Citation: Shuhai Li, Lina Ma, Huo Tang. On Janowski type p-harmonic functions associated with generalized Sǎlǎgean operator[J]. AIMS Mathematics, 2021, 6(1): 569-583. doi: 10.3934/math.2021035
[1] | J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Math., 9 (1984), 3-25. |
[2] | P. L. Duren, Harmonic Mappings in the Plane, Cambridge University Press, 2004. |
[3] | J. Dziok, On Janowski harmonic functions, J. Appl. Anal., 21 (2015), 99-107. |
[4] | Z. Abdulhadi, Y. Abu Muhanna, Landaus theorem for biharmonic mappings, J. Math. Anal. Appl., 338 (2008), 705-709. |
[5] | Z. Abdulhadi, Y. Abu Muhanna, S. Khuri, On univalent solutions of the biharmonic equations, J. Inequal. Appl., 5 (2005), 469-478. |
[6] | Z. Abdulhadi, Y. Abu Muhanna, S. Khuri, On some properties of solutions of the biharmonic equation, Appl. Math. Comput., 177 (2006), 346-351. |
[7] | S. Chen, S. Ponnusamy, X. Wang, Bloch constant and Landau's theorem for planar p-harmonic mappings, J. Math. Anal. Appl., 373 (2011), 102-110. doi: 10.1016/j.jmaa.2010.06.025 |
[8] | E. Yașar, S. Yalçin, Properties of a class p-harmonic functions, Abstr. Appl. Anal., 2013 (2013), 1-8. |
[9] | J. Qiao, X. Wang, On p-harmonic univalent mappings, Acta Mathematica entia, 32 (2012), 588-600. |
[10] | S. Porwal, K. K. Dixit, On a p-harmonic mappings, Tamkang Journal of Mathematics, 44 (2013), 313-325. doi: 10.5556/j.tkjm.44.2013.1053 |
[11] | Q. Luo, X. Wang, The starlikeness, convexity, covering theorem and extreme points of p-harmonic mappings, B. Iran. Math. Soc., 38 (2012), 581-596. |
[12] | J. Qiao, J. Chen, M. Shi, On certain subclasses of univalent p-harmonic mappings, B. Iran. Math. Soc., 41 (2015), 429-451. |
[13] | P. Li, S. A. Khuri, X. Wang, On certain geometric properties of polyharmonic mappings, J. Math. Anal. Appl., 434 (2016), 1462-1473. doi: 10.1016/j.jmaa.2015.01.049 |
[14] | S. Li, H. Tang, X. Niu, On extreme points and product properties of a new subclass of p-harmonic functions, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4 |
[15] | S. Li, P. Liu, A new class of harmonic univalent functions by the generalized Sǎlǎgean operator, Wuhan University Journal of Natural Sciences, 12 (2007), 965-970. doi: 10.1007/s11859-007-0044-6 |
[16] | F. M. Al-Oboudi, On univalent functions defined by a generalized Sǎlǎgean operator, International Journal of Mathematics and Mathematical Sciences, 27 (2004), 1429-1436. |
[17] | G. S. Sǎlǎgean, Subclasses of Univalent Functions, Springer, Berlin, 1981,362-372. |
[18] | W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Pol. Math., 28 (1973), 297-326. doi: 10.4064/ap-28-3-297-326 |
[19] | M. Liu, On a subclass of p-valent close to convex functions of order β and type α, Journal of Mathematical Study, 30 (1997), 102-104. |