Citation: Hoai-Minh Nguyen, Tu Nguyen. Approximate cloaking for the heat equation via transformation optics[J]. Mathematics in Engineering, 2019, 1(4): 775-788. doi: 10.3934/mine.2019.4.775
[1] | Allaire G (2007) Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation. Oxford: Oxford University Press. |
[2] | Alu A, Engheta N (2005) Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E 72: 016623. doi: 10.1103/PhysRevE.72.016623 |
[3] | Ammari H, Iakovleva E, Kang H, et al. (2005) Direct algorithms for thermal imaging of small inclusions. Multiscale Model Simul 4: 1116–1136. doi: 10.1137/040620266 |
[4] | Ammari H, Kang H, Lee H, et al. (2013) Enhancement of near cloaking for the full maxwell equations. SIAM J Appl Math 73: 2055–2076. doi: 10.1137/120903610 |
[5] | Amstutz S, Takahashi T, Vexler B (2008) Topological sensitivity analysis for time-dependent problems. ESAIM Control Optim Calc Var 14: 427–455. doi: 10.1051/cocv:2007059 |
[6] | Craster RV, Guenneau S, Hutridurga H, et al. (2018) Cloaking via mapping for the heat equation. Multiscale Model Simul 16: 1146–1174. doi: 10.1137/17M1161452 |
[7] | Girault V, Raviart PA (1986) Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Berlin: Springer-Verlag. |
[8] | Guenneau S, Amra C, Veynante D (2012) Transformation thermodynamics: Cloaking and concentrating heat flux. Opt Express 20: 8207–8218. doi: 10.1364/OE.20.008207 |
[9] | Greenleaf A, Kurylev Y, Lassas M, et al. (2007) Full-wave invisibility of active devices at all frequencies. Comm Math Phys 275: 749–789. doi: 10.1007/s00220-007-0311-6 |
[10] | Greenleaf A, Lassas M, Uhlmann G (2003) On nonuniqueness for Calderon's inverse problem. Math Res Lett 10: 685–693. doi: 10.4310/MRL.2003.v10.n5.a11 |
[11] | Kohn RV, Shen H, Vogelius MS, et al. (2008) Cloaking via change of variables in electric impedance tomography. Inverse Problem 24: 015–016. |
[12] | Kohn RV, Onofrei D, Vogelius MS, et al. (2010) Cloaking via change of variables for the Helmholtz equation. Comm Pure Appl Math 63: 973–1016. |
[13] | Lai Y, Chen H, Zhang Z, et al. (2009) Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys Rev Lett 102: 093901. doi: 10.1103/PhysRevLett.102.093901 |
[14] | Lassas M, Zhou T (2016) The blow-up of electromagnetic fields in 3-dimensional invisibility cloaking for Maxwell's equations. SIAM J Appl Math 76: 457–478. doi: 10.1137/15M103964X |
[15] | Lebedev NN (1965) Special Functions and Their Applications. Englewood Cliffs: Prentice-Hall. |
[16] | Leonhardt U (2006) Optical conformal mapping. Science 312: 1777–1780. doi: 10.1126/science.1126493 |
[17] | Milton GW, Nicorovici NA (2006) On the cloaking effects associated with anomalous localized resonance. Proc R Soc Lond Ser A 462: 3027–3059. doi: 10.1098/rspa.2006.1715 |
[18] | Nédélec JC (2000) Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems, Springer. |
[19] | Nguyen H-M (2010) Cloaking via change of variables for the Helmholtz equation in the whole space. Comm Pure Appl Math 63: 1505–1524. doi: 10.1002/cpa.20333 |
[20] | Nguyen H-M (2012) Approximate cloaking for the Helmholtz equation via transformation optics and consequences for perfect cloaking. Comm Pure Appl Math 65: 155–186. doi: 10.1002/cpa.20392 |
[21] | Nguyen H-M (2015) Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime. J Eur Math Soc 17: 1327–1365. doi: 10.4171/JEMS/532 |
[22] | Nguyen H-M, (2016) Cloaking using complementary media in the quasistatic regime. Ann Inst H Poincaré Anal Non Linéaire 33: 1509–1518. doi: 10.1016/j.anihpc.2015.06.004 |
[23] | Nguyen H-M (2017) Cloaking an arbitrary object via anomalous localized resonance: The cloak is independent of the object. SIAM J Math Anal 49: 3208–3232. doi: 10.1137/16M1086017 |
[24] | Nguyen H-M, Tran L (2019) Approximate cloaking for electromagnetic waves via transformation optics: Cloaking vs infinite energy. Math Models Methods Appl Sci 29: 1511–1552. doi: 10.1142/S0218202519500271 |
[25] | Nguyen H-M, Vinoles V (2018) Electromagnetic wave propagation in media consisting of dispersive metamaterials. C R Math 356: 757–775. doi: 10.1016/j.crma.2018.05.012 |
[26] | Nguyen H-M, Vogelius MS (2009) A representation formula for the voltage perturbations caused by diametrically small conductivity inhomogeneities. Proof of uniform validity. Ann Inst H Poincaré Anal Non Linéaire 26: 2283–2315. doi: 10.1016/j.anihpc.2009.03.005 |
[27] | Nguyen H-M, Vogelius MS (2012) Full range scattering estimates and their application to cloaking. Arch Rational Mech Anal 203: 769–807. doi: 10.1007/s00205-011-0459-2 |
[28] | Nguyen H-M, Vogelius MS (2012) Approximate cloaking for the wave equation via change of variables. SIAM J Math Anal 44: 1894–1924. doi: 10.1137/110833154 |
[29] | Nguyen H-M, Vogelius MS (2016) Approximate cloaking for the full wave equation via change of variables: The Drude-Lorentz model. J Math Pures Appl 106: 797–836. doi: 10.1016/j.matpur.2016.03.012 |
[30] | Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 321: 1780–1782. |
[31] | Vasquez FG, Milton GW, Onofrei D (2009) Active exterior cloaking for the 2D Laplace and Helmholtz equations. Phys Rev Lett 103: 073901. doi: 10.1103/PhysRevLett.103.073901 |
[32] | Weder R (2008) A rigorous analysis of high-order electromagnetic invisibility cloaks. J Phys A: Math Theor 41: 065207. doi: 10.1088/1751-8113/41/6/065207 |
[33] | Weder R (2008) The boundary conditions for point transformed electromagnetic invisibility cloaks. J Phys A: Math Theor 41: 415401. doi: 10.1088/1751-8113/41/41/415401 |