Research article Special Issues

Approximate cloaking for the heat equation via transformation optics

  • Received: 26 November 2018 Accepted: 24 June 2019 Published: 29 August 2019
  • In this paper, we establish approximate cloaking for the heat equation via transformation optics. We show that the degree of visibility is of the order $\varepsilon$ in three dimensions and $|\ln \varepsilon|^{-1}$ in two dimensions, where $\varepsilon$ is the regularization parameter. To this end, we first transform the problem in time domain into a family of problems in frequency domain by taking the Fourier transform with respect to time, and then derive appropriate estimates in the frequency domain.

    Citation: Hoai-Minh Nguyen, Tu Nguyen. Approximate cloaking for the heat equation via transformation optics[J]. Mathematics in Engineering, 2019, 1(4): 775-788. doi: 10.3934/mine.2019.4.775

    Related Papers:

  • In this paper, we establish approximate cloaking for the heat equation via transformation optics. We show that the degree of visibility is of the order $\varepsilon$ in three dimensions and $|\ln \varepsilon|^{-1}$ in two dimensions, where $\varepsilon$ is the regularization parameter. To this end, we first transform the problem in time domain into a family of problems in frequency domain by taking the Fourier transform with respect to time, and then derive appropriate estimates in the frequency domain.


    加载中


    [1] Allaire G (2007) Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation. Oxford: Oxford University Press.
    [2] Alu A, Engheta N (2005) Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E 72: 016623. doi: 10.1103/PhysRevE.72.016623
    [3] Ammari H, Iakovleva E, Kang H, et al. (2005) Direct algorithms for thermal imaging of small inclusions. Multiscale Model Simul 4: 1116–1136. doi: 10.1137/040620266
    [4] Ammari H, Kang H, Lee H, et al. (2013) Enhancement of near cloaking for the full maxwell equations. SIAM J Appl Math 73: 2055–2076. doi: 10.1137/120903610
    [5] Amstutz S, Takahashi T, Vexler B (2008) Topological sensitivity analysis for time-dependent problems. ESAIM Control Optim Calc Var 14: 427–455. doi: 10.1051/cocv:2007059
    [6] Craster RV, Guenneau S, Hutridurga H, et al. (2018) Cloaking via mapping for the heat equation. Multiscale Model Simul 16: 1146–1174. doi: 10.1137/17M1161452
    [7] Girault V, Raviart PA (1986) Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Berlin: Springer-Verlag.
    [8] Guenneau S, Amra C, Veynante D (2012) Transformation thermodynamics: Cloaking and concentrating heat flux. Opt Express 20: 8207–8218. doi: 10.1364/OE.20.008207
    [9] Greenleaf A, Kurylev Y, Lassas M, et al. (2007) Full-wave invisibility of active devices at all frequencies. Comm Math Phys 275: 749–789. doi: 10.1007/s00220-007-0311-6
    [10] Greenleaf A, Lassas M, Uhlmann G (2003) On nonuniqueness for Calderon's inverse problem. Math Res Lett 10: 685–693. doi: 10.4310/MRL.2003.v10.n5.a11
    [11] Kohn RV, Shen H, Vogelius MS, et al. (2008) Cloaking via change of variables in electric impedance tomography. Inverse Problem 24: 015–016.
    [12] Kohn RV, Onofrei D, Vogelius MS, et al. (2010) Cloaking via change of variables for the Helmholtz equation. Comm Pure Appl Math 63: 973–1016.
    [13] Lai Y, Chen H, Zhang Z, et al. (2009) Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys Rev Lett 102: 093901. doi: 10.1103/PhysRevLett.102.093901
    [14] Lassas M, Zhou T (2016) The blow-up of electromagnetic fields in 3-dimensional invisibility cloaking for Maxwell's equations. SIAM J Appl Math 76: 457–478. doi: 10.1137/15M103964X
    [15] Lebedev NN (1965) Special Functions and Their Applications. Englewood Cliffs: Prentice-Hall.
    [16] Leonhardt U (2006) Optical conformal mapping. Science 312: 1777–1780. doi: 10.1126/science.1126493
    [17] Milton GW, Nicorovici NA (2006) On the cloaking effects associated with anomalous localized resonance. Proc R Soc Lond Ser A 462: 3027–3059. doi: 10.1098/rspa.2006.1715
    [18] Nédélec JC (2000) Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems, Springer.
    [19] Nguyen H-M (2010) Cloaking via change of variables for the Helmholtz equation in the whole space. Comm Pure Appl Math 63: 1505–1524. doi: 10.1002/cpa.20333
    [20] Nguyen H-M (2012) Approximate cloaking for the Helmholtz equation via transformation optics and consequences for perfect cloaking. Comm Pure Appl Math 65: 155–186. doi: 10.1002/cpa.20392
    [21] Nguyen H-M (2015) Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime. J Eur Math Soc 17: 1327–1365. doi: 10.4171/JEMS/532
    [22] Nguyen H-M, (2016) Cloaking using complementary media in the quasistatic regime. Ann Inst H Poincaré Anal Non Linéaire 33: 1509–1518. doi: 10.1016/j.anihpc.2015.06.004
    [23] Nguyen H-M (2017) Cloaking an arbitrary object via anomalous localized resonance: The cloak is independent of the object. SIAM J Math Anal 49: 3208–3232. doi: 10.1137/16M1086017
    [24] Nguyen H-M, Tran L (2019) Approximate cloaking for electromagnetic waves via transformation optics: Cloaking vs infinite energy. Math Models Methods Appl Sci 29: 1511–1552. doi: 10.1142/S0218202519500271
    [25] Nguyen H-M, Vinoles V (2018) Electromagnetic wave propagation in media consisting of dispersive metamaterials. C R Math 356: 757–775. doi: 10.1016/j.crma.2018.05.012
    [26] Nguyen H-M, Vogelius MS (2009) A representation formula for the voltage perturbations caused by diametrically small conductivity inhomogeneities. Proof of uniform validity. Ann Inst H Poincaré Anal Non Linéaire 26: 2283–2315. doi: 10.1016/j.anihpc.2009.03.005
    [27] Nguyen H-M, Vogelius MS (2012) Full range scattering estimates and their application to cloaking. Arch Rational Mech Anal 203: 769–807. doi: 10.1007/s00205-011-0459-2
    [28] Nguyen H-M, Vogelius MS (2012) Approximate cloaking for the wave equation via change of variables. SIAM J Math Anal 44: 1894–1924. doi: 10.1137/110833154
    [29] Nguyen H-M, Vogelius MS (2016) Approximate cloaking for the full wave equation via change of variables: The Drude-Lorentz model. J Math Pures Appl 106: 797–836. doi: 10.1016/j.matpur.2016.03.012
    [30] Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 321: 1780–1782.
    [31] Vasquez FG, Milton GW, Onofrei D (2009) Active exterior cloaking for the 2D Laplace and Helmholtz equations. Phys Rev Lett 103: 073901. doi: 10.1103/PhysRevLett.103.073901
    [32] Weder R (2008) A rigorous analysis of high-order electromagnetic invisibility cloaks. J Phys A: Math Theor 41: 065207. doi: 10.1088/1751-8113/41/6/065207
    [33] Weder R (2008) The boundary conditions for point transformed electromagnetic invisibility cloaks. J Phys A: Math Theor 41: 415401. doi: 10.1088/1751-8113/41/41/415401
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3162) PDF downloads(467) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog