Citation: Fausto Ferrari, Nicolò Forcillo. A new glance to the Alt-Caffarelli-Friedman monotonicity formula[J]. Mathematics in Engineering, 2020, 2(4): 657-679. doi: 10.3934/mine.2020030
[1] | Alt W, Caffarelli L, Friedman A (1984) Variational problems with two phases and their free boundaries. T Am Math Soc 282: 431–461. doi: 10.1090/S0002-9947-1984-0732100-6 |
[2] | Athanasopoulos I, Caffarelli L, Salsa S (1996) Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems. Ann Math 143: 413–434. doi: 10.2307/2118531 |
[3] | Bonfiglioli A, Lanconelli E, Uguzzoni F (2007) Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Berlin: Springer. |
[4] | Birindelli I (2003) Superharmonic functions in the Heisenberg group: estimates and Liouville theorems. NODEA–Nonlinear Diff 10: 171–185. |
[5] | Brascamp HJ, Lieb EH (1976) On extensions of the Brunn-Minkowski and Prèkopa-Leindler Theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J Funct Anal 22: 366–389. doi: 10.1016/0022-1236(76)90004-5 |
[6] | Caffarelli LA (1987) A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are C1,α. Rev Mat Iberoamericana 3: 139–162. |
[7] | Caffarelli LA (1988) A Harnack inequality approach to the regularity of free boundaries. III. Existence theory, compactness, and dependence on X. Ann Scuola Norm Sci 15: 583–602. |
[8] | Caffarelli LA, Jerison D, Kenig CE (2002) Some new monotonicity theorems with applications to free boundary problems. Ann Math 155: 369–404. doi: 10.2307/3062121 |
[9] | Caffarelli L, Salsa S (2005) A Geometric Approach to Free Boundary Problems, Providence RI: American Mathematical Society. |
[10] | Capogna L, Danielli D, Garofalo N (1994) The geometric Sobolev embedding for vector fields and the isoperimetric inequality. Commun Anal Geom 22: 203–215. |
[11] | Capogna L, Danielli D, Pauls S, et al. (2007) An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Basel: Birkhauser Verlag. |
[12] | Danielli D, Garofalo N, Petrosyan A (2007)The sub-elliptic obstacle problem: C1,a regularity of the free boundary in Carnot groups of step two. Adv Math 211: 485–516. |
[13] | Danielli D, Garofalo N, Salsa S (2003) Variational inequalities with lack of ellipticity. I. Optimal interior regularity and non-degeneracy of the free boundary. Indiana U Math J 52: 361–398. |
[14] | De Silva D, Ferrari F, Salsa S (2014) Two-phase problems with distributed sources: regularity of the free boundary. Anal PDE 7: 267–310. doi: 10.2140/apde.2014.7.267 |
[15] | Dipierro S, Karakhanyan AL (2018) A new discrete monotonicity formula with application to a two-phase free boundary problem in dimension two. Commun Part Diff Eq 43: 1073–1101. doi: 10.1080/03605302.2018.1499776 |
[16] | Dzhugan A, Ferrari F (2020) Domain variation solutions for degenerate elliptic operators. arXiv:2001.07174. |
[17] | Folland GB (1975) Subelliptic estimates and function spaces on nilpotent Lie groups. Ark Mat 13: 161–207. doi: 10.1007/BF02386204 |
[18] | Ferrari F, Forcillo N (2020) Some remarks about the existence of an Alt-Caffarelli-Friedman monotonicity formula in the Heisenberg group. arXiv:2001.04393. |
[19] | Ferrari F, Salsa S (2010) Regularity of the solutions for parabolic two-phase free boundary problems. Commun Part Diff Eq 35: 1095–1129. doi: 10.1080/03605301003717126 |
[20] | Ferrari F, Valdinoci E (2011) Density estimates for a fluid jet model in the Heisenberg group. J Math Anal Appl 382: 448–468. doi: 10.1016/j.jmaa.2011.04.057 |
[21] | Franchi B, Serapioni R, Cassano FS (1996) Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields. Houston J Math 22: 859–890. |
[22] | Franchi B, Serapioni R, Cassano FS (2003) On the structure of finite perimeter sets in step 2 Carnot groups. J Geom Anal 13: 421–466. doi: 10.1007/BF02922053 |
[23] | Franchi B, Serapioni R, Cassano FS (2003) Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups. Commun Anal Geom 11: 909–944. doi: 10.4310/CAG.2003.v11.n5.a4 |
[24] | Friedland S, Hayman WK (1976) Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions. Comment Math Helv 51: 133–161. doi: 10.1007/BF02568147 |
[25] | Garofalo N, Nhieu DM (1996) Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Commun Pure Appl Math 49: 1081–1144. doi: 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A |
[26] | Garofalo N, Lanconelli E (1990) Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann I Fourier 40: 313–356. doi: 10.5802/aif.1215 |
[27] | Gilbarg D, Trudinger NS (2001) Elliptic Partial Differential Equations of Second Order Classics in Mathematics, Berlin: Springer-Verlag. |
[28] | Garofalo N, Rotz K (2015) Properties of a frequency of Almgren type for harmonic functions in Carnot groups. Calc Var Partial Dif 54: 2197–2238. doi: 10.1007/s00526-015-0862-x |
[29] | Greiner PC (1980) Spherical harmonics on the Heisenberg group. Can Math Bull 23: 383–396. doi: 10.4153/CMB-1980-057-9 |
[30] | Hayman WK, Ortiz EL (1976) An upper bound for the largest zero of Hermite's function with applications to subharmonic functions. P Roy Soc Edinb A 75: 182–197. |
[31] | Jerison DS (1981) The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, II. J Funct Anal 43: 224–257. doi: 10.1016/0022-1236(81)90031-8 |
[32] | Magnani V (2001) Differentiability and area formula on stratified Lie groups. Houston J Math 27: 297–323. |
[33] | Matevosyan N, Petrosyan A (2011) Almost monotonicity formulas for elliptic and parabolic operators with variable coefficients. Commun Pure Appl Math 64: 271–311. doi: 10.1002/cpa.20349 |
[34] | Noris B, Tavares H, Terracini S, et al. (2010) Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun Pure Appl Math 63: 267–302. doi: 10.1002/cpa.20309 |
[35] | Quitalo V (2013) A free boundary problem arising from segregation of populations with high competition. Arch Ration Mech Anal 210: 857–908. doi: 10.1007/s00205-013-0661-5 |
[36] | Sperner jr E (1973) Zur symmetrisierung von funktionen auf sphären. Math Z 134: 317–327. doi: 10.1007/BF01214695 |
[37] | Terracini S, Tortone G, Vita S (2018) On s-harmonic functions on cones. Anal PDE 11: 1653– 1691. doi: 10.2140/apde.2018.11.1653 |
[38] | Terracini S, Verzini G, Zilio A (2016) Uniform Hölder bounds for strongly competing systems involving the square root of the laplacian. J Eur Math Soc 18: 2865–2924. doi: 10.4171/JEMS/656 |
[39] | Teixeira EV, Zhang L (2011) Monotonicity theorems for Laplace Beltrami operator on Riemannian manifolds. Adv Math 226: 1259–1284. doi: 10.1016/j.aim.2010.08.006 |