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Abstract: In this paper, we establish approximate cloaking for the heat equation via transformation
optics. We show that the degree of visibility is of the order ε in three dimensions and | ln ε|−1 in two
dimensions, where ε is the regularization parameter. To this end, we first transform the problem in time
domain into a family of problems in frequency domain by taking the Fourier transform with respect to
time, and then derive appropriate estimates in the frequency domain.

Keywords: heat equation; approximate cloaking; frequency analysis

1. Introduction and statement of the results

Cloaking using transformation optics (changes of variables) was introduced by Pendry, Schurig
and Smith [30] for the Maxwell system and by Leonhardt [16] in the geometric optics setting. These
authors used a singular change of variables, which blows up a point into a cloaked region. The same
transformation had been used to establish (singular) non-uniqueness in Calderon’s problem in [10]. To
avoid using the singular structure, various regularized schemes have been proposed. One of them was
suggested by Kohn, Shen, Vogelius and Weinstein [11], where instead of a point, a small ball of radius
ε is blown up to the cloaked region. Approximate cloaking for acoustic waves has been studied in the
quasistatic regime [11, 26], the time harmonic regime [12, 19, 27, 20], and the time regime [28, 29],
and approximate cloaking for electromagnetic waves has been studied in the time harmonic regime
[4, 14, 24], see also the references therein. Finite energy solutions for the singular scheme have been
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studied extensively [9, 32, 33]. There are also other ways to achieve cloaking effects, such as the use
of plasmonic coating [2], active exterior sources [31], complementary media [13, 22], or via localized
resonance [23] (see also [17, 21]).

The goal of this paper is to investigate approximate cloaking for the heat equation using
transformation optics. Thermal cloaking via transformation optics was initiated by Guenneau, Amra
and Venante [8]. Craster, Guenneau, Hutridurga and Pavliotis [6] investigate the approximate
cloaking for the heat equation using the approximate scheme in the spirit of [11]. They show that for
the time large enough, the largeness depends on ε, the degree of visibility is of the order εd (d = 2, 3)
for sources that are independent of time. Their analysis is first based on the fact that as time goes to
infinity, the solutions converge to the stationary states and then uses known results on approximate
cloaking in the quasistatic regime [11, 26].

In this paper, we show that approximate cloaking is achieved at any positive time and established
the degree of invisibility of order ε in three dimensions and | ln ε|−1 in two dimensions. Our results hold
for a general source that depends on both time and space variables, and our estimates depend only on
the range of the materials inside the cloaked region. The degree of visibility obtained herein is optimal
due to the fact that a finite time interval is considered (compare with [6]). The analysis in this paper is
of frequency type via Fourier transform with respect to time. This approach is robust and can be used in
different context. A technical issue is on the blow up of the fundamental solution of the Helmholtz type
equations in two dimensions in the low frequency regime. We emphasize that even though our setting
is in a bounded domain, we employs Fourier transform in time instead of eigenmodes decomposition.
This has the advantage that one can put the non-perturbed system and the cloaking system in the same
context.

We next describe the problem in more detail and state the main result. Our starting point is the
regularization scheme [11] in which a transformation blows up a small ball Bε (0 < ε < 1/2) instead of
a point into the cloaked region B1 in Rd (d = 2, 3). Here and in what follows, for r > 0, Br denotes the
ball centered at the origin and of radius r in Rd. Our assumption on the geometry of the cloaked region
is mainly to simplify the notations. Concerning the transformation, we consider the map Fε : Rd → Rd

defined by

Fε(x) =


x in Rd \ B2,(

2 − 2ε
2 − ε

+
|x|

2 − ε

)
x
|x|

in B2 \ Bε,

x
ε

in Bε.

(1.1)

In what follows, we use the standard notations

F∗A(y) =
∇F(x)A(x)∇FT (x)
| det∇F(x)|

, F∗ρ(y) =
ρ(x)

| det∇F(x)|
, x = F−1(y), (1.2)

for the “pushforward” of a symmetric, matrix-valued function A, and a scalar function ρ, by the
diffeomorphism F, and I denotes the identity matrix. The cloaking device in the region B2 \ B1

constructed from the transformation technique is given by(
Fε∗I, Fε∗1

)
in B2 \ B1, (1.3)
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a pair of a matrix-valued function and a function that characterize the material properties in B2 \ B1.
Physically, this is the pair of the thermal diffusivity and the mass density of the material.

Let Ω with B2 b Ω ⊂ Rd (d = 2, 3)∗ be a bounded region for which the heat flow is considered.
Suppose that the medium outside B2 (the cloaking device and the cloaked region) is homogeneous so
that it is characterized by the pair (I, 1), and the cloaked region B1 is characterized by a pair (aO, ρO)
where aO is a matrix-valued function and ρO is a real function, both defined in B1. The medium in Ω is
then given by

(Ac, ρc) =


(I, 1) in Ω \ B2,(

Fε∗I, Fε∗1
)

in B2 \ B1,

(aO, ρO) in B1.

(1.4)

In what follows, we make the usual assumption that aO is symmetric and uniformly elliptic and ρO is a
positive function bounded above and below by positive constants, i.e., for a.e. x ∈ B1,

Λ−1|ξ|2 ≤ 〈aO(x)ξ, ξ〉 ≤ Λ|ξ|2 for all ξ ∈ Rd, (1.5)

and
Λ−1 ≤ ρO(x) ≤ Λ, (1.6)

for some Λ ≥ 1. Given a function f ∈ L1((0,+∞), L2(Ω)
)

and an initial condition u0 ∈ L2(Ω), in the
medium characterzied by (Ac, ρc), one obtains a unique weak solution uc ∈ L2((0,∞); H1(Ω)

)
∩C

(
[0,+∞); L2(Ω)

)
of the system

∂t(ρcuc) − div(Ac∇uc) = f in (0,+∞) ×Ω,

uc = 0 on (0,+∞) × ∂Ω,

uc(t = 0, ·) = u0 in Ω,

(1.7)

and in the homogeneneous medium characterized by (I, 1), one gets a unique weak solution
u ∈ L2((0,∞); H1(Ω)

)
∩C

(
[0,+∞); L2(Ω)

)
of the system

∂tu − ∆u = f in (0,+∞) ×Ω,

uc = 0 on (0,+∞) × ∂Ω,

uc(t = 0, ·) = u0 in Ω.

(1.8)

The approximate cloaking meaning of the scheme (1.4) is given in the following result:

Theorem 1.1. Let u0 ∈ L2(Ω) and f ∈ L1((0,+∞); L2(Ω)
)

be such that supp u0, supp f (t, ·) ⊂ Ω \ B2

for t > 0. Assume that uc and u are the solution of (1.7) and (1.8) respectively. Then, for 0 < ε < 1/2,

‖uc(t, ·) − u(t, ·)‖H1(Ω\B2) ≤ Ce(ε, d)
(
‖ f ‖

L1
(

(0,+∞);L2(Ω)
) + ‖u0‖L2(Ω)

)
,

for some positive constant C depending on Λ but independent of f , u0, and ε, where

e(ε, d) =

 ε if d = 3,

| ln ε|−1 if d = 2.
∗The notation D b Ω means that the closure of D is a subset of Ω.
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As a consequence of Theorem 1.1, limε→0 uc(t, ·) = u(t, ·) in (0,+∞) × (Ω \ B2) for all f with
compact support outside (0,+∞) × B2 and for all u0 with compact support outside B2. One therefore
cannot detect the difference between (Ac, ρc) and (I, 1) as ε → 0 by observation of uc outside B2:
Cloaking is achieved for observers outside B2 in the limit as ε→ 0.

We now briefly describe the idea of the proof. The starting point of the analysis is the invariance of
the heat equations under a change of variables which we now state.

Lemma 1.1. Let d ≥ 2, T > 0, Ω be a bounded open subset of Rd of class C1, and let A be an elliptic
symmetric matrix-valued function, and ρ be a bounded, measurable function defined on Ω bounded
above and below by positive constants. Let F : Ω 7→ Ω be bijective such that F and F−1 are Lipschitz,
det∇F > c for a.e. x ∈ Ω for some c > 0, and F(x) = x near ∂Ω. Let f ∈ L1((0,T ); L2(Ω)

)
and

u0 ∈ L2(Ω). Then u ∈ L2((0,T ); H1
0(Ω)

)
∩C

(
[0,T ); L2(Ω)

)
is the weak solution of

∂t(ρu) − div(A∇u) = f in ΩT ,

u = 0 on (0,T ) × ∂Ω,

u(0, ·) = u0 in Ω,

(1.9)

if and only if v(t, ·) := u(t, ·) ◦ F−1 ∈ L2((0,T ); H1
0(Ω)

)
∩C

(
[0,T ); L2(Ω)

)
is the weak solution of

∂t(F∗ρ v) − div(F∗A∇v) = F∗ f in ΩT ,

u = 0 on (0,T ) × ∂Ω,

v(0, ·) = u0 ◦ F−1 in Ω.

(1.10)

Recall that F∗ is defined in (1.2). In this paper, we use the following standard definition of weak
solutions:

Definition 1.1. Let d ≥ 2 and T > 0. We say a function

u ∈ L2((0,T ); H1
0(Ω)

)
∩C

(
[0,T ); L2(Ω)

)
is a weak solution to (1.9) if u(0, ·) = u0 in Ω and u satisfies

d
dt

∫
Ω

ρu(t, ·)ϕ +

∫
Ω

A∇u(t, ·)∇ϕ =

∫
Ω

f (t, ·)ϕ in (0,T ), (1.11)

in the distributional sense for all ϕ ∈ H1
0(Ω).

The existence and uniqueness of weak solutions are standard, see, e.g., [1] (in fact, in [1], f is
assumed in L2((0,T ); L2(Ω)

)
, however, the conclusion holds also for f ∈ L1((0,T ); L2(Ω)

)
with a

similar proof, see, e.g., [25]). The proof of Lemma 1.1 is similar to that of the Helmholtz equation,
see, e.g., [12] (see also [6] for a parabolic version).

We now return to the idea of the proof of Theorem 1.1. Set

uε(t, ·) = uc(t, ·) ◦ F−1
ε for t ∈ (0,+∞).
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Then uε is the unique solution of the system
∂t(ρεuε) − div(Aε∇uε) = f in (0,+∞) ×Ω,

uε = 0 on (0,+∞) × ∂Ω,

uε(t = 0, ·) = u0 in Ω,

(1.12)

where

(Aε, ρε) =

 (I, 1) in Ω \ Bε,(
ε2−daO(·/ε), ε−dρO(·/ε)

)
in Bε.

(1.13)

Moreover,
uc − u = uε − u in (0,+∞) × (Ω \ B2).

In comparing the coefficients of the systems verified by u and uε, the analysis can be derived from
the study of the effect of a small inclusion Bε. The case in which finite isotropic materials contain
inside the small inclusion was investigated in [3] (see also [5] for a related context). The analysis
in [3] partly involved the polarization tensor information and took the advantage of the fact that the
coefficients inside the small inclusion are finite. In the cloaking context, Craster et al. [6] derived an
estimate of the order εd for a time larger than a threshold one. Their analysis is based on long time
behavior of solutions to parabolic equations and estimates for the degree of visibility of the conducting
problem, see [11, 26], hence the threshold time goes to infinity as ε→ 0.

In this paper, to overcome the blow up of the coefficients inside the small inclusion and to achieve
the cloaking effect at any positive time, we follow the approach of Nguyen and Vogelius in [28]. The
idea is to derive appropriate estimates for the effect of small inclusions in the time domain from the ones
in the frequency domain using the Fourier transform with respect to time. Due to the dissipative nature
of the heat equation, the problem in the frequency for the heat equation is more stable than the one
corresponding to the acoustic waves, see, e.g., [27, 28], and the analysis is somehow easier to handle in
the high frequency regime. After using a standard blow-up argument, a technical point in the analysis
is to obtain an estimate for the solutions of the equation ∆v+iωε2v = 0 in Rd\B1 (ω > 0) at the distance
of the order 1/ε in which the dependence on ε and ω are explicit (see Lemma 2.2). Due to the blow
up of the fundamental solution in two dimensions, the analysis requires new ideas. We emphasize that
even though our setting is in a bounded domain with zero Dirichlet boundary condition, we employs
Fourier transform in time instead of eigenmodes decomposition as in [6] to put both systems of uε and
u in the same context.

2. Proof of the main result

To implement the analysis in the frequency domain, let us introduce the Fourier transform with
respect to time t:

ϕ̂(k, x) =

∫
R

ϕ(t, x)eikt dt for k ∈ R, (2.1)

for ϕ ∈ L2((−∞,+∞), L2(Rd)). Extending u, uc, uρ and f by 0 for t < 0, and considering the Fourier
with respect to time at the frequency ω > 0, we obtain

∆û + iωû = −( f̂ + u0) in Ω,
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and
div(Aε∇ûε) + iωρεûε = −( f̂ + u0) in Ω,

where

(Aε, ρε) =

 (I, 1) in Ω \ Bε,(
ε2−daO(·/ε), ε−dρO(·/ε)

)
in Bε.

The main ingredient in the proof of Theorem 1.1 is the following:

Proposition 2.1. Let ω > 0, 0 < ε < 1/2, and let g ∈ L2(Ω) with supp g ⊂ Ω \ B2. Assume that
v, vε ∈ H1(Ω) are respectively the unique solution of the systems ∆v + iωv = g in Ω,

v = 0 on ∂Ω,

and  div(Aε∇vε) + iωρεvε = g in Ω,

vε = 0 on ∂Ω.

We have
‖vε − v‖H1(Ω\B2) ≤ Ce(ε, ω, d)(1 + ω−1/2)‖g‖L2(Ω), (2.2)

for some positive constant C independent of ε, ω and g. Here

e(ε, ω, 3) = εe−ω
1/2/4, (2.3)

and

e(ε, ω, 2) =

 e−ω
1/2/4/| ln ε| if ω ≥ 1/2,

lnω/ ln(ωε) if 0 < ω < 1/2.
(2.4)

The rest of this section is divided into three subsections. In the first subsection, we present several
lemmas used in the proof of Proposition 2.1. The proofs of Proposition 2.1 and Theorem 1.1 are then
given in the second and the third subsections, respectively.

2.1. Preliminaries

In this subsection, we state and prove several useful lemmas used in the proof of Proposition 2.1.
Throughout, D ⊂ B1 denotes a smooth, bounded, open subset of Rd such that Rd \ D is connected, and
ν denotes the unit normal vector field on ∂D, directed into Rd \ D.

The first result is the following simple one:

Lemma 2.1. Let d = 2, 3, k > 0, and let v ∈ H1(Rd \ D) be such that ∆v + ikv = 0 in Rd \ D. We have,
for R > 2,

‖v‖H1(BR\D) ≤ CR(1 + k)‖v‖H1/2(∂D), (2.5)

for some positive constants CR independent of k and v.
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Proof. Multiplying the equation by v̄ (the conjugate of v) and integrating by parts, we have∫
Rd\D
|∇v|2 − ik

∫
Rd\D
|v|2 =

∫
∂D
∂νvv̄.

This implies ∫
Rd\D
|∇v|2 + k

∫
Rd\D
|v|2 ≤ C‖∂νv‖H−1/2(∂D)‖v‖H1/2(∂D). (2.6)

Here and in what follows, C denotes a positive constant independent of v and k. Since ∆v = −ikv in
B2 \ D, by the trace theory, see, e.g., [7, Theorem 2.5], we have

‖∂νv‖H−1/2(∂D) ≤ C
(
‖∇v‖L2(B2\D) + ‖∆v‖L2(B2\D)

)
≤ C

(
‖∇v‖L2(B2\D) + k‖v‖L2(B2\D)

)
. (2.7)

Combining (2.6) and (2.7) yields∫
Rd\D
|∇v|2 + k

∫
Rd\D
|v|2 ≤ C(1 + k)‖v‖2H1/2(∂D). (2.8)

The conclusion follows when k ≥ 1.
Next, consider the case 0 < k < 1. In the case where d = 3, the conclusion is a direct consequence

of (2.8) and the Hardy inequality (see, e.g., [18, Lemma 2.5.7]):∫
R3\D

|v|2

|x|2
≤ C

∫
R3\D
|∇v|2. (2.9)

We next consider the case where d = 2. One just needs to show∫
BR\D
|v|2 ≤ C‖v‖2H1/2(∂D). (2.10)

By the Hardy inequality (see, e.g., [18, Lemma 2.5.7]),∫
R2\D

|v|2

|x|2 ln(2 + |x|)2 ≤ C
(∫
R2\D
|∇v|2 +

∫
B2\D
|v|2

)
, (2.11)

it suffices to prove (2.10) for R = 2 by contradiction. Suppose that there exists a sequence (kn) → 0
and a sequence (vn) ∈ H1(R2 \ D) such that

∆vn + iknvn = 0 in R2 \ D, ‖vn‖L2(B2\D) = 1, and lim
n→+∞

‖vn‖H1/2(∂D) = 0.

Denote

W1(R2 \ D) =

u ∈ L1
loc(R

2 \ D);
u(x)

ln(2 + |x|)
√

1 + |x|2
∈ L2(R2 \ D) and ∇u ∈ L2(R2 \ D)

 .
By (2.8) and (2.11), one might assume that vn converges to v weakly in H1

loc(R
2 \ D) and strongly in

L2(B2 \ D). Moreover, v ∈ W1(R2 \ D) and v satisfies

∆v = 0 in R2 \ D, v = 0 on ∂D, (2.12)

and
‖v‖L2(B2\D) = 1. (2.13)

From (2.12), we have v = 0 in R2 \ D (see, e.g., [18]) which contradicts (2.13). The proof is complete.
�
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We also have

Lemma 2.2. Let d = 2, 3, ω > 0, 0 < ε < 1/2, and let v ∈ H1(Rd \ D) be a solution of ∆v + iωε2v = 0
in Rd \ D. We have, for 3/2 < |x| < R,

|v(x/ε)| ≤ Ce(ε, ω, d)‖v‖H1/2(∂D), (2.14)

for some positive constant C = CR independent of ε, ω and v.

Recall that e(ε, ω, d) is given in (2.3) and (2.4).

Proof. By the trace theory and the regularity theory of elliptic equations, we have

‖v‖L2(∂B2) + ‖∇v‖L2(∂B2) ≤ C‖v‖H2(B5/2\B3/2) ≤ C(1 + ω1/2ε)‖v‖H1(B3\B1). (2.15)

It follows from Lemma 2.1 that

‖v‖L2(∂B2) + ‖∇v‖L2(∂B2) ≤ C(1 + ω3/2)‖v‖H1/2(∂D). (2.16)

Here and in what follows in this proof, C denotes a positive constant depending only on R and D.
The representation formula gives

v(x) =

∫
∂B2

(
G`(x, y)∂rv(y) − ∂ryG`(x, y)v(y)

)
dy for x ∈ Rd \ B̄2, (2.17)

where ` = eiπ/4εω1/2, and, for x , y,

G`(x, y) =
ei`|x−y|

4π|x − y|
if d = 3 and G`(x, y) =

i
4

H(1)
0 (`|x − y|) if d = 2.

Here H(1)
0 is the Hankel function of the first kind of order 0. Recall, see, e.g., [15, Chapter 5], that

H(1)
0 (z) =

2i
π

ln
|z|
2

+ 1 +
2iγ
π

+ O(|z|2 log |z|) as z→ 0, z < (−∞, 0], (2.18)

and

H(1)
0 (z) =

√
2
πz

ei(z+ π
4 )(1 + O(|z|−1)) z→ ∞, z < (−∞, 0]. (2.19)

We now consider the case d = 3. We have, for 3/2 < |x| < R and y ∈ ∂B2,

|ei`|x/ε−y|| ≤ e−
√

2
2 ω1/2 |x−εy| ≤ e−ω

1/2 |x|/3.

It follows that, for 3/2 < |x| < R and y ∈ ∂B2,

|G`(x/ε, y)| ≤ Cεe−3ω1/2/10. (2.20)

Similarly, one has, for 3/2 < |x| < R and y ∈ ∂B2,

|∂ryG`(x/ε, y)| ≤ C
(
ε2ω1/2

|x|
+
ε2

|x|2

)
e−ω

1/2 |x|/3 ≤ Cεe−3ω1/2/10. (2.21)
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Combining (2.17), (2.20) and (2.21) yields

|v(x/ε)| ≤ Cεe−3ω1/2/10(‖v‖L2(∂B2) + ‖∇v‖L2(∂B2)) for 3/2 < |x| < R.

We derive from (2.16) that

|v(x/ε)| ≤ Cεe−ω
1/2/4‖v‖H1/2(∂D) for 3/2 < |x| < R;

which is the conclusion in the case d = 3.
We next deal with the case where d = 2 and ω > ε−2/4, which is equivalent to |`| > 1/2. From

(2.19), we derive that, for 3/2 < |x| < R and y ∈ ∂B2,

|G`(x/ε, y)| ≤ Cω−1/4e−3ω1/2/10 and |∂ryG`(x/ε, y)| ≤ Cεω1/4e−3ω1/2/10. (2.22)

Using (2.16) and combining (2.17) and (2.22), we obtain, since ω > ε−2/4,

|v(x/ε)| ≤ Cεe−ω
1/2/4‖v‖H1/2(∂D) for 3/2 < |x| < R,

which gives the conclusion in this case.
We finally deal with the case where d = 2 and 0 < ω < ε−2/4, which is equivalent to |`| < 1/2.

From (2.17), we obtain, for x ∈ ∂B4,

v(x) =

∫
∂B2

([
G`(x, y) −G`(x, 0)

]
∂rv(y) − ∂ryG`(x, y)v(y)

)
dy +

∫
∂B2

G`(x, 0)∂rv(y) dy. (2.23)

Since d = 2, we have

‖v‖L∞(B5\B3) ≤ C‖v‖H2(B5\B3) ≤ C‖v‖H2(B5\B2) ≤ C(1 + ω1/2)‖v‖H1(B6\B1).

It follows from Lemma 2.1 and the trace theory that

‖v‖L∞(B5\B3) + ‖v‖L2(∂B2) + ‖∇v‖L2(∂B2) ≤ C(1 + ω3/2)‖v‖H1/2(∂D). (2.24)

Since, by (2.18),
|∇yG`(x, y)| ≤ C for x ∈ ∂B4 and y ∈ ∂B2

and
|G`(x, 0)| ≥ C| ln |`|| for x ∈ ∂B4,

we derive from (2.23) and (2.24) that∣∣∣∣ ∫
∂B2

∂rv(y) dy
∣∣∣∣ ≤ C(1 + ω3/2)

| ln |`||
‖v‖H1/2(∂D). (2.25)

Again using (2.17), we get, for 3/2 < |x| < R,

v(x/ε) =

∫
∂B2

([
G`(x/ε, y)−G`(x/ε, 0)

]
∂rv(y)−∂ryG`(x/ε, y)v(y)

)
dy+

∫
∂B2

G`(x/ε, 0)∂rv(y) dy. (2.26)
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Since, by (2.18), for 0 < ω < 1/2,

|G`(x/ε, 0)| ≤ C| lnω| and |∇yG`(x/ε, y)| ≤ Cε for 3/2 < |x| < R, y ∈ ∂B2,

and, by (2.19), for 1/2 < ω < ε−2/4,

|G`(x/ε, 0)| ≤ Cω−1/4e−3ω1/2/10 and |∇yG`(x/ε, y)| ≤ Cεω1/4e−3ω1/2/10 for 3/2 < |x| < R, y ∈ ∂B2,

we derive from (2.24), (2.25) and (2.26) that, for 3/2 < |x| < R,

|v(x/ε)| ≤


C| lnω|
| ln |`|| ‖v‖H1/2(∂D) if 0 < ω < 1/2,

Cω3/2e−3ω1/2/10

| ln |`|| ‖v‖H1/2(∂D) if 1/2 < ω < ε−2/4,

which yields the conclusion in the case 0 < ω < ε−2/4. The proof is complete. �

2.2. Proof of Proposition 2.1

In this proof, C denotes a positive constant depending only on Ω and Λ. Multiplying the equation
of vε by v̄ε and integrating in Ω, we derive that∫

Ω

〈Aε∇vε,∇vε〉 + ω

∫
Ω

ρε|vε|2 ≤ C‖g‖2L2(Ω). (2.27)

Here we used Poincaré’s inequality

‖vε‖L2(Ω) ≤ C‖∇vε‖L2(Ω).

It follows from (2.27) that

‖vε(ε · )‖2H1/2(∂B1) ≤ C‖vε(ε · )‖2H1(B1)

≤ C
∫

Bε

1
εd−2 |∇vε|2 +

1
εd |vε|

2 ≤ C(1 + ω−1)‖g‖2L2(Ω). (2.28)

Similarly, using the equation for v and Poincaré’s inequality, we get

‖v‖H1(Ω) ≤ C‖g‖L2(Ω). (2.29)

Since ∆v + iωv = 0 in B2, using Caccioppolli’s inequality, we have

‖v‖H3(B1) ≤ C‖v‖H2(B3/2) ≤ C‖v‖H1(B2) ≤ C‖g‖L2(Ω). (2.30)

By Sobolev embedding, as d ≤ 3,
‖v‖W1,∞(B1) ≤ C‖v‖H3(B1). (2.31)

It follows that
‖v(ε · )‖H1/2(∂B1) ≤ C‖v(ε · )‖H1(B1) ≤ C‖v‖W1,∞(B1) ≤ C‖g‖L2(Ω). (2.32)

Set
wε = vε − v in Ω \ Bε.
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Then wε ∈ H1(Ω \ Bε) and satisfies
∆wε + iωwε = 0 in Ω \ Bε,

wε = vε − v on ∂Bε,

wε = 0 on ∂Ω.

(2.33)

Let w̃ε ∈ H1(Rd \ Bε) be the unique solution of the system ∆w̃ε + iωw̃ε = 0 in Rd \ Bε,

w̃ε = wε on ∂Bε,
(2.34)

and set
W̃ε = w̃ε(ε · ) in Rd \ B1.

Then W̃ε ∈ H1(Rd \ B1) is the unique solution of the system ∆W̃ε + iωε2W̃ε = 0 in Rd \ B1,

W̃ε = wε(ε · ) on ∂B1.
(2.35)

Fix r0 > 2 such that Ω ⊂ Br0 . By Lemma 2.2, we have, for 1 ≤ |x| < r0, that

|W̃ε(x/ε)| ≤ Ce(ε, ω, d)‖wε(ε · )‖H1/2(∂B1),

which yields, for x ∈ Br0 \ B1, that

|w̃ε(x)| ≤ Ce(ε, ω, d)‖wε(ε · )‖H1/2(∂B1).

Since ∆w̃ε + iωw̃ε = 0 in Br0 \ B1, it follows from Caccioppoli’s inequality that

‖w̃ε‖H1(B2\B3/2) ≤ Ce(ε, ω, d)‖wε(ε · )‖H1/2(∂B1). (2.36)

Fix ϕ ∈ C2(Rd) such that ϕ = 1 in B3/2 and ϕ = 0 in Rd \ B2, and set

χε = wε − ϕw̃ε in Ω \ Bε.

Then χε ∈ H1
0(Ω \ Bε) and satisfies

∆χε + iωχε = −∆ϕw̃ε − 2∇ϕ · ∇w̃ε in Ω \ Bε.

Multiplying the equation of χε by χ̄ε and integrating by parts, we obtain, by Poincaré’s inequality,

‖χε‖H1(Ω\Bε) ≤ C‖w̃ε‖H1(B2\B3/2). (2.37)

Combining (2.36) and (2.37) yields

‖wε‖H1(Ω\B2) ≤ Ce(ε, ω, d)‖wε(ε · )‖H1/2(∂B1). (2.38)

The conclusion now follows from (2.28) and (2.32). �
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2.3. Proof of Theorem 1.1

Let vε = uε − u. Using the fact that vε is real, by the inversion theorem and Minkowski’s inequality,
we have, for t > 0,

‖vε(t, ·)‖L2(Ω\B2) ≤ C
∫ ∞

0
‖v̂ε(ω, ·)‖L2(Ω\B2) dω. (2.39)

Using Proposition 2.1, we get∫ ∞

0
‖v̂ε(ω, ·)‖L2(Ω\B2) dω ≤ C

∫ ∞

0
(1 + ω−1/2)e(ε, ω, d)‖ f̂ (ω) + u0‖L2(Ω\B2) dω

≤ Cesssupω>0‖ f̂ (ω) + u0‖L2(Ω\B2)

∫ ∞

0
(1 + ω−1/2)e(ε, ω, d) dω

≤ Ce(ε, d)
(
‖ f ‖

L1
(

(0,+∞);L2(Ω)
) + ‖u0‖L2(Ω)

)
.

It follows from (2.39) that, for t > 0,

‖vε(t, ·)‖L2(Ω\B2) ≤ Ce(ε, d)
(
‖ f ‖

L1
(

(0,+∞);L2(Ω)
) + ‖u0‖L2(Ω)

)
.

Similarly, we have, for t > 0,

‖∇vε(t, ·)‖L2(Ω\B2) ≤ Ce(ε, d)
(
‖ f ‖

L1
(

(0,+∞);L2(Ω)
) + ‖u0‖L2(Ω)

)
.

The conclusion follows. �
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