Citation: Boumediene Abdellaoui, Ireneo Peral, Ana Primo. A note on the Fujita exponent in fractional heat equation involving the Hardy potential[J]. Mathematics in Engineering, 2020, 2(4): 639-656. doi: 10.3934/mine.2020029
[1] | Abdellaoui B, Peral I, Primo A (2009) Influence of the Hardy potential in a semilinear heat equation. P Roy Soc Edinb A 139: 897–926. doi: 10.1017/S0308210508000152 |
[2] | Abdellaoui B, Medina M, Peral I, et al. (2016) Optimal results for the fractional heat equation involving the Hardy potential. Nonlinear Anal 140: 166–207. doi: 10.1016/j.na.2016.03.013 |
[3] | Baras P, Goldstein JA (1984) The heat equation with a singular potential. T Am Math Soc 284: 121–139. doi: 10.1090/S0002-9947-1984-0742415-3 |
[4] | Barrios B, Medina M, Peral I (2014) Some remarks on the solvability of non-local elliptic problems with the Hardy potential. Commun Contemp Math 16: 1–29. |
[5] | Beckner W (1995) Pitt's inequality and the uncertainty principle. P Am Math Soc 123: 1897–1905. |
[6] | Blumenthal RM, Getoor RK (1969) Some theorems on stable processes. T Am Math Soc 95: 263– 273. |
[7] | Caffarelli L, Figalli A (2013) Regularity of solutions to the parabolic fractional obstacle problem. J Reine Angew Math 680: 191–233. |
[8] | Di Nezza E, Palatucci G, Valdinoci E (2012) Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math 136: 521–573. doi: 10.1016/j.bulsci.2011.12.004 |
[9] | Frank R, Lieb EH, Seiringer R (2008) Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. J Am Math Soc 20: 925–950. |
[10] | Fujita H (1966) On the blowing up of solutions of the Cauchy problem for ut = ∆u + u1+α. J Fac Sci Univ Tokyo Sect I 13: 109–124. |
[11] | Guedda M, Kirane M (2001) Criticality for some evolution equations. Diff Equat 37: 540–550. doi: 10.1023/A:1019283624558 |
[12] | Herbst IW (1977) Spectral theory of the operator (p2 + m2)1/2 - Ze2/r. Commun Math Phys 53: 285–294. doi: 10.1007/BF01609852 |
[13] | Kobayashi K, Sino T, Tanaka H (1977) On the growing-up problem for semilinear heat equations. J Math Soc JPN 29: 407–424. doi: 10.2969/jmsj/02930407 |
[14] | Landkof N (1972) Foundations of Modern Potential Theory, Springer-Verlag. |
[15] | Leonori T, Peral I, Primo A, et al. (2015) Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete Cont Dyn A 35: 6031–6068. doi: 10.3934/dcds.2015.35.6031 |
[16] | Mitidieri E, Pohozhaev SI (2014) A Priori Estimates and Blow-up of Solutions to Nonlinear Partial Differential Equations and Inequalities, Proceedings of the Steklov Institute of Mathematics. |
[17] | Peral I, Soria F (2021) Elliptic and Parabolic Equations involving the Hardy-Leray Potential. |
[18] | Polya G (1923) On the zeros of an integral function represented by Fourier's integral. Messenger Math 52: 185–188. |
[19] | Quittner P, Souplet P (2007) Superlinear Parabolic Problems Blow-up, Global Existence and Steady States, Birkhauser, Basel, Switzerland. |
[20] | Riesz M (1938) Intégrales de Riemann-Liouville et potenciels. Acta Sci Math Szeged 9: 1–42. |
[21] | Silvestre L (2012) On the differentiability of the solution to an equation with drift and fractional diffusion. Indiana U Math J 61: 557–584. doi: 10.1512/iumj.2012.61.4568 |
[22] | Sugitani S (1975) On nonexistence of global solutions for some nonlinear integral equations. Osaka J Math 12: 45–51. |
[23] | Stein EM, Weiss G (1958) Fractional integrals on n-dimensional Euclidean space. J Math Mech 7: 503–514. |
[24] | Weissler F (1981) Existence and nonexistence of global solutions for a semilinear heat equation. Israel Mat 38: 29–40. doi: 10.1007/BF02761845 |
[25] | Yafaev D (1999) Sharp constants in the Hardy-Rellich inequalities. J Funct Anal 168: 12–144. |