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Abstract: The paper deals with the existence and multiplicity of nontrivial solutions for the doubly
elliptic problem 

∆u = 0 in Ω,
u = 0 on Γ0,
−∆Γu + ∂νu = |u|p−2u on Γ1,

where Ω is a bounded open subset of RN (N ≥ 2) with C1 boundary ∂Ω = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅, Γ1 being
nonempty and relatively open on Γ,HN−1(Γ0) > 0 and p > 2 being subcritical with respect to Sobolev
embedding on ∂Ω.
We prove that the problem admits nontrivial solutions at the potential-well depth energy level, which is
the minimal energy level for nontrivial solutions. We also prove that the problem has infinitely many
solutions at higher energy levels.

Keywords: Laplace equation; Laplace-Beltrami operator; existence and multiplicity for nontrivial
solutions; Wentzell boundary conditions; Ventcel boundary conditions; Mountain Pass Theorem
Mathematics Subject Classification: 35D30, 35J05,35J20,25J25,35J61,35J67

1. Introduction and main results

We deal with the doubly elliptic problem
∆u = 0 in Ω,
u = 0 on Γ0,
−∆Γu + ∂νu = |u|p−2u on Γ1,

(1.1)

where Ω is a bounded open subset of RN (N ≥ 2) with C1 boundary (see [1]). We denote Γ = ∂Ω and
we assume Γ = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅, Γ1 is nonempty and relatively open on Γ (or equivalently, Γ0 = Γ0).
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Denoting by HN−1 the Hausdorff measure, we assume that HN−1(Γ0 ∩ Γ1) = 0 and HN−1(Γ0) > 0.
These properties of Ω, Γ0 and Γ1 will be assumed, without further comments, throughout the paper.
Moreover, in (1.1), we consider p > 2 and we respectively denote by ∆ and ∆Γ the Laplace and the
Laplace-Beltrami operators, while ν stands for the outward normal to Ω.

Elliptic equations with nonlinear Neumann boundary conditions, such as problem (1.1) without the
Laplace-Beltrami term, have a wide literature. Without any aim of completeness, here we refer to [2–7].

Boundary conditions like the one in (1.1), but without the nonlinear source |u|p−2u, are known in
the literature as generalized Wentzell (sometimes spelled as Ventcel ) or Goldstein-Wentzell boundary
condition, since they have been the subject of several papers in the framework of linear evolution
problems. See for example [8–13] and [14], to which we refer for the physical motivations of this kind
of problems.

The same boundary conditions also appear in the context of bulk-surface elliptic problems. See
for example [15–19] for linear eigenvalue problems related to the Wentzell boundary condition. We
also would like to refer to [20] (also giving a physical derivation of the boundary condition) and the
references therein, for a related doubly parabolic problem. See also [21] for another doubly parabolic
related problem.

On the other hand, to the author’s knowledge, a Goldtsein-Wentzell boundary condition with a
nonlinear source like |u|p−2u in connection with the Laplace equation has never been considered in the
literature. The motivation for studying it comes from a series of papers by the author concerning the
wave equation with hyperbolic dynamical boundary conditions with boundary damping and source
terms. The prototype of this kind of problem is the evolutionary boundary value problem

utt − ∆u = 0 in (0,∞) ×Ω,
u = 0 on (0,∞) × Γ0,
utt + ∂νu − ∆Γu + |ut|

m−2ut = |u|p−2u on (0,∞) × Γ1,

(1.2)

where u = u(t, x), t ≥ 0, x ∈ Ω and ∆ = ∆x denotes the Laplacian operator with respect to the space
variable. Its associated initial-value problem was introduced in [22] and then studied, as a particular
case, in [23–25]. We refer to [23,26] for the physical derivation of the problem, describing the vibrations
of a membrane with a part of the boundary carrying a linear density of kinetic energy.

In order to give clear-cut criteria on the initial data to discriminate between global existence and
blow-up for solutions of (1.2) it is useful to know if it possesses nontrivial stationary solutions, which
turns out to be solutions of (1.1), at some specific energy level.

In particular in the present paper we shall consider the case when the nonlinearity |u|p−2u is sub-
critical with respect to the Sobolev Embedding H1(Γ) ↪→ Lp(Γ), that is we shall assume that

2 < p < r, where r =

 2(N−1)
N−3 if N ≥ 4,
∞ if N = 2, 3.

(1.3)

Moreover, when dealing with problem (1.2), we shall also assume that

m > 1, p ≤ 1 + r/m′, where m := max{2,m}, (1.4)

the last assumption being related to well-posedness issues (see the papers quoted above). * We also
*Assumption (1.4) may be skipped when dealing with stationary solutions, but we prefer to keep it to avoid re-discussing problem (1.2)

here
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remark that, although the case p ≥ r (when N ≥ 4) was also considered there, only the case p < r is of
interest when dealing with the dichotomy between global existence and blow-up, see [25, Remark 1, p. 6].

To state our main results we first introduce some basic notation. Subsequently, we shall identify
Lp(Γ1), for 1 ≤ p ≤ ∞, with its isometric image in Lp(Γ), that is

Lp(Γ1) = {u ∈ Lp(Γ) : u = 0 a.e. on Γ0}. (1.5)

Moreover we shall denote by Tr the trace operator from H1(Ω) onto H1/2(Γ) and, for simplicity of
notation, Tr u = u|Γ.

We introduce the Hilbert spaces H0 = L2(Ω) × L2(Γ1) and

H1 =
{
(u, v) ∈ H1(Ω) × H1(Γ) : v = u|Γ, v = 0 on Γ0

}
, (1.6)

with the topologies inherited from the products. For the sake of simplicity we shall identify, when useful,
H1 with its isomorphic counterpart

H1
Γ0

(Ω,Γ) = {u ∈ H1(Ω) : u|Γ ∈ H1(Γ) ∩ L2(Γ1)}, (1.7)

studied for example in [27], through the identification (u, u|Γ) 7→ u. So we shall write, without further
mention, u ∈ H1 for functions defined on Ω. Moreover we shall drop the notation u|Γ, when useful, so
we shall write ‖u‖L2(Γ) and so on, for u ∈ H1, referring to the restriction of the Hausdorff measureHN−1

to measurable subsets of Γ. We shall also drop the notation dHN−1 in boundary integrals, so writing∫
Γ

u =
∫

Γ
u dHN−1.

By assumption (1.3) we can introduce in H1 the nonlinear functional I ∈ C1(H1) = C1(H1;R) defined
by †

I(u) = 1
2

∫
Ω

|∇u|2 + 1
2

∫
Γ1

|∇Γu|2Γ −
1
p

∫
Γ1

|u|p, (1.8)

which represents the potential energy associated to problem (1.2). For this reason we shall call it the
energy functional when dealing with (1.1).

We also introduce the potential-well depth d given by

d = inf
u∈H1,u|Γ.0

sup
λ>0

I(λu) = inf
u∈H1\{0}

sup
λ>0

I(λu), (1.9)

noticing that the identity between the two infima in (1.9) is essentially trivial and that we shall prove
that d > 0.

Our first main result shows that problem (1.1) admits nontrivial weak solutions, see Definition 3
below, coinciding with critical points of the functional I, at the positive energy level d. We shall also
recognize that they are stationary weak solutions of (1.2) provided this class of solutions is well-defined,
see Definition 2 below.

Theorem 1. When (1.3) holds, problem (1.1) has at least a couple (u,−u) of antipodal weak solutions
in H1 such that I(u) = I(−u) = d > 0. When (1.4) holds they are also stationary weak solutions of
problem (1.2).

†Here ∇Γ denotes the Riemannian gradient on Γ and | · |Γ, the norm associated to the Riemannian scalar product on the tangent bundle
of Γ. See Section 2.
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Moreover d coincides with the Mountain Pass level of the functional I, that is

d = inf
σ∈Σ

max
t∈[0,1]

I(σ(t)), where Σ = {σ ∈ C([0, 1]; H1) : σ(0) = 0, I(σ(1)) < 0}.

Theorem 1 will be proved by applying a variant, maybe less well-known than other ones, of the
Mountain Pass Theorem, explicitly given in § 2.

To show the relevance of the potential-well depth d, beside its interest in evolution problems, we
give some relevant properties of weak solutions of (1.1) having energy d. At first we introduce the norm
B of the bounded linear trace operator from H1 to Lp(Γ1), that is

B = sup
u∈H1\{0}

‖u‖Lp(Γ1)(
‖∇u‖2

L2(Ω) + ‖∇Γu‖2
L2(Γ1)

)1/2 , (1.10)

noticing that we shall prove that B < ∞. We can then state our second main result.

Theorem 2. Let (1.3) hold and set

λ1 = B−p/(p−2), and λ2 = B−2/(p−2). (1.11)

Then we have
d =

(
1
2 −

1
p

)
λ2

1 =
(

1
2 −

1
p

)
λ

p
2 . (1.12)

Moreover, if u is a weak solution of (1.1) with I(u) = d we also have

‖∇u‖2L2(Ω) + ‖∇Γu‖2L2(Γ1) = λ2
1 and ‖u‖Lp(Γ1) = λ2. (1.13)

Finally weak solutions at the energy level d are the lowest energy non-trivial solutions of (1.1), that is
for any non-trivial weak solutions u of (1.1) one has I(u) ≥ d.

The proof of the minimality of the energy of solutions at level d, stated in Theorem 2, is of elementary
nature. Hence it is easier than most proofs in the literature for internal sources, see for example [28–30].
By the way the homogeneity of the source |u|p−2u allows for this simple approach.

Finally, to show that the minimality asserted in Theorem 2 is of some use, since there are solutions at
an higher level, we give our last main result, which can also be of independent interest.

Theorem 3. When (1.3) holds there is a sequence (un)n of nontrivial weak solutions of (1.1) such that
I(un)→ ∞ as n→ ∞.

The proof of Theorem 3 relies on applying the Z2-version of the Mountain Pass Theorem in a
different variational setting, which turns out to be equivalent to the one illustrated in this Section. See
§ 4 for details.

We would like to mention that, although in the paper we give Theorems 1-3 for the prototype
nonlinearity f (x, u) = |u|p−2u, they can be easily extended to the problem

∆u = 0 in Ω,
u = 0 on Γ0,
−∆Γu + ∂νu = f (x, u) on Γ1,

Communications in Analysis and Mechanics Volume 15, Issue 4, 811–830.
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under suitable assumptions on f that have been widely used in the literature. Here, for the sake of
simplicity, we preferred to concentrate on the prototype problem.

Moreover, clearly Theorems 1-3 also show the existence of stationary solutions for other evolution
problems not considered in the present paper, which can be of future interest.

The paper is organized as follows: in Section 2 we shall give all preliminaries needed in the paper.
Section 3 will be devoted to prove Theorems 1 and 2, while in Section 4 we shall prove Theorem 3.

2. Preliminaries

2.1. Notation

We shall adopt the standard notation for (real) Lebesgue and Sobolev spaces in Ω, referring to [31].
For simplicity we shall denote by ‖ · ‖τ, for 1 ≤ τ ≤ ∞, the norms in Lτ(Ω) and in Lτ(Ω;RN).

Given a Banach space X we shall denote by X′ its dual and by 〈·, ·〉X the duality product between
them. Moreover we shall use the standard notation for X-valued Lebesgue and Sobolev spaces in a real
interval. When another Banach space Y is given we shall denote by L(X,Y) the space of bounded linear
operators between X and Y and by ‖ · ‖L(X,Y) the standard norm on it.

2.2. Function spaces and Riemannian operators on Γ.

Lebesgue spaces on Γ and Γ1 will be intended with respect to (the restriction to measurable subset of
them of) the Hausdorff measureHN−1, and for simplicity we shall denote, for 1 ≤ τ ≤ ∞, ‖·‖τ,Γ = ‖·‖Lτ(Γ)

and ‖ · ‖τ,Γ1 = ‖ · ‖Lτ(Γ1).
Sobolev spaces on Γ and on its relatively open subsets are classical objects, and we shall use the standard

notation for them. We refer to [1] for their definition in the present case in which Γ is merely C1.
Since Γ is C1, it inherits from RN the structure of a Riemannian C1 manifold (see [32]), so in the

sequel we shall use some notation of geometric nature, which is quite common when Γ is smooth
(see [33–36]), and which can be easily extended to the C1 case, see for example [37]. Moreover, since
Γ1 is relatively open on Γ, this notation will apply (by restriction) to it, without further mention.

We shall denote by T (Γ) and T ∗(Γ) the tangent and cotangent bundles, and by (·, ·)Γ the Riemannian
metric inherited from RN , given in local coordinates by (u, v)Γ = gi juiv j for all u, v ∈ T (Γ) (here and in
the sequel the summation convention being in use). The metric induces the fiber-wise defined musical
isomorphisms [ : T (Γ) → T ∗(Γ) and ] = [−1 : T ∗(Γ) → T (Γ) defined by 〈[u, v〉T (Γ) = (v, u)Γ for
u, v ∈ T (Γ), where 〈·, ·〉T (Γ) denotes the fiber-wise defined duality pairing. The induced bundle metric on
T ∗(Γ), still denoted by (·, ·)Γ, is then defined by the formula (α, β)Γ = 〈α, ]β〉T (Γ) for all α, β ∈ T ∗(Γ), so
that

(α, β)Γ = (]β, ]α)Γ, for all α, β ∈ T ∗(Γ). (2.1)

By | · |2
Γ

= (·, ·)Γ we shall denote the associated bundle norms on T (Γ) and T ∗(Γ).
Denoting by dΓ the standard differential on Γ, the Riemannian gradient operator ∇Γ is defined by

setting, for u ∈ C1(Γ) and thus by density for u ∈ H1(Γ), ∇Γu = ]dΓu, so ∇Γu = gi j∂ ju∂i in local
coordinates, where (gi j) = (gi j)−1. By (2.1), one trivially gets that (∇Γu,∇Γv)Γ = (dΓu, dΓv)Γ for all
u, v ∈ H1(Γ), so in the sequel the use of vectors or forms is optional.

It is well known, see for example [37, Chapter 3], that H1(Γ) can be equipped with the equivalent
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norm ‖ · ‖H1(Γ) given by

‖u‖2H1(Γ) = ‖u‖22,Γ + ‖∇Γu‖22,Γ, where ‖∇Γu‖22,Γ :=
∫

Γ

|∇Γu|2Γ.

In the sequel we shall also deal with the closed subspace of H1(Γ)

H1
Γ0

(Γ) = {u ∈ H1(Γ) : u = 0 a.e. on Γ0}, (2.2)

endowed with the norm ‖ · ‖H1(Γ), which is then a Hilbert space. Since for all u ∈ H1
Γ0

(Γ) one has ∇Γu = 0
a.e. on Γ \ Γ1 andHN−1(Γ0 ∩ Γ1) = 0, we have

‖u‖2H1(Γ) = ‖u‖22,Γ1
+ ‖∇Γu‖22,Γ1

for all u ∈ H1
Γ0

(Γ), (2.3)

where ‖∇Γu‖22,Γ1
:=

∫
Γ1
|∇Γu|2

Γ
.

Remark 1. Although the definition of the space H1
Γ0

(Γ) given above is adequate for our purpose, we
would like to point out two characterizations of it in two different geometrical situations:

i) When Γ0 ∩ Γ1 = ∅, both Γ0 and Γ1 are relatively open, and by identifying the elements of H1(Γi),
i = 0, 1, with their trivial extensions to Γ, one easily gets the splitting H1(Γ) = H1(Γ0) ⊕ H1(Γ1),
and consequently H1

Γ0
(Γ) is isometrically isomorphic to H1(Γ1).

ii) When Γ0 ∩ Γ1 , ∅, such a characterization is false, since one easily sees that the characteristic
function χΓ1 of Γ1 does not belong to H1

Γ0
(Γ), while its restriction to Γ1 trivially belongs to H1(Γ1).

Indeed in this case the elements of H1
Γ0

(Γ) “vanish” at the relative boundary ∂Γ1 = Γ0 ∩ Γ1 of Γ1 on
Γ, although such a notion can be made more precise only when ∂Γ1 is regular enough. For example,
when Γ is smooth and Γ1 is a manifold with boundary ∂Γ1, see [36, §5.1], H1

Γ0
(Γ) is isometrically

isomorphic to the space
H1

0(Γ1) := C∞c (Γ1)
‖·‖H1(Γ1) .

The Laplace-Beltrami operator ∆Γ can be defined in a geometrically elegant way by using ∇Γ and
the Riemannian divergence operator, as in [37, § 2.3], at least when Γ is C2. To avoid the need of
introducting Sobolev spaces of tensor fields we shall adopt here a less elegant approach. Indeed we set,
when Γ is C2 and u ∈ C2(Γ′), Γ′ ⊂ Γ relatively open,

∆Γu = g−1/2∂i(g1/2gi j∂ ju), where g = det(gi j), (2.4)

in local coordinates. Since g, gi j are continous and Γ is compact, formula (2.4) extends by density to
u ∈ H2(Γ), so defining an operator −∆Γ ∈ L(H2(Γ); L2(Γ)), which restricts to −∆Γ ∈ L(H2(Γ′); L2(Γ′))
for relatively open subsets Γ′ of Γ. Since Γ is compact, by (2.4), integrating by parts and using a C2

partition of the unity one gets that

−

∫
Γ

∆Γuv =

∫
Γ

(∇Γu,∇Γv)Γ for all u ∈ H2(Γ) and v ∈ H1(Γ). (2.5)

Formula (2.5) motivates the definition of the operator −∆Γ ∈ L(H1(Γ); H−1(Γ)), also when Γ is merely
C1, given by

〈−∆Γu, v〉H1(Γ) =

∫
Γ

(∇Γu,∇Γv)Γ for all u, v ∈ H1(Γ). (2.6)
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By density, when Γ is C2, the so-defined operator is the unique extension of −∆Γ ∈ L(H2(Γ); L2(Γ)).
In § 4 we shall deal with the realization of −∆Γ between the space H1

Γ0
(Γ) and its dual. The different

nature of the space H1
Γ0

(Γ) in the two cases i) and ii) has been pointed out in Remark 1. To explain the
definition of the realization we shall give we recall that, when Γ0∩Γ1 = ∅, so Γ1 is compact, formula (2.5)
holds, when Γ is C2, also when replacing Γ with Γ1, so making natural to set −∆Γ1 ∈ L(H1(Γ1); H−1(Γ1))
by

〈−∆Γ1u, v〉H1(Γ1) =

∫
Γ1

(∇Γu,∇Γv)Γ for all u, v ∈ H1(Γ1). (2.7)

When Γ0 ∩ Γ1 , ∅, Γ is smooth and Γ1 is a manifold with boundary ∂Γ1, formula (2.5) fails to hold on
Γ1, since a boundary integral on ∂Γ1 appears. On the other hand, taking into account the homogeneous
Dirichlet boundary condition in the space H1

0(Γ1), it is natural to set −∆Γ1D ∈ L(H1
0(Γ1); H−1(Γ1)) by

〈−∆Γ1Du, v〉H1
0 (Γ1) =

∫
Γ1

(∇Γu,∇Γv)Γ for all u, v ∈ H1
0(Γ1). (2.8)

Hence, taking into account the characterizations given in Remark 1, to simultaneously deal with the two
cases i) and ii), in the sequel we shall deal with the operator −∆Γ1(D) ∈ L(H1

Γ0
(Γ); [H1

Γ0
(Γ)]′) defined by

〈−∆Γ1(D)u, v〉H1
Γ0

(Γ) =

∫
Γ1

(∇Γu,∇Γv)Γ for all u, v ∈ H1
Γ0

(Γ1), (2.9)

noticing that, by (2.6), −∆Γ1(D)u = −∆Γu|H1
Γ0

(Γ) for all u ∈ H1
Γ0

(Γ).

2.3. The space H1.

We recall [13, Lemma 1, p. 2147], which trivially extends to Γ of class C1, that the space

H1(Ω; Γ) = {(u, v) ∈ H1(Ω) × H1(Γ) : v = u|Γ},

with the topology inherited from the product, can be identified with the space {u ∈ H1(Ω) : u|Γ ∈ H1(Γ)}
and equivalently equipped with the norm ‖ · ‖H1(Ω,Γ) given by

‖u‖2H1(Ω,Γ) = ‖∇u‖22 + ‖∇Γu‖22,Γ + ‖u‖22,Γ.

The identification made in § 1 between the spaces H1 and H1
Γ0

(Ω,Γ), respectively defined by (1.6) and
(1.7), is a simple consequence of the identification above, and, by (2.3), H1 can be equivalently equipped
with the norm |||·|||H1 given by

|||u|||2H1 = ‖∇u‖22 + ‖∇Γu‖22,Γ1
+ ‖u‖22,Γ1

. (2.10)

On the other hand, to get the advantage of the assumptionHN−1(Γ0) > 0, made in the present paper, we
point out the following well-known result, the proof of which is given only for the reader’s convenience.

Lemma 1. LetHN−1(Γ0) > 0. Then, setting, for u, v ∈ H1,

(u, v)H1 =

∫
Ω

∇u∇v +

∫
Γ1

(∇Γu,∇Γv)Γ and ‖ · ‖H1 = (·, ·)1/2
H1 , (2.11)

‖ · ‖H1 defines on H1 a norm equivalent to |||·|||H1 .
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Proof. By combining [38, Chapter 2, Theorem 2.6.16, p. 75] and [38, Chapter 4, Corollary 4.5.2, p.
195] one gets the following Poincaré-type inequality: there is a positive constant c1 = c1(Ω,Γ0) such
that

‖u‖2 ≤ c1‖∇u‖2 for all u ∈ H1. (2.12)

By the Trace Theorem there is a positive constant c2 = c2(Ω,Γ0) such that

‖u‖2,Γ1 ≤ c2‖u‖H1(Ω) for all u ∈ H1(Ω), (2.13)

where ‖ · ‖H1(Ω) is the standard norm of H1(Ω). Since H1 ⊂ H1(Ω), by combining (2.10), (2.12) and
(2.13) we get

|||u|||2H1 ≤ ‖∇u‖22 + ‖∇Γu‖22,Γ1
+ c2(1 + c1)‖∇u‖22 ≤ c3‖u‖2H1

for all u ∈ H1, where c3 = 1 + c2(1 + c1), from which the statement trivially follows.

2.4. Some results from Critical Point Theory

We now recall some well-known notions of Critical Point Theory for a functional I ∈ C1(X) =

C1(X;R) on any Banach space X with norm ‖ · ‖X. By I′ ∈ C(X; X′) we shall denote the Fréchet
differential of I and (PS) will stand , in short, for Palais-Smale. See [39].

Definition 1. Let I ∈ C1(X). We say that a sequence (un)n in X is a (PS) sequence if (I(un))n is bounded
and I′(un)→ 0 in X′. We also say that I ∈ C1(X) satisfies the (PS) condition if any (PS) sequence has
a (strongly) convergent subsequence.

The following result is a well-known version of the celebrated Mountain Pass Theorem, see [39,
Chapter 1, p. 4].

Theorem 4. Let I ∈ C1(X) satisfy the (PS) condition and

i) I(0) = 0;
ii) there are ρ, α > 0 such that I(u) ≥ α for all u ∈ X such that ‖u‖X = ρ;

iii) there is l ∈ X such that ‖l‖X > ρ and I(l) ≤ 0.

Then I possesses a critical value cl ≥ α given by

cl = inf
σ∈Σl

max
t∈[0,1]

I(σ(t)),where Σl = {σ ∈ C([0, 1]; X) : σ(0) = 0, σ(1) = l}. (2.14)

It is rarely pointed out in textbooks that the critical level cl above may depend on l, as the following
trivial example shows:

Example 1. Let X = R and

I(x) =

x2 − x4 if x ≥ 0,
x2 − 2x4 if x < 0.

Trivially I ∈ C1(R) satifies the (PS) condition as well as assumptions i)-iii). Moreover its critical points
are exactly x = 0,−1/2,

√
2/2 from which one easily sees that

cl =

I(
√

2/2) = 1/4 if l > 0,
I(−1/2) = 3/16 if l < 0.
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Since in the present paper we are interested in characterizing our critical level as the potential-well
depth of the functional I, we now state a less known variant of the Mountain Pass Theorem under
slightly more restrictive assumptions on the functional that look similar (although not identical) to the
assumptions of [40, Theorem 2.1, p. 354], this one being the first version of this celebrated result.

Theorem 5. Let I ∈ C1(X) satisfy the (PS) condition, assumptions i)-iii) in Theorem 4 and

iv) I(u) > 0 for all u ∈ X \ {0} such that ‖u‖X ≤ ρ.

Then I possesses a critical value c ≥ α given by

c = inf
σ∈Σ

max
t∈[0,1]

I(σ(t)),where Σ = {σ ∈ C([0, 1]; X) : σ(0) = 0, I(σ(1)) < 0}. (2.15)

Proof. One can repeat the proof of [40, Theorem 2.1, p. 354] verbatim, since by assumption iv) for
any σ ∈ Σ one has ‖σ(1)‖X > ρ. Alternatively one can also deduce the statement from Theorem 4 by
the following simple argument. By assumption iv) one has Σ =

⋃
l∈A Σl, where A = {l ∈ X : ‖l‖X >

ρ and I(l) < 0}. Hence, by (2.14) and (2.15) we have c = infl∈A cl. Hence, since by assumption
ii) one has α ≤ c < ∞, there is a sequence (ln)n in A such that cln → c. By Theorem 4 there is a
corresponding sequence (un)n in X such that I(un) = cln and I′(un) = 0, which is then a (PS) sequence
and consequently, up to a subsequence, un → u. Then I′(u) = 0 and I(u) = c, concluding the proof.

In the sequel we shall also use the following well-known Z2- version ‡ of the Mountain Pass Theorem,
see [39, Chapter 9, Theorem 9.12, p. 55 and Proposition 9.33, p. 58].

Theorem 6. Let X be an infinite dimensional space and I ∈ C1(X) be even, satisfying the (PS) condition,
assumptions i)-ii) of Theorem 4 and

v) for each finite dimensional subspace Y of X there is RY > 0 such that I(u) ≤ 0 for all u ∈ Y such
that ‖u‖X > RY .

Then I possesses a sequence (un)n of critical points such that I(un)→ ∞.

3. Existence of solutions of (1.1) at level d and their minimality

The aim of this section is to prove Theorems 1 and 2. We start by recalling what we mean by a weak
solution of (1.2), referring to [24, §2.2 and Definition 3.1, p. 4896]. We shall also make precise the use
of the term ”stationary” when referring to them.

Definition 2. Let (1.3) and (1.4) hold. A weak solution of (1.2) is

u ∈ L∞loc([0,∞); H1) ∩W1,∞
loc ([0,∞); H0), (u|Γ1)t ∈ Lm

loc(0,∞); Lm(Γ1)), (3.1)

satisfying the distribution identity∫ ∞

0

[
−

∫
Ω

utψt −

∫
Γ1

(u|Γ1)t(ψ|Γ1)t +

∫
Ω

∇u∇ψ +

∫
Γ1

(∇Γu,∇Γψ)Γ −

∫
Γ1

|u|p−2uψ
]

= 0, (3.2)

for all ψ ∈ Cc((0,∞); H1) ∩ C1
c((0,∞); H0) such that (ψ|Γ1)t ∈ Lm

loc((0,∞); Lm(Γ1)). We say that u is
stationary if u(t) ≡ u0 ∈ H1 in (0,∞).

‡The name is justified by the fact that I is supposed to be invariant with respect to the group {−Id, Id}, which is isomorphic to the
unique cyclic group of order two, that is Z2.
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We also make precise what we mean by weak solutions of (1.1).

Definition 3. Let 2 < p < r. A weak solution of (1.1) is u ∈ H1 such that∫
Ω

∇u∇φ +

∫
Γ1

(∇Γu,∇Γφ)Γ −

∫
Γ1

|u|p−2uφ = 0 for all φ ∈ H1. (3.3)

Actually weak solutions of (1.1) and stationary weak solutions of (1.2) coincide when they are both
defined, as the following result shows.

Lemma 2. Let (1.3), (1.4) hold and u0 ∈ H1. Then u ≡ u0 is a stationary weak solution of (1.2) if and
only if u0 is a weak solution of (1.1).

Proof. If u0 is a weak solution of (1.1) by (3.3), one immediately gets that u ≡ u0 satisfies (3.2). To
prove the converse we recall that, by [24, Lemma 3.3, p. 4896], any weak solution u of (1.2) satisfies
the alternative form of the distribution identity (3.2)[∫

Ω

utψ +

∫
Γ1

(u|Γ1)tψ

]T

0

+

∫ T

0

[
−

∫
Ω

utψt −

∫
Γ1

(u|Γ1)t(ψ|Γ1)t

+

∫
Ω

∇u∇ψ +

∫
Γ1

(∇Γu,∇Γψ)Γ −

∫
Γ1

|u|p−2uψ
]

= 0, (3.4)

for all T > 0 and ψ ∈ C([0,T ]; H1)∩C1([0,T ]; H0), (ψ|Γ1)t ∈ Lm((0,T )×Γ1) . Hence, when u ≡ u0 ∈ H1

is a stationary weak solution of (1.2), taking in (3.4) test functions ψ ≡ φ ∈ H1 for an arbitrary T > 0
we get (3.3), concluding the proof.

Equation (3.3) has a variational nature, as the next result highlights.

Lemma 3. If (1.3) holds, the functional I defined in (1.8) belongs to C1(H1) and its critical points
coincide with the weak solutions of (1.1).

Proof. By classical arguments, see [41, Chapter 1, Theorem 2.9, p. 22], the potential operator F : H1 →

R, defined by F(u) = 1
p‖u‖

p
p,Γ1

, is Fréchet differentiable and, for all u, φ ∈ H1 one has

〈F′(u), φ〉H1 =

∫
Γ1

|u|p−2uφ. (3.5)

Consequently, since
I(u) = 1

2‖u‖
2
H1 − F(u) for all u ∈ H1, (3.6)

trivially I ∈ C1(H1) and

〈I′(u), φ〉H1 = (u, φ)H1 − 〈F′(u), φ〉H1 for all u, φ ∈ H1. (3.7)

By (2.11), (3.5) and (3.7) one immediately gets that (3.3) is rewritten as I′(u) = 0.

We now establish some geometrical properties of the functional I.

Lemma 4. If (1.3) holds, the functional I satisfies the assumptions i)-iii) of Theorem 4 and iv) of
Theorem 5.
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Proof. By (1.8), trivially I(0) = 0, proving i). To prove ii) and iv) we remark that, by Sobolev Embedding
Theorem there is c4 = c4(p,Ω) > 0 such that

‖u‖p,Γ ≤ c4‖u‖H1(Γ) for all u ∈ H1(Γ).

Consequently, by Lemma 1, there is c5 = c5(p,Ω,Γ0) > 0 such that

‖u‖p,Γ1 ≤ c5‖u‖H1 for all u ∈ H1. (3.8)

Hence, by (1.8), for all u ∈ H1 we have

I(u) =
1
2
‖u‖2H1 −

1
p
‖u‖p

p,Γ1
≥

(
1
2
−

cp
5

p
‖u‖p−2

H1

)
‖u‖2H1 ,

from which ii) and iv) follow, by taking for example

ρ =

(
p

4cp
5

) 1
p−2

, and α =
1
4

(
p

4cp
5

) 2
p−2

.

To prove iii) we remark that, for any u ∈ H1 such that u|Γ1 , 0 and s > 0 we have

I(su) = 1
2‖u‖

2
H1 s2 − 1

p‖u‖
p
p,Γ1

sp → −∞ as s→ ∞.

The last relevant property of I is given by the following result:

Lemma 5. If (1.3) holds, the functional I satisfies the (PS) condition.

Proof. Let (un)n be a (PS) sequence in H1. Then there are c6, c7 ≥ 0, depending on (un)n, such that

I(un) ≤ c6, and |〈I′(un), un〉H1 | ≤ c7‖un‖H1 for all n ∈ N. (3.9)

Since, by (1.8) and (3.7),
pI(un) − 〈I′(un), un〉H1 =

(
p
2 − 1

)
‖un‖

2
H1 ,

by (3.9) we get (
p
2 − 1

)
‖un‖

2
H1 ≤ pc6 + c7‖un‖H1 ,

from which one immediately yields that (un)n is bounded in H1. Consequently, up to a subsequence,
un ⇀ u in H1. To prove that the convergence is actually strong we remark that, by (3.7), for all φ ∈ H1

we have
(un − u, φ)H1 = 〈I′(un) − I′(u), φ〉H1 +

∫
Γ1

(|un|
p−2un − |u|p−2u)φ,

so taking φ = un − u we get

‖un − u‖2H1 = 〈I′(un), un − u〉H1 − 〈I′(u), un − u〉H1 +

∫
Γ1

(|un|
p−2un − |u|p−2u)(un − u). (3.10)

The first two terms on the right hand side of (3.10) converge to 0 since I′(un) → 0 in (H1)′ and
un − u ⇀ 0, hence it is norm bounded. As to the third term in it, since the embedding H1(Γ) ↪→ Lp(Γ) is
compact and the operator u 7→ u|Γ from H1 to H1(Γ) is bounded, up to a subsequence we have un |Γ → u|Γ
strongly in Lp(Γ). By standard properties of the Nemitskii operators, see [41, Chapter 1, Theorem 2.2, p.
16], we also have |un |Γ|

p−2un |Γ → |u|Γ|p−2u|Γ strongly in Lp′(Γ). Consequently, the third term in the right
hand side of (3.10) converges to 0 by the Hölder inequality.
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We can then give the proof of our first main result:

Proof of Theorem 1. By simply combining Lemmas 2-5, Theorem 5, with I = I, and the fact that I is
even, we get the statement, but for one fact. The only exception is the value of the critical level, since by
Theorem 5 we have that I(u) = I(−u) = c, where c is given by (2.15). To complete the proof we then
have to recognize that c = d1 = d2, where

d1 = inf
u∈H1,u|Γ.0

sup
λ>0

I(λu), and d2 inf
u∈H1\{0}

sup
λ>0

I(λu).

Since, for any λ > 0,
I(λu) = 1

2‖u‖
2
H1λ

2 − 1
p‖u‖

p
p,Γ1
λp, (3.11)

trivially sup
λ>0

I(λu) < ∞ when u|Γ . 0, while sup
λ>0

I(λu) = ∞ when u ∈ H1 \ {0} and u|Γ ≡ 0. Hence

d1 = d2 = d, and consequently it remains to be proved that d = c.
This fact is well-known for similar problems, see for example [42, Chapter 8, p. 117] and [28,29,43–

45]. Here we shall essentially conveniently adapt the argument in [45]. By (3.11), for any u ∈ H1 with
u|Γ . 0, the function λ 7→ I(λu) has a unique critical point λu > 0, max

λ>0
I(λu) = I(λuu) and I(λu)→ −∞

as λ→ ∞, for any such u, defining σu ∈ C([0, 1]; H1) by σu(s) = Rsu for s ∈ [0, 1], with R > 0 so large
that I(Ru) < 0, we have σu ∈ Σ and consequently I(λuu) = max

t∈[0,1]
I(σu(t)) ≥ c. Hence d ≥ c. On the other

hand, if u is a critical point of I with I(u) = c, already found above, by (3.7) we have ‖u‖2H1 = ‖u‖p
p,Γ1

.
Then, since u , 0, we also get that u|Γ . 0. Consequently, since d

dλ I(λu) = 〈I′(u), u〉H1 , we have λu = 1
and consequently c = I(u) = max

λ>0
I(λu) ≥ d, completing the proof.

We now turn to proving Theorem 2. We remark at first that the number B defined in (1.10) is finite
because of the estimate (3.8). We now introduce the auxiliary functional K ∈ C1(H1) given by

K(u) = 〈I′(u), u〉H1 = ‖u‖2H1 − ‖u‖
p
p,Γ1
. (3.12)

The key point in the proof of Theorem 2 is the following result, of possible independent interest:

Lemma 6. Let (1.3) hold and λ1, λ2 be given by (1.11). Then (1.12) holds. Moreover, for any u ∈ H1

such that u|Γ . 0 and I(u) ≤ d, the following implications hold:

K(u) ≥ 0 ⇐⇒ ‖u‖H1 ≤ λ1 ⇐⇒ ‖u‖p,Γ1 ≤ λ2,

K(u) ≤ 0 ⇐⇒ ‖u‖H1 ≥ λ1 ⇐⇒ ‖u‖p,Γ1 ≥ λ2.
(3.13)

Proof. To prove (1.12) we remark that, for any u ∈ H1 with u|Γ . 0 an easy calculation shows that

max
λ>0

I(λu) = I(λuu) where λu = ‖u‖2/(p−2)
H1 ‖u‖−p/(p−2)

p,Γ1

so that

max
λ>0

I(λu) =

(
1
2
−

1
p

) (
‖u‖H1

‖u‖p,Γ1

) 2p
p−2

and consequently

d =

(
1
2
−

1
p

)  sup
u∈H1,u|Γ.0

‖u‖H1

‖u‖p,Γ1


−2p
p−2

.
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By using (1.10) and (1.11) in the last formula we get (1.12).
Now let u ∈ H1 such that u|Γ . 0 and I(u) ≤ d. To prove (3.13) we shall first prove the implications

K(u) ≥ 0 =⇒ ‖u‖H1 ≤ λ1 =⇒ ‖u‖p,Γ1 ≤ λ2 =⇒ K(u) ≥ 0. (3.14)

If K(u) ≥ 0, supposing by contradiction that ‖u‖H1 > λ1, by (3.6) we get

I(u) ≥
(

1
2 −

1
p

)
‖u‖2H1 >

(
1
2 −

1
p

)
λ2

2 = d,

a contradiction. If ‖u‖H1 ≤ λ1, since by (1.10) we have

‖u‖p,Γ1 ≤ B‖u‖H1 for all u ∈ H1, (3.15)

and λ2 = Bλ1, we immediately get ‖u‖p,Γ1 ≤ λ2. If ‖u‖p,Γ1 ≤ λ2, by (1.11) and (3.15) we have

‖u‖p
p,Γ1
≤ λ

p−2
2 ‖u‖

2
p,Γ1

= B−2‖u‖2p,Γ1
≤ ‖u‖2H1 ,

so K(u) ≥ 0, concluding the proof of (3.16).
To complete the proof of (3.13) we are then going to prove the further implications

K(u) ≤ 0 =⇒ ‖u‖p,Γ1 ≥ λ2 =⇒ ‖u‖H1 ≥ λ1 =⇒ K(u) ≤ 0. (3.16)

If K(u) ≤ 0, by (3.15), we have
B−2‖u‖2p,Γ1

≤ ‖u‖2H1 ≤ ‖u‖
p
p,Γ1

which, since u|Γ . 0, gives ‖u‖p,Γ1 ≥ B−2/(p−2) = λ2. If ‖u‖p,Γ1 ≥ λ2 by (3.15) we have B‖u‖H1 ≥ λ1, i.e.,
‖u‖H1 ≥ B−1λ2 = λ1. If ‖u‖H1 ≥ λ1, then assuming by contradiction that K(u) > 0, i.e., ‖u‖p

p,Γ1
< ‖u‖2H1 ,

by (3.6) we get
I(u) = 1

2‖u‖
2
H1 −

1
p‖u‖

p
p,Γ1

>
(

1
2 −

1
p

)
‖u‖2H1 ≥

(
1
2 −

1
p

)
λ2

1 = d,

a contradiction, so K(u) ≤ 0 and the proof is complete.

We can now prove our second main result.

Proof of Theorem 2. Formula (1.12) has been already proved in Lemma 6. Moreover, if u is a weak
solution of (1.1) with I(u) = d, by Lemma 3 and (3.12) we have K(u) = 0, and since d > 0 necessarily
u . 0. Hence ‖u‖p

p,Γ1
= ‖u‖2H1 > 0, so by Lemma 6 we immediately get (1.13).

Now let u be a non-trivial weak solution of (1.1). By Lemma 3 and (3.12) we have K(u) = 0. Then,
by (3.6) and (3.15) we get

I(u) ≥
1
2
‖u‖2H1 −

Bp

p
‖u‖p

H1 , (3.17)

and since K(u) = 0, also
I(u) = 1

2‖u‖
2
H1 −

1
p‖u‖

2
H1 =

(
1
2 −

1
p

)
‖u‖2H1 . (3.18)

By combining (3.17) and (3.18) we get Bp‖u‖p
H1 ≥ ‖u‖2H1 , so since u . 0 we have ‖u‖H1 ≥ B−p/(p−2) = λ1.

Then, using (3.18) again we obtain I(u) ≥
(

1
2 −

1
p

)
λ2

1 = d, concluding the proof.
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4. Multiplicity

The aim of this section is to prove Theorem 3 and the strategy of the proof consists in applying
Theorem 6. Unfortunately, the simple variational setting used in the previous section is not adequate for
this purpose. Indeed the functional I defined in (1.8) does not satisfy assumption (v) in Theorem 6, as it
is evident by considering its restriction to the space H1

0(Ω).
To introduce a convenient setting we first recall that by standard elliptic theory, see for example [46,

Chapter I], for any v ∈ H1/2(Γ) the nonhomogeneous Dirichlet problem∆u = 0 in Ω,
u = v on Γ,

(4.1)

has a unique solution u ∈ H1(Ω), continuously depending on v in the topologies of the respective spaces,
where the Laplace equation ∆u = 0 is taken in the sense of distributions, or equivalently in the space
H−1(Ω), that is ∫

Ω

∇u∇φ = 0 for all φ ∈ H1
0(Ω), (4.2)

while the boundary condition is taken in the trace sense. Trivially u ∈ H1 when v ∈ H1
Γ0

(Γ), see (2.2), so
we obtain the bounded linear Dirichlet operator v 7→ u from H1

Γ0
(Γ) into H1. Trivially its range is the

closed subspace A1 of H1 defined by

A1 = {u ∈ H1 : (4.2) holds}. (4.3)

Hence, denoting u = Dv, we get the bijective isomorphism

D ∈ L(H1
Γ0

(Γ);A1), with D−1 = Tr|A1 . (4.4)

The starting point of the analysis is that the space A1 is a natural constraint for problem (1.1), since
equations (1.1)1 and (1.1)2 hold in it. To write equation (1.1)3 in a weak form we shall use the realization
−∆Γ1(D) of the Laplace-Beltrami operator introduced in (2.2) as well as the Dirichlet-to-Neumann operator
A ∈ L(H1

Γ0
(Γ); [H1

Γ0
(Γ)]′) given by

〈Av,w〉H1
Γ0

(Γ) =

∫
Ω

∇(Dv)∇(Dw) for all v,w ∈ H1
Γ0

(Γ). (4.5)

By (4.3) and (4.4), since problem (4.1) has a unique solution, we also get that

〈Av,w〉H1
Γ0

(Γ) =

∫
Ω

∇(Dv)∇φ, (4.6)

for all v,w ∈ H1
Γ0

(Γ) and φ ∈ H1(Ω) such that φ|Γ = w. One can then abstractly write equation (1.1)3 in
the space [H1

Γ0
(Γ)]′ as follows:

Definition 4. Let (1.3) hold. We say that v ∈ H1
Γ0

(Γ) is a solution of

− ∆Γ1(D)v +Av = |v|p−2v in [H1
Γ0

(Γ)]′, (4.7)

if ∫
Ω

∇(Dv)∇(Dψ) +

∫
Γ1

(∇Γv,∇Γψ)Γ −

∫
Γ1

|v|p−2vψ = 0, (4.8)

for all ψ ∈ H1
Γ0

(Γ).
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We immediately get the following result:

Lemma 7. Let u ∈ H1. Then u is a weak solution of (1.1) if and only if u ∈ A1 and v = u|Γ is a solution
of (4.7). Moreover, in this case u = Dv.

Proof. If u ∈ H1 is a weak solution of (1.1), by (3.3) one immediately gets that u ∈ A1, so v = u|Γ
satisfies (4.8) and u = Dv. Conversely, if v ∈ H1

Γ0
(Γ) satisfies (4.8) then u := Dv ∈ A1 and, by combining

(4.5), (4.6) and (4.8), we get (3.3).

Trivially, equation (4.8) has a variational structure. To write it down we introduce the functional
J : H1

Γ0
(Γ)→ R given by

J(v) =
1
2

∫
Ω

|∇(Dv)|2 +
1
2

∫
Γ1

|∇Γv|2Γ −
1
p

∫
Γ1

|v|p. (4.9)

The following result points out some trivial properties of J.

Lemma 8. If (1.3) holds we have J ∈ C1(H1
Γ0

(Γ)), its Fréchet derivative being given for all v, ψ ∈ H1
Γ0

(Γ)
by

〈J′(v), ψ〉H1
Γ0

(Γ) =

∫
Ω

∇(Dv)∇(Dψ) +

∫
Γ1

(∇Γv,∇Γψ)Γ −

∫
Γ1

|v|p−2vψ. (4.10)

Consequently, solutions of (4.7) are exactly critical points of J. Moreover J = I · D, J is even and
J(0) = 0.

Proof. Trivially, J is even, J(0) = 0 and J = I ·D. Hence, since I ∈ C1(H1), we also have J ∈ C1(H1
Γ0

(Γ))
and (4.10) holds true. The correspondence between solutions of (4.7) and critical points of J immediately
follows by (4.8) and (4.10).

The next result shows that J satisfies the remaining geometrical assumptions of Theorem 6.

Lemma 9. If (1.3) holds, the functional J satisfies assumption ii) in Theorem 4 and assumption v) in
Theorem 6.

Proof. Since J = I · D, by (3.8) there is c8 = c8(p,Ω,Γ0) > 0 such that

‖v‖p,Γ1 ≤ c8‖Dv‖H1 for all v ∈ H1
Γ0

(Γ).

Consequently, by (2.13) and (4.9), we get the estimate

J(v) ≥
(
1
2
−

cp
8

p
‖Dv‖p−2

H1

)
‖Dv‖2H1 for all v ∈ H1

Γ0
(Γ),

and then

J(v) ≥
1
4
‖Dv‖2H1 for all v ∈ H1

Γ0
(Γ) such that ‖Dv‖H1 ≤

(
p

4cp
8

) 1
p−2

. (4.11)

Since, by (4.4), ‖D(·)‖H1 is on H1
Γ0

(Γ) a norm equivalent to the one inherited from H1(Γ), assumption ii)
in Theorem 4, for suitable ρ, α > 0, trivially follows from (4.11).
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To prove that also assumption v) in Theorem 6 holds true, let Y be any finite dimensional subspace
of H1

Γ0
(Γ). Since on Y all norms are equivalent, there are c9 = c9(p,Y) > 0 and c10 = c10(p,Y) > 0 such

that
c9‖v‖p,Γ1 ≤ ‖v‖H1(Γ) ≤ c10‖v‖p,Γ1 for all v ∈ Y . (4.12)

Consequently, using again (4.4), there is c11 = c11(p,Y,Ω,Γ0) > 0 such that

‖Dv‖H1 ≤ c11‖v‖p,Γ1 for all v ∈ Y .

Using it in (4.9) we then get

J(v) =
1
2
‖Dv‖2H1 −

1
p
‖v‖p

p,Γ1
≤

1
2c2

11

‖v‖2p,Γ1
−

1
p
‖v‖p

p,Γ1
,

from which, since p > 2, one gets that J(v) ≤ 0 for ‖v‖p,Γ1 sufficiently large. By (4.12) then assumption
v) in Theorem 6 holds true.

To complete checking of the assumptions of Theorem 6 we give the following result:

Lemma 10. If (1.3) holds, the functional J satisfies the (PS) condition.

Proof. We shall prove the statement by using Lemma 5. With this aim we make some preliminary
remarks concerning the space H1 and the functional I. At first H1 admits the orthogonal (with respect to
(·, ·)H1 given in (2.11)) splitting

H1 = A1 ⊕ H1
0(Ω), (4.13)

the respective orthogonal projectors ΠA1 ∈ L(H1,A1) and ΠH1
0 (Ω) ∈ L(H1,H1

0(Ω)) being given by

ΠA1u = Du|Γ and ΠH1
0 (Ω)u = u − Du|Γ for all u ∈ H1.

Using this splitting we can rewrite (3.7), for any u ∈ A1, as

〈I′(u), φ + ψ〉H1 =(u, φ + ψ)H1 +

∫
Γ1

|u|p−2u(φ + ψ)

=(u, φ)H1 +

∫
Γ1

|u|p−2uφ

=〈I′
A1(u), φ〉A1 for all φ ∈ A1 and ψ ∈ H1

0(Ω),

(4.14)

where IA1 = I|A1 , that is IA1 is the restriction of I to A1. §

To prove the statement let now (vn)n be a (PS) sequence for J. Since J = I · D = IA1 · D, by (4.4) we
get that (Dvn)n is a (PS) sequence for the functional IA1 in A1. Hence (I(Dvn))n is bounded in H1 and,
using (4.14), I′(Dvn)→ 0 in [H1]′, so (Dvn)n is a (PS) sequence for I.

By Lemma 5 then, up to a subsequence, (D(vn))n converges in H1 which, using (4.4) again, concludes
the proof.

We can finally give the proof of our last main result.

Proof of Theorem 3. By Lemmas 8-10 the functional J satisfies the assumptions of Theorem 6, so
it possesses a sequence (vn)n of critical points such that J(vn) → ∞. By Lemma 7 the sequence (un)n

given by un = Dvn for all n ∈ N is thus a sequence of critical points of I with I(un) = J(vn) → ∞. By
Lemma 4 the proof is thus concluded.

§Once one recognizes that critical points of I belong to A1, formula (4.14) gives a different proof of Lemma 7.
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