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Abstract: In this paper, we first prove that the space (X, ‖ · ‖) is separable if and only if for every ε ∈
(0, 1), there is a dense subset G of X∗ and a w∗-lower semicontinuous norm ‖ · ‖0 of X∗ so that (1) the
norm ‖ · ‖0 is Frechet differentiable at every point of G and dF‖x∗‖0 ∈ X is a w∗-strongly exposed point
of B(X∗∗, ‖ · ‖0) whenever x∗ ∈ G; (2)

(
1 + ε2

)
‖x∗∗∗‖0 ≤ ‖x∗∗∗‖ ≤ (1 + ε) ‖x∗∗∗‖0 for each x∗∗∗ ∈ X∗∗∗; (3)

there exists {x∗i }
∞
i=1 ⊂ G such that ball-covering {B(x∗i , ri)}∞i=1 of (X∗, ‖ · ‖0) is (1 + ε)−1-off the origin and

S (X∗, ‖ · ‖) ⊂ ∪∞i=1B(x∗i , ri). Moreover, we also prove that if space X is weakly locally uniform convex,
then the space X is separable if and only if X∗ has the ball-covering property. As an application, we get
that Orlicz sequence space lM has the ball-covering property.
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1. Introduction and preliminaries

Let (X, ‖ · ‖) denote a real Banach space and X∗ denote the dual space of X. Let S (X) and B(X) denote
the unit sphere and unit ball of X, respectively. Let the set B(x, r) denote the closed ball centered at
point x and of radius r > 0. Let xn

w
−→ x denote that the sequence {xn}

∞
n=1 is weakly convergent to point x.

The geometric and topological properties of unit ball and unit sphere in Banach spaces play an
important role in the geometry of Banach spaces. The geometry of Banach space can be said to be
related to the unit ball and unit sphere of Banach space. Almost all geometric concepts are defined by
the unit sphere, such as convexity and smoothness of Banach spaces. Not only that, many other research
topics are related to the spherical representation of Banach space subsets, such as Mazur intersection
property, noncompact measure and spherical topology problem. These topics have attracted the attention
of many mathematicians since they were put forward. Through the tireless efforts of predecessors,
many important results have been achieved in the study of these issues. These results often play an
indispensable role in the in-depth study of the geometric properties of Banach spaces. It can be seen
that the charm of the behavior of the ball family is amazing.
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Starting with a different viewpoint, a notion of ball-covering property is introduced by Cheng[1].

Definition 1.1. (see [1]) We call that B = {B(xi, ri)}i∈I is a ball-covering of X if S (X) ⊂ ∪i∈I B(xi, ri) and
0 < ∪i∈I B(xi, ri). Moreover, if I is a countable set, we call that X has the ball-covering property.

Definition 1.2. (see [1]) A ball-covering B = {B(xi, ri)}i∈I is said to be r-off the origin if infx∈∪B ‖x‖ ≥ r.

It is easy to see that if X is separable, then X has the ball-covering property. However, if X has the
ball-covering property, then X is not necessarily a separable space. In [1], Cheng proved that l∞ has
the ball-covering property, but l∞ is not a separable spaces. In [2], Shang and Cui proved that if X is
a separable space and has the Radon-Nikodym property, then X∗ has the ball-covering property. As a
corollary, Shang and Cui proved that if M ∈ ∇2, then Orlicz function space LM has the ball-covering
property. This is an example of the ball-covering property of nonseparable function space. In 2021,
Shang [3] studied the ball-covering property in dual space and proved the following theorem.

Theorem 1.3. The following statements are equivalent:
(1) The space (X, ‖ · ‖) is a separable space;
(2) for every 0 < ε < 1, there is a norm ‖ · ‖1 of X∗ with (1 + ε)−1‖x∗‖1 ≤ ‖x∗‖ ≤ ‖x∗‖1 so that ‖ · ‖1 is

Gâteaux differentiable on a dense subset of X∗ and (X∗, ‖ · ‖1) has the ball-covering property.

In Theorem 1.3, we gave the ball-covering characteristics of separable spaces. In this paper, we
further study the ball-covering characteristics of separable spaces. We first prove that a Banach space
(X, ‖ · ‖) is a separable space if and only if for every ε ∈ (0, 1), there exists a dense subset G of X∗ and a
w∗-lower semicontinuous norm ‖ · ‖0 of X∗ such that

(1) the norm ‖ · ‖0 is Frechet differentiable at every point of G and dF‖x∗‖0 ∈ X is a w∗-strongly
exposed point of B(X∗∗, ‖ · ‖0) whenever x∗ ∈ G;

(2)
(
1 + ε2

)
‖x∗∗∗‖0 ≤ ‖x∗∗∗‖ ≤ (1 + ε) ‖x∗∗∗‖0 for each x∗∗∗ ∈ X∗∗∗;

(3) there exists {x∗i }
∞
i=1 ⊂ G such that ball-covering {B(x∗i , ri)}∞i=1 of (X∗, ‖ · ‖0) is (1 +ε)−1-off the origin

and S (X∗, ‖ · ‖) ⊂ ∪∞i=1B(x∗i , ri).
Compared with Theorem 1.3, the result has the following two advantages

(1) The norm constructed in this result has better differentiability and better geometric properties
than the norm constructed in Theorem 1.3;

(2) the closed ball sequence constructed in this result can cover the unit sphere of the original norm.
Moreover, we also prove that if the space X is a weakly locally uniform convex space, then the necessary
and sufficient condition that X is a separable space is that for any α ∈ (0, 1), there is a sequence
{x∗i }

∞
i=1 ⊂ X∗ so that

(1) the ball-covering {B(x∗i , ri)}∞i=1 of X∗ is α-off the origin;
(2) the norm of X∗ is Gâteaux differentiable at every point of {x∗i }

∞
i=1;

(3) the point d‖x∗i ‖ belongs to X for each i ∈ N.
As an application, we obtain that Orlicz sequence space lM has the ball-covering property. Other studies
on ball covering properties can be found in [4–12]. First let us recall some definitions and lemmas that
will be used in the further part of this paper.

Definition 1.4. (see [13]) Suppose that D is an open subset of Banach space X, a continuous function f
is called Gâteaux (Frechet) differentiable at x ∈ D if there exists a functional dG f (x) ∈ X∗ (dF f (x) ∈ X∗)
such that

lim
t→0

[
f (x + ty) − f (x)

t
− 〈dG f (x), y〉

]
= 0
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lim
t→0

sup
y∈B(X)

[
f (x + ty) − f (x)

t
− 〈dF f (x), y〉

]
= 0

)
.

Definition 1.5. (see [13]) A Banach space X is said to be a Gâteaux differentiability space if for every
continuous convex function f is Gâteaux differentiable on a dense subset of X.

Definition 1.6. (see [14]) A Banach space is said to be smooth if every point of S (X) is Gâteaux
differentiable point of norm.

Definition 1.7. (see [14]) A Banach space X is said to be locally uniform convex if for every x ∈ X and
{xn}

∞
n=1 ⊂ S (X) with ‖xn + x‖ → 2 as n→ ∞ we have ‖xn − x‖ → 0 as n→ ∞.

Definition 1.8. (see [14]) We call that X is a weakly local uniform convex space if for every x ∈ X and
{xn}

∞
n=1 ⊂ S (X) with ‖xn + x‖ → 2 as n→ ∞ we have xn

w
−→ x as n→ ∞.

It is easy to see that if X is a locally uniform convex space, then X is a weakly locally uniform convex
space. We also know that if X is a weakly locally uniform convex space, then X is not necessarily a locally
uniform convex space. Moreover, separable spaces have the norm of equivalent local uniform convexity.

Definition 1.9. (see [9]) Let C∗ be a subset of X∗. A point x∗0 ∈ C∗ is called a w∗-strongly exposed
point of C∗ if there is a point x0 ∈ S (X) so that if {x∗n}

∞
n=1 ⊂ C∗ and x∗n(x0) → supx∗∈C∗ x∗(x0), then

‖x∗n − x∗0‖ → 0.

Definition 1.10. (see [14]) Let C be a subset of X. A point x0 ∈ C is called a strongly exposed point of
C if there is a point x∗0 ∈ S (X∗) so that if {xn}

∞
n=1 ⊂ C and x∗0(xn)→ supx∈C x∗0(x), then ‖xn − x0‖ → 0.

Lemma 1.11. (see [9]) Suppose that C∗ is a bounded subset of X∗. Then σC∗ is Frechet differentiable at
point x0 and dσC∗(x0) = x∗0 if and only if the point x∗0 is a w∗-strongly exposed point of C∗ and exposed
by x0.

Lemma 1.12. (see [15]) Suppose that C is a bounded closed set in X and C∗∗ = C
w∗

. If x ∈ C is a
strongly exposed point of C and strongly exposed by x∗ ∈ X∗, then x is a w∗-strongly exposed point of
C∗∗ and w∗-strongly exposed by x∗.

2. A Characterization of ball-covering on separable space

Theorem 2.1. The space (X, ‖ · ‖) is separable iff for every ε ∈ (0, 1), there is a dense subset G of X∗

and a w∗-lower semicontinuous norm ‖ · ‖0 of X∗ so that
(1) the norm ‖ · ‖0 is Frechet differentiable at every point of G and dF‖x∗‖0 ∈ X is a w∗-strongly

exposed point of B(X∗∗, ‖ · ‖0) whenever x∗ ∈ G;
(2)

(
1 + ε2

)
‖x∗∗∗‖0 ≤ ‖x∗∗∗‖ ≤ (1 + ε) ‖x∗∗∗‖0 for each x∗∗∗ ∈ X∗∗∗;

(3) there exists {x∗i }
∞
i=1 ⊂ G such that ball-covering {B(x∗i , ri)}∞i=1 of (X∗, ‖ · ‖0) is (1 +ε)−1-off the origin

and S (X∗, ‖ · ‖) ⊂ ∪∞i=1B(x∗i , ri).

Proof. Necessity. (a) We first prove the condition (2). Since the space (X, ‖ · ‖) is a separable Banach
space, there exists an equivalent norm ‖ · ‖1 such that the space (X, ‖ · ‖1) is a locally uniformly convex
space. This implies that ‖ · ‖ and ‖ · ‖1 of X∗ are two equivalent norms. Since the norms ‖ · ‖ and ‖ · ‖1 of
X∗ are two equivalent norms, there exists a real number a ∈ (1,+∞) such that

1
a
‖x∗‖ ≤ ‖x∗‖1 ≤ a‖x∗‖ for each x∗ ∈ X∗. (2.1)
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We pick a real number ε ∈ (0, 1). Then we get that η = ε/a ∈ (0,+∞). Hence we define the symmetric
bounded convex set

C∗0 = {x∗ ∈ X∗ : ‖x∗‖ ≤ 1} +
{

x∗ ∈ X∗ : ‖x∗‖1 ≤
1
2
η

}
.

Since {x∗ ∈ X∗ : ‖x∗‖ ≤ 1} and {x∗ ∈ X∗ : ‖x∗‖1 ≤ η/2} are two weak∗ compact convex sets, we obtain
that C∗0 is weak∗ compact. This implies that C∗0 is a weak∗ bounded closed convex subset of X∗. Define
the norm

‖x∗‖0 = µC∗0
(x∗) = inf

{
λ ∈ R :

1
λ

x∗ ∈ C∗0

}
(2.2)

in X∗. Then ‖ · ‖0 is a w∗-lower semicontinuous norm of X∗ and ‖x∗‖0 < ‖x∗‖ for every x∗ ∈ X∗\{0}. Pick
a point x∗0 ∈ X∗ such that ‖x∗0‖ = 1. Then, by the formula

∥∥∥x∗0
∥∥∥

0
<

∥∥∥x∗0
∥∥∥ = 1, there exists λ0 ∈ (0,+∞)

such that ‖(1 + λ0)x∗0‖0 = 1. We claim that ‖λ0x∗0‖1 ≥ η/2. In fact, suppose that ‖λ0x∗0‖1 < η/2. Then
we get that λ0x∗0 ∈ int {x∗ ∈ X∗ : ‖x∗‖1 ≤ η/2}. Therefore, by the formula ‖x∗0‖ = 1 and the definition of
C∗0, we get that (1 + λ0)x∗0 ∈ intC∗0. Therefore, by the formula (2.2), we have ‖(1 + λ0)x∗0‖0 < 1, which
contradicts ‖(1 + λ0)x∗0‖0 = 1. Moreover, we can assume without loss of generality that 2ε < 1/a2. Then,
by the formulas ‖λ0x∗0‖1 ≥ η/2 and ‖x∗0‖ = 1, we get that

λ0 ≥
1
2
·

η

‖x∗0‖1
≥

1
2
·

η

a‖x∗0‖
≥

1
2
·
η

a
=

1
2
·
ε

a2 > ε
2.

Therefore, by the above inequalities and the formula ‖(1+λ0)x∗0‖0 = 1, we have the following inequalities

‖x∗0‖0 =
1

1 + λ0
≤

1
1 + ε2 =

1
1 + ε2 ‖x

∗
0‖.

Therefore, from the above inequalities, we have the following inequalities

‖x∗‖ ≥
(
1 + ε2

)
‖x∗‖0 for each x∗ ∈ X∗. (2.3)

On the other hand, we define the two norms

‖x∗∗‖0 = sup
{
x∗∗(x∗) : x∗ ∈ C∗0

}
for each x∗∗ ∈ X∗∗

and
‖x∗∗‖ = sup {x∗∗(x∗) : x∗ ∈ {x∗ ∈ X∗ : ‖x∗‖ ≤ 1}} for each x∗∗ ∈ X∗∗.

Then (X∗∗, ‖ · ‖0) is the dual space of (X∗, ‖ · ‖0) and (X∗∗, ‖ · ‖) is the dual space of (X∗, ‖ · ‖). Hence, we
get that ‖x∗∗‖0 ≥

(
1 + ε2

)
‖x∗∗‖ for every x∗∗ ∈ X∗∗. Pick a point x∗∗0 ∈ X∗∗ such that the point x∗∗0 is norm

attainable on sphere S (X∗, ‖·‖0). Hence exists a point x∗0 ∈ C∗0 such that x∗∗0 (x∗0) =
∥∥∥x∗∗0

∥∥∥
0
. Then, by the

definition of C∗0 and the formula x∗0 ∈ C∗0, there exist two points

y∗0 ∈ {x
∗ ∈ X∗ : ‖x∗‖ ≤ 1} and z∗0 ∈

{
x∗ ∈ X∗ : ‖x∗‖1 ≤

1
2
η

}
such that x∗0 = y∗0 + z∗0. Therefore, by the formula x∗0 = y∗0 + z∗0 and the formula ‖x∗∗‖1 ≤ a‖x∗∗‖, we have
the following inequalities ∥∥∥x∗∗0

∥∥∥
0

= x∗∗0 (x∗0) =
〈
x∗∗0 , y

∗
0 + z∗0

〉
Communications in Analysis and Mechanics Volume 15, Issue 4, 831–846.
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≤ sup
{
x∗∗0 (x∗) : x∗ ∈ {x∗ ∈ X∗ : ‖x∗‖ ≤ 1}

}
+ sup

{
x∗∗0 (x∗) : x∗ ∈

{
x∗ ∈ X∗ : ‖x∗‖1 ≤

1
2
η

}}
≤ sup

{
x∗∗0 (x∗) : x∗ ∈ {x∗ ∈ X∗ : ‖x∗‖ ≤ 1}

}
+

1
2
η
∥∥∥x∗∗0

∥∥∥
1

≤
∥∥∥x∗∗0

∥∥∥ +
1
2

aη
∥∥∥x∗∗0

∥∥∥ .
Therefore, by formula (2.3) and the above inequalities, we get that(

1 + ε2
) ∥∥∥x∗∗0

∥∥∥ ≤ ∥∥∥x∗∗0
∥∥∥

0
≤

∥∥∥x∗∗0
∥∥∥ +

1
2

aη
∥∥∥x∗∗0

∥∥∥ =

(
1 +

1
2

aη
) ∥∥∥x∗∗0

∥∥∥ .
Therefore, by the Bishop-Phelps Theorem, we have the following inequalities(

1 + ε2
)
‖x∗∗‖ ≤ ‖x∗∗‖0 ≤ ‖x

∗∗‖ +
1
2

aη ‖x∗∗‖ =

(
1 +

1
2

aη
)
‖x∗∗‖

for every x∗∗ ∈ X∗∗. Therefore, by the above inequalities, we obtain that(
1 + ε2

)
‖x∗∗∗‖0 ≤ ‖x

∗∗∗‖ ≤

(
1 +

1
2

aη
)
‖x∗∗∗‖0

for every x∗∗∗ ∈ X∗∗∗. Therefore, by the formula η = ε/a, we obtain that(
1 + ε2

)
‖x∗∗∗‖0 ≤ ‖x

∗∗∗‖ ≤

(
1 +

1
2
ε

)
‖x∗∗∗‖0 ≤ (1 + ε) ‖x∗∗∗‖0

for each x∗∗∗ ∈ X∗∗∗. Moreover, it is easy to see that the norm ‖ · ‖0 is a w∗-lower semicontinuous norm
of X∗∗∗. Hence we get that the condition (2) is true.

(b) We will prove that there exists a dense subset G of X∗ such that the norm ‖ · ‖0 is Frechet
differentiable on G and dF‖ · ‖0(G) ⊂ X. Define the set

C0 =
{
x ∈ X : x∗(x) ≤ 1, x∗ ∈ C∗0

}
. (2.4)

Then we get that C0 is a nonempty bounded closed convex set. Since the set C∗0 is a weak∗ bounded
closed convex subset of X∗, we get that

C∗0 = {x∗ ∈ X∗ : x∗(x) ≤ 1, x ∈ C0} .

Then, using the Bishop-Phelps Theorem, we get that A∗0 = X∗, where

A∗0 =
{
x∗ ∈ X∗ : there exists a point x ∈ C0 such that x∗(x) = ‖x∗‖0

}
.

Therefore, from Theorem 2.1 of [6], we obtain the following formulas D∗0 , ∅ and D∗0 =

{x∗ ∈ X∗ : ‖x∗‖0 = 1}, where

D∗0 =
{
x∗ ∈ X∗ : there exists a point x ∈ C0 such that x∗(x) = ‖x∗‖0 = 1

}
.
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Let G = A∗0. Then we get that G is a dense subset of X∗. We pick a point

y∗0 ∈
{
x∗ ∈ X∗ : there exists a point x ∈ C0 such that x∗(x) = ‖x∗‖0 = 1

}
.

Hence, we get that there exists a point x0 ∈ C0 such that 〈y∗0, x0〉 = sup{〈z∗, x0〉 : z∗ ∈ C∗0}. Therefore, by
the definition of y∗0, we get that y∗0 ∈ C∗0. Moreover, by the definition of C∗0, there exist two point

u∗0 ∈ {x
∗ ∈ X∗ : ‖x∗‖ ≤ 1} and v∗0 ∈

{
x∗ ∈ X∗ : ‖x∗‖1 ≤

1
2
η

}
such that y∗0 = u∗0 + v∗0. Hence we have the following inequalities〈

y∗0, x0
〉

= sup
{
〈z∗, x0〉 : z∗ ∈ C∗0

}
= sup

{
〈u∗ + v∗, x0〉 : ‖u∗‖ ≤ 1, ‖v∗‖1 ≤

1
2
η

}
= sup

{
〈v∗, x0〉 : ‖v∗‖1 ≤

1
2
η

}
+ sup {〈u∗, x0〉 : ‖u∗‖ ≤ 1}

≥ sup {〈u∗, x0〉 : ‖u∗‖ ≤ 1} +
〈
v∗0, x0

〉
=

〈
u∗0, x0

〉
+

〈
v∗0, x0

〉
=

〈
y∗0, x0

〉
.

Therefore, by the above inequalities, we have the following formula

u∗0(x0) = sup {〈u∗, x0〉 : ‖u∗‖ ≤ 1} and v∗0(x0) = sup
{
〈v∗, x0〉 : ‖v∗‖1 ≤

1
2
η

}
.

Therefore, by the formula v∗0 ∈ {x
∗ ∈ X∗ : ‖x∗‖1 ≤ η/2}, we obtain that the point v∗0 is norm attainable on

set {x ∈ X : ‖x‖1 ≤ 1}.
We next prove that the point y∗0 is a Frechet differentiable point of norm ‖ · ‖0 in X∗∗∗, i.e, the point

dF‖y∗0‖ is a w∗-strongly exposed point of B (X∗∗, ‖ · ‖0). Define the closed convex set

C∗∗0 =
{
x∗∗ ∈ X∗∗ : x∗∗(x∗) ≤ 1, x∗ ∈ C∗0

}
.

It is well known that y∗0(x0) = ‖y∗0‖0 = ‖x0‖0 = 1. Pick a sequence {xn}
∞
n=1 ⊂ C0 such that xn(y∗0)→ 1 as

n→ ∞. Then, from the definition of C0, we have the following equations

lim
n→∞

xn(y∗0) = x0(y∗0) = 1 = sup
{
x0(x∗) : x∗ ∈ C∗0

}
. (2.5)

Since the set C∗0 is a bounded set and intC∗0 , ∅, we obtain that C0 is a bounded subset of X. Therefore,
by the formula {xn}

∞
n=1 ⊂ C0, we obtain that {xn}

∞
n=1 is a bounded sequence. Hence we can assume that

without loss of generality that {xn(u∗0)}∞n=1 is a Cauchy sequence. Moreover, by the formula y∗0 = u∗0 + v∗0,
we get the following formula

y∗0 ∈ u∗0 +

{
x∗ ∈ X∗ : ‖x∗‖1 ≤

1
2
η

}
= u∗0 + B

(
0,

1
2
η

)
⊂ C∗0. (2.6)

Since {xn}
∞
n=1 ⊂ C0, by the formulas (2.5), we have the following inequalities

lim
n→∞

xn(y∗0) = 1 ≥ lim sup
n→∞

(
sup

{
xn(x∗) : x∗ ∈ C∗0

})
.

Communications in Analysis and Mechanics Volume 15, Issue 4, 831–846.
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Therefore, from the above inequalities and formula (2.6), we obtain the following inequalities

lim
n→∞

xn(y∗0) ≥ lim sup
n→∞

(
sup

{
xn(x∗) : x∗ ∈ C∗0

})
≥ lim sup

n→∞

(
sup

{
xn(x∗) : x∗ ∈ u∗0 + B

(
0,

1
2
η

)})
= lim

n→∞
xn(u∗0) + lim sup

n→∞

(
sup

{
xn(x∗) : x∗ ∈ B

(
0,

1
2
η

)})
.

Therefore, by the above inequalities, we have the following inequalities

lim
n→∞

〈
xn, y∗0 − u∗0

〉
≥ lim sup

n→∞

(
sup

{
xn(x∗) : x∗ ∈ B

(
0,

1
2
η

)})
.

Therefore, by the formulas y∗0 = u∗0 + v∗0 and v∗0 ∈ B(0, η/2), we obtain that

lim
n→∞

〈
xn, y∗0 − u∗0

〉
= lim sup

n→∞

(
sup

{
xn(x∗) : x∗ ∈ B

(
0,

1
2
η

)})
. (2.7)

Since the sequence {xn}
∞
n=1 is a bounded sequence, we may assume without loss of generality that

{‖xn‖}
∞
n=1 is a Cauchy sequence. This implies that

lim
n→∞

〈
xn, y∗0 − u∗0

〉
= lim sup

n→∞

(
sup

{
xn(x∗) : x∗ ∈ B

(
0,
η

2

)})
= lim

n→∞

η

2
‖xn‖1 .

Moreover, there exists a sequence {kn}
∞
n=1 ⊂ R+ such that ‖knxn‖ = ‖x0‖ for all n ∈ N. Hence we have the

following equations

lim
n→∞

〈
knxn, v∗0

〉
= lim

n→∞

〈
knxn, y∗0 − u∗0

〉
= lim

n→∞

1
2
η ‖knxn‖1 =

1
2
η ‖x0‖1 . (2.8)

Therefore, by the formula
〈
x0, v∗0

〉
= (η ‖x0‖1)/2 and the formula (2.8), we obtain the following equations

lim
n→∞

〈
knxn, v∗0

〉
+

〈
x0, v∗0

〉
=

1
2
η ‖x0‖1 +

1
2
η ‖x0‖1 = η ‖x0‖1 .

Therefore, by the above equations, we have the following equation

lim
n→∞

〈
1
‖x0‖1

knxn +
1
‖x0‖1

x0,
2
η

v∗0

〉
= 2.

Moreover, since ‖knxn‖1 = ‖x0‖1 and ‖v∗0‖1 = η/2, by the above equation, we get the following equations

2 ≥ lim inf
n→∞

∥∥∥∥∥∥ 1
‖x0‖1

knxn +
1
‖x0‖1

x0

∥∥∥∥∥∥
1

= lim
n→∞

〈
1
‖x0‖1

knxn +
1
‖x0‖1

x0,
2
η

v∗0

〉
= 2.

Since the space (X, ‖·‖1) is a locally uniformly convex space, we get that knxn → x0 as n→ ∞. Moreover,
by the formula xn(y∗0) → x0(y∗0), we obtain that kn → 1 as n → ∞. This implies that ‖xn − x0‖ → 0 as
n→ ∞. Hence the point dF‖y∗0‖0 ∈ X is a strongly exposed point of B(X, ‖ · ‖0). Therefore, by Lemma
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1.12, we get that dF‖y∗0‖0 ∈ X is a w∗-strongly exposed point of B (X∗∗, ‖ · ‖0). Then, by the definition of
G, we get that the norm ‖ · ‖0 is Frechet differentiable at every point of G and the point dF‖x∗‖0 ∈ X is a
w∗-strongly exposed point of B (X∗∗, ‖ · ‖0) whenever x∗ ∈ G.

(c) Let p0(x∗∗∗) = ‖x∗∗∗‖0 for each x∗∗∗ ∈ X∗∗∗. Then, by the proof of (b), we know that if x∗ is norm
attainable on S (X, ‖·‖0), then x∗ is a Frechet differentiable point of p0 and dF p0(x∗) ∈ X. Then we get
that

S (X, ‖·‖0) =
{
dF p0(x∗) ∈ X : there is a point x ∈ C0 so that x∗(x) = p0(x∗)

}
.

Since the space X is separable, we get that every subset of X is separable. Let

A0 =
{
x ∈ B(X, ‖ · ‖0) : x is a strongly exposed point of B(X, ‖ · ‖0)

}
.

Then there exists a sequence {xn}
∞
n=1 ⊂ A0 such that {xn}

∞
n=1 = A0. Therefore, by the formula {xn}

∞
n=1 = A0,

we have the following equations

inf
x∗∈S (X∗,‖·‖0)

sup
n∈N
〈x∗, xn〉 = inf

x∗∈S (X∗,‖·‖0)
sup {〈x∗, x〉 : x ∈ B (X, ‖·‖0)} = 1. (2.9)

Pick a point x∗0 ∈ X∗ such that ‖x∗0‖ = 1. Then, from the proof of (a), we obtain that ‖x∗0‖0 ≤ ‖x
∗
0‖ ≤

(1 + ε/2)‖x∗0‖0. Then we get that (1 + ε/2)−1 ≤ ‖x∗0‖0. This implies that ‖(1 + ε/2)x∗0‖0 ≥ 1. Define the set

W0 =
⋃

x∗∈S (X∗,‖·‖)

{
λx∗ + (1 − λ)

(
1 +

ε

2

)
x∗ ∈ X∗ : λ ∈ [0, 1]

}
. (2.10)

Then we get that S (X∗, ‖·‖) ⊂ W0 and S (X∗, ‖·‖0) ⊂ W0. Pick a point z∗ ∈ X∗ such that ‖z∗‖ = 1. Then
‖z∗‖0 ≥ (1 + ε/2)−1. Therefore, by the formulas (2.9) and (2.10), we have the following inequalities

sup
n∈N

〈
λz∗ + (1 − λ)

(
1 +

ε

2

)
z∗, xn

〉
= sup

n∈N

[
λ + (1 − λ)

(
1 +

ε

2

)]
· 〈z∗, xn〉

≥

[
λ + (1 − λ)

(
1 +

ε

2

)] (
1 +

ε

2

)−1

≥ λ
(
1 +

ε

2

)−1
+ (1 − λ) ≥

(
1 +

ε

2

)−1
.

Therefore, by the above inequalities and the definition of W0, we obtain that

inf
x∗∈W0

(
sup
n∈N
〈x∗, xn〉

)
≥

(
1 +

ε

2

)−1
. (2.11)

Therefore, from the proof of (b) and the definition of A0, there exists {x∗n}
∞
n=1 ⊂ S (X∗) so that ‖x∗n‖0 = 1

and xn = dF p0(x∗n) for every n ∈ N. Hence we have {x∗n}
∞
n=1 ⊂ G. Moreover, we can assume without loss

of generality that (1 + ε) < 2. Define the closed ball sequences

B0
i,m = B

((
m +

1
1 + ε

)
x∗i ,−

1
m

+ m
)
, m = 3, 4, 5, ... i = 1, 2, 3, ...

in (X∗, ‖ · ‖0). Then, by the formula ‖x∗i ‖0 = 1, we get that if y∗ ∈ B0
i,m, then

‖y∗‖0 ≥

∥∥∥∥∥∥
(
m +

1
1 + ε

)
x∗i

∥∥∥∥∥∥
0

−

∥∥∥∥∥∥
(
m +

1
1 + ε

)
x∗i − y∗

∥∥∥∥∥∥
0
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≥

∥∥∥∥∥∥
(
m +

1
1 + ε

)
x∗i

∥∥∥∥∥∥
0

− m
∥∥∥x∗i

∥∥∥
0

+
1
m

= m
∥∥∥x∗i

∥∥∥
0

+
1

1 + ε

∥∥∥x∗i
∥∥∥

0
− m

∥∥∥x∗i
∥∥∥

0
+

1
m
≥

1
1 + ε

.

Hence we get that B0
i,m has a positive distance 1/ (1 + ε) from the origin. Suppose that there exists a

point y∗ ∈ W0 such that for every i ∈ N and m ∈ N, we have y∗ < B0
i,m. Moreover, by the formula (2.11),

there exists a natural number n0 ∈ N such that
〈
y∗, xn0

〉
= η > 1/(1 + ε). Define the hyperplane

Hn0 =
{
x∗ ∈ X∗ :

〈
x∗, xn0

〉
= 0

}
in X∗. Hence there exists a point h∗n0

∈ Hn0 such that y∗ = ηx∗n0
+ h∗n0

. Therefore, by the formulas y∗ < B0
i,m

and y∗ = ηx∗n0
+ h∗n0

, we get that

m −
1
m
≤

∥∥∥∥∥∥
(
m +

1
1 + ε

)
x∗n0
− y∗

∥∥∥∥∥∥
0

=

∥∥∥∥∥∥
(
m +

1
1 + ε

− η

)
x∗n0
− h∗n0

∥∥∥∥∥∥
0

.

Therefore, by the above inequalities, we have the following inequalities

−
1
m
≤

∥∥∥∥∥∥
(
m +

1
1 + ε

− η

)
x∗n0
− h∗n0

∥∥∥∥∥∥
0

− m
∥∥∥x∗n0

∥∥∥
0

≤
∥∥∥(m − η) x∗n0

− h∗n0

∥∥∥
0
− m

∥∥∥x∗n0

∥∥∥
0

+
1

1 + ε

∥∥∥x∗n0

∥∥∥
0

≤ (m − η)
[∥∥∥∥∥x∗n0

−
1

m − η
h∗n0

∥∥∥∥∥
0
−

∥∥∥x∗n0

∥∥∥
0

]
− η +

1
1 + ε

≤
1
t

[∥∥∥x∗n0
− th∗n0

∥∥∥
0
−

∥∥∥x∗n0

∥∥∥
0

]
− η +

1
1 + ε

,

where t = 1/ (m − η). Moreover, since the point x∗n0
is a Gâteaux differentiable point of norm ‖ · ‖0 in X∗,

form the above inequalities and the formula h∗n0
∈ Hn0 , we have the following inequalities

0 ≤ lim
t→0

[
1
t

[∥∥∥x∗n0
− th∗n0

∥∥∥
0
−

∥∥∥x∗n0

∥∥∥
0

]
− η +

1
1 + ε

]
=

〈
h∗n0
, xn0

〉
− η +

1
1 + ε

= −η +
1

1 + ε
< 0,

this is a contradiction. This implies that

W0 ⊂
⋃{

B0
i,m : m = 3, 4, 5, ... i = 1, 2, 3, ...

}
.

Hence, there exists a sequence {x∗i }
∞
i=1 ⊂ G such that ball-covering {B(x∗i , ri)}∞i=1 of (X∗, ‖·‖0) is (1+ε)−1-off

the origin and S (X∗, ‖ · ‖) ⊂ ∪∞i=1B(x∗i , ri).
Sufficiency. Since the space (X∗, ‖ · ‖0) has the ball-covering property, we get that the space X is

separable, which finishes the proof.

Next, we will study what conditions can guarantee that the dual space of a separable space has the
ball-covering property.
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Theorem 2.2. Suppose that the space X is weakly locally uniform convex. Then X is a separable space
if and only if for every α ∈ (0, 1), there exists a sequence {x∗i }

∞
i=1 such that

(1) the ball-covering {B(x∗i , ri)}∞i=1 of X∗ is α-off the origin;
(2) the norm of X∗ is Gâteaux differentiable at every point of {x∗i }

∞
i=1;

(3) the point dG‖x∗i ‖ belongs to X for each i ∈ N.

Proof. Necessity. (a) We first will prove that the norm of X∗ is Gâteaux differentiable on a dense subset
of S (X∗). In fact, by the Bishop-Phelps Theorem, we get that A∗0 ⊂ S (X∗) and A∗0 = S (X∗), where

A∗0 =
{
x∗ ∈ S (X∗) : there is a point x ∈ S (X) so that x∗(x) = 1 = ‖x∗‖

}
.

We claim that every point of A∗0 is a Gâteaux differentiable point of X∗. In fact, pick a point x∗0 ∈ A∗0.
Since the space X is weakly locally uniform convex, there exists an unique point x0 ∈ S (X) such that
x∗0(x0) = 1. Suppose that there exists a functional x∗∗0 ∈ S (X∗∗) such that x∗∗0 (x∗0) = 1 and x∗∗0 , x0. Then
there exists a weak∗ neighbourhood V of origin in X∗∗. such that(

x∗∗0 + V
)
∩ (x0 + V) = ∅. (2.12)

Moreover, for every natural number n ∈ N, we define the weak∗ neighbourhood

Vn =

{
z∗∗ ∈ X∗∗ :

∣∣∣z∗∗(x∗0) − x∗∗0 (x∗0)
∣∣∣ < 1

n

}
(2.13)

of x∗∗0 in X∗∗. Therefore, from the Goldstine Theorem, there is a point xn ∈ B(X) such that xn ∈(
x∗∗0 + V

)
∩ Vn for all n ∈ N. Hence we have x∗0(xn) → 1 as n → ∞. Therefore, by the formula

x∗0(x0) = 1, we have

2 ≥ lim sup
n→∞

‖xn + x0‖ ≥ lim sup
n→∞

∣∣∣〈x∗0, xn + x0〉
∣∣∣ = lim

n→∞
〈x∗0, xn + x0〉 = 2.

Since the space X is weakly locally uniform convex, we obtain that xn
w
−→ x0 as n → ∞. Since V is a

weak∗ neighbourhood of origin in X∗∗, we can assume that xn ∈ x0 + V . However xn ∈
(
x∗∗0 + V

)
∩ Vn

for each n ∈ N, which contradicts the formula (2.12). This implies that every point of A∗0 is Gâteaux
differentiable point of X∗.

(b) Let α ∈ (0, 1). Pick ε ∈ (0, 1). Moreover, since the space X is a separable space, there exists a
sequence {xn}

∞
n=1 ⊂ S (X) such that {xn}

∞
n=1 = S (X). Then we have the following equations

inf
x∗∈S (X∗)

sup
n∈N
〈x∗, xn〉 = inf

x∗∈S (X∗)
sup {〈x∗, x〉 : x ∈ B (X)} = 1. (2.14)

Therefore, from the previous proof, we define the following the set

G =
{
x∗ ∈ X∗ : there is a point x ∈ {xn}

∞
n=1 so that x∗(x) = ‖x∗‖

}
.

Therefore, from the previous proof, we obtain that the norm of X∗ is Gâteaux differentiable at every point
of G and every point of G is norm attainable on set S (X). Hence, for every natural number n ∈ N, there
exists a point x∗n ∈ G with ‖x∗n‖ = 1 such that x∗n(xn) = 1. Hence we define a sequence {x∗n}

∞
n=1 ⊂ S (X∗).
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Pick a point y∗ ∈ S (X∗). Then, by the formula (2.14), it is easy to see that there exists a natural
number n0 ∈ N such that 1 ≥

〈
y∗, xn0

〉
> 1/ (1 + 2ε). We define the following hyperplane

Hn0 =
{
x∗ ∈ X∗ :

〈
x∗, xn0

〉
= 0

}
in X∗. Then, by formula (2.13), there exists a point h∗n0

∈ Hn0 and a real number η ∈ (0,+∞) such that
y∗ = ηx∗n0

+ h∗n0
. Then, by the inequalities 1 ≥

〈
y∗, xn0

〉
> 1/ (1 + 2ε) and y∗ = ηx∗n0

+ h∗n0
, we have the

following inequalities

1 ≥
〈
y∗, xn0

〉
= η

〈
x∗n0
, xn0

〉
+

〈
h∗n0
, xn0

〉
= η

〈
x∗n0
, xn0

〉
>

1
1 + 2ε

. (2.15)

Moreover, since 〈x∗n0
, xn0〉 = 1, by formula (2.15) and the formula y∗ = ηx∗n0

+ h∗n0
, we have the following

inequalities
1

1 + 2ε
<

1
1 + 2ε

·
1〈

x∗n0
, xn0

〉 < η < 1〈
x∗n0
, xn0

〉 < 1 + 2ε. (2.16)

Hence, for each natural numbers i and m, we define the closed ball sequences

Bi,m = B
((

m +
1

1 + 2ε

)
x∗i , −

1
m

+ m
∥∥∥x∗i

∥∥∥) , m = 3, 4, 5, ... i = 1, 2, 3, ...

in X∗. Suppose that y∗ < Bi,m for all i ∈ N and m ∈ N. Then for every natural numbers m ∈ N, we obtain
that

m
∥∥∥x∗n0

∥∥∥ − 1
m
≤

∥∥∥∥∥∥
(
m +

1
1 + 2ε

)
x∗n0
− y∗

∥∥∥∥∥∥ =

∥∥∥∥∥∥
(
m +

1
1 + 2ε

− η

)
x∗n0
− h∗n0

∥∥∥∥∥∥ .
Therefore, by the above inequalities, we have the following inequalities

−
1
m
≤

∥∥∥∥∥∥
(
m +

1
1 + 2ε

− η

)
x∗n0

+ h∗n0

∥∥∥∥∥∥ − m
∥∥∥x∗n0

∥∥∥
≤ (m − η)

[∥∥∥∥∥x∗n0
+

1
m − η

h∗n0

∥∥∥∥∥ − ∥∥∥x∗n0

∥∥∥] − η +
1

1 + 2ε

≤
1
t

[∥∥∥x∗n0
+ th∗n0

∥∥∥ − ∥∥∥x∗n0

∥∥∥] − η +
1

1 + 2ε
,

where t = 1/ (m − η). Moreover, since the point x∗n0
is a Gâteaux differentiable point of norm of X∗ and

〈x∗n0
, xn0〉 = 1, we have dG‖x∗n0

‖ = xn0 ∈ X. Therefore, by the formula (2.16), we have the following
inequalities

0 ≤ lim
t→0

[
1
t

[∥∥∥x∗n0
+ th∗n0

∥∥∥ − ∥∥∥x∗n0

∥∥∥] − η +
1

1 + 2ε

]
,

=
〈
xn0 , h

∗
n0

〉
− η +

1
1 + 2ε

= −η +
1

1 + 2ε
< 0,

this is a contradiction. Hence we have the following formula

S (X∗) ⊂
⋃{

Bi,m : m = 3, 4, 5, ... i = 1, 2, 3, ...
}
.
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Since ε ∈ (0, 1), we can assume without loss of generality that (1 + 2ε)−1 − α > 0. Pick a point y∗ ∈ Bi,m.
Since (1 + 2ε)−1 > α, by the formula ‖x∗i ‖ = 1 and the triangle inequality, we have the following
inequalities

‖y∗‖ ≥

∥∥∥∥∥∥
(
m +

1
1 + 2ε

)
x∗i

∥∥∥∥∥∥ −
∥∥∥∥∥∥
(
m +

1
1 + 2ε

)
x∗i − y∗

∥∥∥∥∥∥
≥

∥∥∥∥∥∥
(
m +

1
1 + 2ε

)
x∗i

∥∥∥∥∥∥ − m
∥∥∥x∗i

∥∥∥ +
1
m

=
1

1 + 2ε
+

1
m
> α.

Therefore, by the formula x∗i ∈ G, we obtain that for every 0 < α < 1, there is a sequence {x∗i }
∞
i=1 of

norm Gâteaux differentiable points such that the ball-covering {B(x∗i , ri)}∞i=1 of X∗ is α-off the origin.
Hence, we get that the conditions (1) and (2) are true. Moreover, from the previous proof, it is that
dG‖x∗i ‖ = xi ∈ X for every i ∈ N. The condition (3) is true.

Sufficiency. Since the space X∗ has the ball-covering property, we get that the space X is separable,
which finishes the proof.

Corollary 2.3. Suppose that the space X is locally uniform convex. Then X is a separable space iff for
every α ∈ (0, 1), there exists a sequence {x∗i }

∞
i=1 such that

(1) the ball-covering {B(x∗i , ri)}∞i=1 of X∗ is α-off the origin;
(2) the norm of X∗ is Frechet differentiable at every point of {x∗i }

∞
i=1;

(3) the point dF‖x∗i ‖ belongs to X for each i ∈ N.

Proof. By the proof of Theorem 2.1 and Theorem 2.2, we get that Corollary 2.3 is true, which finishes
the proof.

3. Application to Orlicz sequence spaces

In this section, we use the results of the ball-covering of Banach space to study the ball-covering
theory of Orlicz sequence space. On the other hand, since the Orlicz sequence space is a kind of specific
Banach space, we can get a more perfect conclusion on the Orlicz sequence space than the general
Banach space.

Definition 3.1. (see [14]) A function M : R→ R is said to be an Orlicz function if it has the following
properties:

(1) M is even, continuous, convex and M(0) = 0;
(2) M(u) > 0 for all u > 0;
(3) limu→0 M(u)/u = 0 and limu→∞ M(u)/u = ∞.

Definition 3.2. (see [14]) Let M be an Orlicz function, p be the right derivative of M, and q(s) = sup{t :
p(t) ≤ s}. Then, we call that

N(v) =

∫ |v|

0
q(s)ds

is the complementary function of M.

By [14], we know that if the function M is an Orlicz function, then the complementary function N
of M is an Orlicz function. Moreover, by [14], we know that the complementary function of N is M.
Hence we say that M and N are complementary to each other (see [14]).
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Definition 3.3. (see [14]) An Orlicz function M is said to be satisfies condition ∆2 if there exist K > 2
and u0 ≥ 0 such that

M(2u) ≤ KM(u) whenever u ≥ u0.

In this case, we write M ∈ ∆2 or N ∈ ∇2, where N is the complementary function of M.

For any sequence x = (x(1), x(2), ...), we define its modular by

ρM(x) =

∞∑
i=1

M (x(i)) .

Then the Orlicz sequence space lM and its subspace hM are defined as follows:

lM = {x : ρM(λx) < +∞ for some λ > 0} ,

hM = {x : ρM(λx) < +∞ for all λ > 0} .

For each x ∈ lM, we define the Luxemburg norm

‖x‖ = inf
{
λ > 0 : ρM

( x
λ

)
≤ 1

}
or the Orlicz norm

‖x‖0 = inf
k>0

1
k
[
1 + ρM(kx)

]
in lM (see [14]). It is well known that lM and l0M are two Banach spaces (see [14]). Moreover, we know that
hM is a closed subspace of lM and h0

M is a closed subspace of l0M (see [14]). It is well known that hM and h0
M

are separable spaces (see [14]). Moreover, it is well known that (h0
N)∗ = lM and (hN)∗ = l0M(see [14]). It is well

known that lM(l0M) is separable if and only if M ∈ ∆2 (see [14]).

Theorem 3.4. Suppose that M ∈ ∆2 or M ∈ ∇2. Then for any α ∈ (0, 1), there exists a sequence
{xi}

∞
i=1 ⊂ lM of norm Gâteaux differentiable points such that
(1) the ball-covering {B(xi, ri)}∞i=1 of lM is α-off the origin;
(2) the norm of lM is Gâteaux differentiable at every point of {xi}

∞
i=1.

Proof. Suppose that M ∈ ∆2. Then the space lM is a separable space. Hence lM is a weak Asplund
space. It is easy to see that for any α ∈ (0, 1), there exists a sequence {xi}

∞
i=1 ⊂ lM of norm Gâteaux

differentiable points such that (1) the ball-covering {B(xi, ri)}∞i=1 of lM is α-off the origin; (2) the norm of
lM is Gâteaux differentiable at every point of {xi}

∞
i=1.

Suppose that M ∈ ∇2. Then we get that N ∈ ∆2. This implies that h0
N has the Radon-Nikodym

property. Therefore, by (h0
N)∗ = lM, we get that the norm of lM are Gâteaux differentiable on a dense

subset of X∗. Hence, the norm of lM are Gâteaux differentiable on a dense subset of S (X∗). Therefore,
from the proof of Theorem 2.2, we get that for every α ∈ (0, 1), there exists a sequence {x∗i }

∞
i=1 such that

(1) the ball-covering {B(x∗i , ri)}∞i=1 of X∗ is α-off the origin; (2) the norm of X∗ is Gâteaux differentiable
at every point of {x∗i }

∞
i=1, which finishes the proof.
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Theorem 3.5. Suppose that M ∈ ∆2 or M ∈ ∇2. Then for any α ∈ (0, 1), there exists a sequence
{xi}

∞
i=1 ⊂ l0

M of norm Gâteaux differentiable points such that
(1) the ball-covering {B(xi, ri)}∞i=1 of l0

M is α-off the origin;
(2) the norm of l0

M is Gâteaux differentiable at every point of {xi}
∞
i=1.

Proof. Similar to the proof of Theorem 3.4, we obtain that Theorem 3.5 is true, which finishes the proof.

Theorem 3.6. Let lM be an Orlicz sequence space. Then lM has a ball-covering {B(xi, ri)}∞i=1 such that
supi∈N ri < +∞.

Proof. Let Q denote rational number set. Then, for every natural number n ∈ N, we define the set

Qn = {(r1, ..., rn, 0, 0, ....) : ri ∈ Q} .

Define the set Q0 = ∪n∈N Qn. Then the set Q0 is a countable set. Let A = {x ∈ Q0 : ‖x‖ ∈ [2, 4]}. Since
the set A is a countable set, we can order it as a sequence A = {xi}

∞
i=1. Then we define the closed ball

sequences

Bi,m = B
(
xi, ‖xi‖ −

1
m

)
=

{
x ∈ lM : ‖x − xi‖ ≤ ‖xi‖ −

1
m

}
, i = 1, 2, ...

Pick a point x ∈ S (lM). Then we obtain that ρM(x) ≤ 1. Let x = (x(1), x(2), ...). Then there exists a
natural number i0 ∈ N such that

0 ≤
∞∑

i=i0+1

M
(
1
3

x(i)
)
<

1
4
ρM

(
1
3

x
)
≤

1
4
.

Therefore, by the above inequalities, we have the following inequalities

i0∑
i=1

M
(
1
3

x(i)
)

=

∞∑
i=1

M
(
1
3

x(i)
)
−

∞∑
i=i0+1

M
(
1
3

x(i)
)

≥ ρM

(
1
3

x
)
−

1
4
ρM

(
1
3

x
)

=
3
4
ρM

(
1
3

x
)
.

Since ρM(x/3) > 0, by the above inequalities, we obtain that

i0∑
i=1

M
(
1
3

x(i)
)
−

∞∑
i=i0+1

M
(
1
3

x(i)
)
≥

3
4
ρM

(
1
3

x
)
−

1
4
ρM

(
1
3

x
)
> 0. (3.1)

Moreover, we can assume without loss of generality that x(i0 + 1) ∈ [0,+∞). We pick a real number
u0 ∈ (0,+∞) such that ‖x0‖ = 3, where

x0 = (x(1), x(2), ..., x(i0), u0, 0, 0, ...) ∈ lM.
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Therefore, by the formula (3.1) and ρM(x) ≤ 1, we obtain that u0 − x(i0 + 1) > 0. Therefore, by the
formulas x(i0 + 1) ∈ [0,+∞) and u0 ∈ (0,+∞), we obtain the following inequality

M (u0 − x(i0 + 1)) ≤ M (u0) . (3.2)

Since ρM(x) ≤ 1, by the formula ‖x0‖ = 3 and the definition of x0, we get that ρM (x0/3) = 1. Therefore,
by the formulas (3.1)-(3.2) and the definition of x0, we have the following inequalities

ρM

( x0 − x
3

)
= M

(
1
3

(u0 − x(i0 + 1))
)

+

∞∑
i=i0+1

M
(
1
3

x(i)
)

≤ M
(
1
3

u0

)
+

∞∑
i=i0+1

M
(
1
3

x(i)
)

< M
(
1
3

u0

)
+

i0∑
i=1

M
(
1
3

x(i)
)

= ρM

(
1
3

x0

)
= 1.

Since ρM(x) ≤ 1 and ρM (x0 − x) < +∞, there is a real number λ0 ∈ (0, 3) such that ρM ((x0 − x)/λ0) = 1.
Hence we obtain that ‖x0 − x‖ = λ0. Moreover, by the definition of {xi}

∞
i=1 and the formula ‖x0‖ = 3,

there exists a point x j ∈ {xi}
∞
i=1 such that ‖x j‖ ≥ 3 and ‖x j − x0‖ < (3 − λ0)/2. Then, by λ0 ∈ (0, 3), we

get that ∥∥∥x − x j

∥∥∥ ≤ ∥∥∥x j − x0

∥∥∥ + ‖x − x0‖ <
1
2

(3 − λ0) + λ0 < 3 ≤
∥∥∥x j

∥∥∥ .
Therefore, by the above inequalities, there is a natural number m0 ∈ N so that

x ∈ B j,m0 = B
(
x j,

∥∥∥x j

∥∥∥ − 1
m0

)
.

This implies that lM has a ball-covering {Bi,m}
∞
i=1, m=1 such that supi∈N ri < 4 < +∞, which finishes the proof.

Corollary 3.7. Orlicz sequence space lM has the ball-covering property.
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