, A. Malchiodi, Nonlinear analysis and semilinear elliptic problems, vol. 104 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2007, https://doi.org/10.1017/CBO9780511618260 |
[43] | J. Bellazzini, N. Visciglia, Max-min characterization of the mountain pass energy level for a class of variational problems, Proc. Amer. Math. Soc., 138 (2010), 3335–3343. https://doi.org/10.1090/S0002-9939-10-10415-8 doi: 10.1090/S0002-9939-10-10415-8 |
[44] | J. M. do Ó, E. S. Medeiros, Remarks on least energy solutions for quasilinear elliptic problems in $\Bbb R^N$, Electron. J. Differential Equations, 83 (2003), 1–14. https://ejde.math.txstate.edu/Volumes/2003/83/doo.pdf |
[45] | E. Vitillaro, Some new results on global nonexistence and blow-up for evolution problems with positive initial energy, Rend. Istit. Mat. Univ. Trieste, 31 (2000), 245–275. |
[46] | V. Girault, P. A. Raviart, Finite element methods for Navier-Stokes equations: theory and algorithms, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986. https://link.springer.com/book/10.1007/978-3-642-61623-5 |