Research article Special Issues

Characterizations of ball-covering of separable Banach space and application

  • Received: 27 August 2023 Revised: 09 November 2023 Accepted: 14 November 2023 Published: 20 November 2023
  • Primary 46B20

  • In this paper, we first prove that the space $ (X, \|\cdot\|) $ is separable if and only if for every $ \varepsilon\in $ $ (0, 1) $, there is a dense subset $ G $ of $ X^{*} $ and a $ w^{*} $-lower semicontinuous norm $ \|\cdot\|_{0} $ of $ X^{*} $ so that (1) the norm $ \|\cdot\|_{0} $ is Frechet differentiable at every point of $ G $ and $ d_{F}\|x^{*}\|_{0}\in X $ is a $ w^{*} $-strongly exposed point of $ B(X^{**}, \|\cdot\|_{0}) $ whenever $ x^{*}\in G $; (2) $ \left(1+\varepsilon^{2}\right) {\left\| {{x^{***}}} \right\|_0} \le \left\| {{x^{***}}} \right\| \le \left(1 + \varepsilon \right){\left\| {{x^{***}}} \right\|_0} $ for each $ x^{***}\in X^{***} $; (3) there exists $ \{x_{i}^{*}\}_{i = 1}^{\infty}\subset G $ such that ball-covering $ \{ B({x_{i}^{*}}, {r_i})\} _{i = 1}^\infty $ of $ (X^{*}, \|\cdot\|_{0}) $ is $ (1+\varepsilon)^{-1} $-off the origin and $ S(X^{*}, \|\cdot\|)\subset \cup_{i = 1}^{\infty}B({x_{i}^{*}}, {r_i}) $. Moreover, we also prove that if space $ X $ is weakly locally uniform convex, then the space $ X $ is separable if and only if $ X^{*} $ has the ball-covering property. As an application, we get that Orlicz sequence space $ l_{M} $ has the ball-covering property.

    Citation: Shaoqiang Shang. Characterizations of ball-covering of separable Banach space and application[J]. Communications in Analysis and Mechanics, 2023, 15(4): 831-846. doi: 10.3934/cam.2023040

    Related Papers:

  • In this paper, we first prove that the space $ (X, \|\cdot\|) $ is separable if and only if for every $ \varepsilon\in $ $ (0, 1) $, there is a dense subset $ G $ of $ X^{*} $ and a $ w^{*} $-lower semicontinuous norm $ \|\cdot\|_{0} $ of $ X^{*} $ so that (1) the norm $ \|\cdot\|_{0} $ is Frechet differentiable at every point of $ G $ and $ d_{F}\|x^{*}\|_{0}\in X $ is a $ w^{*} $-strongly exposed point of $ B(X^{**}, \|\cdot\|_{0}) $ whenever $ x^{*}\in G $; (2) $ \left(1+\varepsilon^{2}\right) {\left\| {{x^{***}}} \right\|_0} \le \left\| {{x^{***}}} \right\| \le \left(1 + \varepsilon \right){\left\| {{x^{***}}} \right\|_0} $ for each $ x^{***}\in X^{***} $; (3) there exists $ \{x_{i}^{*}\}_{i = 1}^{\infty}\subset G $ such that ball-covering $ \{ B({x_{i}^{*}}, {r_i})\} _{i = 1}^\infty $ of $ (X^{*}, \|\cdot\|_{0}) $ is $ (1+\varepsilon)^{-1} $-off the origin and $ S(X^{*}, \|\cdot\|)\subset \cup_{i = 1}^{\infty}B({x_{i}^{*}}, {r_i}) $. Moreover, we also prove that if space $ X $ is weakly locally uniform convex, then the space $ X $ is separable if and only if $ X^{*} $ has the ball-covering property. As an application, we get that Orlicz sequence space $ l_{M} $ has the ball-covering property.



    加载中


    [1] L. Cheng, Ball-covering property of Banach spaces, Israel J. Math., 156 (2006), 111–123. https://doi.org/10.1007/BF02773827 doi: 10.1007/BF02773827
    [2] S. Shang, Y. Cui, Ball-covering property in uniformly non-$l_{3}^{(1)}$ Banach spaces and application, Abstr. Appl. Anal., 2013 (2013), 1–7. https://doi.org/10.1155/2013/873943 doi: 10.1155/2013/873943
    [3] S. Shang, The ball-covering property on dual spaces and Banach sequence spaces, Acta Mathematica Scientia., 41 (2021), 461–474. https://doi.org/10.1007/s10473-021-0210-5 doi: 10.1007/s10473-021-0210-5
    [4] L. Cheng, Q. Cheng, X. Liu, Ball-covering property of Banach spaces is not preserved under linear isomorphisms, Sci. China Ser. A., 51 (2008), 143–147. https://doi.org/10.1007/s11425-007-0102-8 doi: 10.1007/s11425-007-0102-8
    [5] D. Preiss, Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal., 91 (1990), 312–345. https://doi.org/10.1016/0022-1236(90)90147-D doi: 10.1016/0022-1236(90)90147-D
    [6] S. Shang, Differentiability and ball-covering property in Banach spaces, J. Math. Anal. Appl., 434 (2016), 182–190. https://doi.org/10.1016/j.jmaa.2015.09.009 doi: 10.1016/j.jmaa.2015.09.009
    [7] S. Shang, Y. Cui, Locally 2-uniform convexity and ball-covering property in Banach space, J. Math. Anal., 9 (2015), 42–53. https://doi.org/10.15352/bjma/09-1-4 doi: 10.15352/bjma/09-1-4
    [8] L. Cheng, Q. Cheng, H. Shi, Minimal ball-covering in Banach spaces and their application, Studia Math., 192 (2009), 15–27. https://doi.org/10.4064/sm192-1-2 doi: 10.4064/sm192-1-2
    [9] S. Shang, Y. Cui, Gateaux differentiability of w*-lower semicontinuous convex function in Banach spaces and applications, J. Nonlinear Convex Anal., 18(2017), 1867–1882.
    [10] V. P. Fonf, C. Zanco, Covering spheres of Banach spaces by balls, Math. Ann., 344 (2009), 939–945. https://doi.org/10.1007/s00208-009-0336-6 doi: 10.1007/s00208-009-0336-6
    [11] L. Cheng, H. Shi, W. Zhang, Every Banach spaces with a $w^{*}$-separable dual has an $1 + \varepsilon$-equivalent norm with the ball-covering property, Sci. China Ser. A., 52 (2009), 1869–1874. https://doi.org/10.1007/s11425-009-0175-7 doi: 10.1007/s11425-009-0175-7
    [12] L. Cheng, Z. Luo, X. Liu, Several remarks on ball-covering property of normed spaces, Acta Math. Sin., 26 (2010), 1667–1672. https://doi.org/10.1007/s10114-010-9036-0 doi: 10.1007/s10114-010-9036-0
    [13] R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math., Springer-Verlag, New York, 1989. https://doi.org/10.1007/978-3-662-21569-2
    [14] S. T. Chen, Geometry of Orlicz spaces, Dissertationes Math., Warsaw, 1996.
    [15] L. Cheng, Y. Ruan, Y. Teng, Approximation of convex functions on the dual of Banach spaces, J. Approx. Theory, 116 (2002), 126-140. https://doi.org/10.1006/jath.2001.3664 doi: 10.1006/jath.2001.3664
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(824) PDF downloads(126) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog