Research article Special Issues

Conditionally stable unique continuation and applications to thermoacoustic tomography

  • Received: 02 March 2019 Accepted: 17 July 2019 Published: 18 September 2019
  • We prove a conditional Hölder stability estimate for the Cauchy problem on the lateral boundary for the wave equation under a strictly convex foliation condition. We apply this estimate for the problem in multiwave tomography with partial data.

    Citation: Plamen Stefanov. Conditionally stable unique continuation and applications to thermoacoustic tomography[J]. Mathematics in Engineering, 2019, 1(4): 789-799. doi: 10.3934/mine.2019.4.789

    Related Papers:

  • We prove a conditional Hölder stability estimate for the Cauchy problem on the lateral boundary for the wave equation under a strictly convex foliation condition. We apply this estimate for the problem in multiwave tomography with partial data.


    加载中


    [1] Bardos C, Lebeau G, Rauch J (1992) Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J Control Optim 30: 1024-1065. doi: 10.1137/0330055
    [2] Bosi R, Kurylev Y, Lassas M (2016) Stability of the unique continuation for the wave operator via Tataru inequality and applications. J Differ Equations 260: 6451-6492. doi: 10.1016/j.jde.2015.12.043
    [3] Bosi R, Kurylev Y, Lassas M (2018) Stability of the unique continuation for the wave operator via Tataru inequality: The local case. J Anal Math 134: 157-199. doi: 10.1007/s11854-018-0006-2
    [4] Chervova O, Oksanen L (2016) Time reversal method with stabilizing boundary conditions for photoacoustic tomography. Inverse Probl 32: 125004. doi: 10.1088/0266-5611/32/12/125004
    [5] Cox BT, Arridge SR, Beard PC (2007) Photoacoustic tomography with a limited-aperture planar sensor and a reverberant cavity. Inverse Probl 23: S95. doi: 10.1088/0266-5611/23/6/S08
    [6] De Hoop MV, Kepley P, Oksanen L (2018) An exact redatuming procedure for the inverse boundary value problem for the wave equation. SIAM J Appl Math 78: 171-192. doi: 10.1137/16M1106729
    [7] Eller M, Isakov V, Nakamura G, et al. (2002) Uniqueness and stability in the Cauchy problem for Maxwell and elasticity systems. In: Nonlinear Partial Differential Equations and Their Applications: College de France Seminar 14: 329-349. Elsevier.
    [8] Finch D, Patch SK, Rakesh(2004) Determining a function from its mean values over a family of spheres. SIAM J Math Anal 35: 1213-1240.
    [9] Holman B, Kunyansky L (2015) Gradual time reversal in thermo-and photo-acoustic tomography within a resonant cavity. Inverse Probl 31: 035008. doi: 10.1088/0266-5611/31/3/035008
    [10] Isakov V(2006) Inverse problems for partial differential equations. New York: Springer, 127.
    [11] Kunyansky L, Holman B, Cox BT (2013) Photoacoustic tomography in a rectangular reflecting cavity. Inverse Probl 29: 125010. doi: 10.1088/0266-5611/29/12/125010
    [12] Nguyen LV, Kunyansky LA (2016) A dissipative time reversal technique for photoacoustic tomography in a cavity. SIAM J Imaging Sci 9: 748-769. doi: 10.1137/15M1049683
    [13] Paternain GP, Salo M, Uhlmann G, et al. (2016) The geodesic X-ray transform with matrix weights. arXiv:1605.07894.
    [14] Stefanov P, Uhlmann G(2009) Linearizing non-linear inverse problems and an application to inverse backscattering. J Funct Anal 256: 2842-2866.
    [15] Stefanov P, Uhlmann G (2009) Thermoacoustic tomography with variable sound speed. Inverse Probl 25: 075011. doi: 10.1088/0266-5611/25/7/075011
    [16] Stefanov P, Uhlmann G (2011) Thermoacoustic tomography arising in brain imaging. Inverse Probl 27:045004. doi: 10.1088/0266-5611/27/4/045004
    [17] Stefanov P, Uhlmann G (2013) Recovery of a source term or a speed with one measurement and applications. Trans Amer Math Soc 365: 5737-5758. doi: 10.1090/S0002-9947-2013-05703-0
    [18] Stefanov P, Uhlmann G, Vasy A (2016) Boundary rigidity with partial data. J Amer Math Soc 29: 299-332.
    [19] Stefanov P, Uhlmann G, Vasy A (2017) Local and global boundary rigidity and the geodesic X-ray transform in the normal gauge. arXiv:1702.03638.
    [20] Stefanov P, Uhlmann G, Vasy A (2018) Inverting the local geodesic X-ray transform on tensors. J Anal Math 136: 151-208. doi: 10.1007/s11854-018-0058-3
    [21] Stefanov P, Yang Y (2015) Multiwave tomography in a closed domain: averaged sharp time reversal. Inverse Probl 31: 065007. doi: 10.1088/0266-5611/31/6/065007
    [22] Stefanov P, Yang Y (2017) Multiwave tomography with reflectors: Landweber's iteration. arXiv:1603.07045.
    [23] Tataru D (1995) Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem. Commun Part Diff Eq 20: 855-884. doi: 10.1080/03605309508821117
    [24] Tataru D (1999) Unique continuation for operators with partially analytic coefficients. J Math Pures Appl 78: 505-521. doi: 10.1016/S0021-7824(99)00016-1
    [25] Tataru D (2004) Unique continuation problems for partial differential equations. In: Geometric Methods in Inverse Problems and PDE Control, 239-255. Springer, New York, NY.
    [26] Triggiani R, Yao PF (2002) Carleman estimates with no lower-order terms for general Riemann wave equations. Global uniqueness and observability in one shot. Appl Math Optim 46: 331-375.
    [27] Uhlmann G, Vasy A (2016) The inverse problem for the local geodesic ray transform. Invent Math 205: 83-120. doi: 10.1007/s00222-015-0631-7
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3524) PDF downloads(425) Cited by(2)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog