Review Topical Sections

Nonlinear dynamics of dewetting thin films

  • Received: 31 January 2020 Accepted: 19 March 2020 Published: 05 May 2020
  • MSC : 76A20, 76D08, 76E17, 35K25, 35Q35

  • Fluid films spreading on hydrophobic solid surfaces exhibit complicated dynamics that describe transitions leading the films to break up into droplets. For viscous fluids coating hydrophobic solids this process is called "dewetting". These dynamics can be represented by a lubrication model consisting of a fourth-order nonlinear degenerate parabolic partial differential equation (PDE) for the evolution of the film height. Analysis of the PDE model and its regimes of dynamics have yielded rich and interesting research bringing together a wide array of different mathematical approaches. The early stages of dewetting involve stability analysis and pattern formation from small perturbations and self-similar dynamics for finite-time rupture from larger amplitude perturbations. The intermediate dynamics describes further instabilities yielding topological transitions in the solutions producing sets of slowly-evolving near-equilibrium droplets. The long-time behavior can be reduced to a finite-dimensional dynamical system for the evolution of the droplets as interacting quasi-steady localized structures. This system yields coarsening, the successive re-arrangement and merging of smaller drops into fewer larger drops. To describe macro-scale applications, mean-field models can be constructed for the evolution of the number of droplets and the distribution of droplet sizes. We present an overview of the mathematical challenges and open questions that arise from the stages of dewetting and how they relate to issues in multi-scale modeling and singularity formation that could be applied to other problems in PDEs and materials science.

    Citation: Thomas P. Witelski. Nonlinear dynamics of dewetting thin films[J]. AIMS Mathematics, 2020, 5(5): 4229-4259. doi: 10.3934/math.2020270

    Related Papers:

    [1] Ye Shuang, Feng Qi . Integral inequalities of Hermite-Hadamard type for GA-F-convex functions. AIMS Mathematics, 2021, 6(9): 9582-9589. doi: 10.3934/math.2021557
    [2] Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283
    [3] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [4] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328
    [5] Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258
    [6] Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275
    [7] Wenbing Sun, Rui Xu . Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals. AIMS Mathematics, 2021, 6(10): 10679-10695. doi: 10.3934/math.2021620
    [8] Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115
    [9] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [10] Aqeel Ahmad Mughal, Deeba Afzal, Thabet Abdeljawad, Aiman Mukheimer, Imran Abbas Baloch . Refined estimates and generalization of some recent results with applications. AIMS Mathematics, 2021, 6(10): 10728-10741. doi: 10.3934/math.2021623
  • Fluid films spreading on hydrophobic solid surfaces exhibit complicated dynamics that describe transitions leading the films to break up into droplets. For viscous fluids coating hydrophobic solids this process is called "dewetting". These dynamics can be represented by a lubrication model consisting of a fourth-order nonlinear degenerate parabolic partial differential equation (PDE) for the evolution of the film height. Analysis of the PDE model and its regimes of dynamics have yielded rich and interesting research bringing together a wide array of different mathematical approaches. The early stages of dewetting involve stability analysis and pattern formation from small perturbations and self-similar dynamics for finite-time rupture from larger amplitude perturbations. The intermediate dynamics describes further instabilities yielding topological transitions in the solutions producing sets of slowly-evolving near-equilibrium droplets. The long-time behavior can be reduced to a finite-dimensional dynamical system for the evolution of the droplets as interacting quasi-steady localized structures. This system yields coarsening, the successive re-arrangement and merging of smaller drops into fewer larger drops. To describe macro-scale applications, mean-field models can be constructed for the evolution of the number of droplets and the distribution of droplet sizes. We present an overview of the mathematical challenges and open questions that arise from the stages of dewetting and how they relate to issues in multi-scale modeling and singularity formation that could be applied to other problems in PDEs and materials science.


    The radial addition K˜+L of star sets K and L can be defined by

    ρ(K˜+L,)=ρ(K,)+ρ(L,),

    where a star set is a compact set that is star-shaped at o and contains o and ρ(K,) denotes the radial function of star set K. The radial function is defined by

    ρ(K,u)=max{c0:cuK}, (1.1)

    for uSn1, where Sn1 denotes the surface of the unit ball centered at the origin. The initial study of the radial addition can be found in [1, p. 235]. K is called a star body if ρ(K,) is positive and continuous, and let Sn denote the set of star bodies. The radial addition and volume are the basis and core of the dual Brunn-Minkowski theory (see, e.g., [2,3,4,5,6,7,8,9,10]). It is important that the dual Brunn-Minkowski theory can count among its successes the solution of the Busemann-Petty problem in [3,11,12,13,14]. Recently, it has turned to a study extending from Lp-dual Brunn-Minkowski theory to Orlicz dual Brunn-Minkowski theory. The Orlicz dual Brunn-Minkowski theory and its dual have attracted people's attention [15,16,17,18,19,20,21,22,23,24,25,26,27,28].

    For KSn and uSn1, the half chord of K in the direction u is defined by

    d(K,u)=12(ρ(K,u)+ρ(K,u)).

    If there exists a constant λ>0 such that d(K,u)=λd(L,u), for all uSn1, then star bodies K,L are said to have similar chord (see Gardner [1] or Schneider [29]). Lu [30] introduced the i-th chord integral of star bodies: For KSn and 0i<n, the i-th chord integral of K, is denoted by Bi(K), is defined by

    Bi(K)=1nSn1d(K,u)nidS(u). (1.2)

    Obviously, for i=0, Bi(K) becomes the chord integral B(K).

    The main aim of the present article is to generalize the chord integrals to Orlicz space. We introduce a new affine geometric quantity which we shall call Orlicz mixed chord integrals. The fundamental notions and conclusions of the chord integral and related isoperimetric inequalities for the chord integral are extended to an Orlicz setting. The new inequalities in special cases yield the Lp-dual Minkowski and Lp-dual Brunn-Minkowski inequalities for the Lp-mixed chord integrals. The related concepts and inequalities of Lp-mixed chord integrals are derived. As extensions, Orlicz multiple mixed chord integrals and Orlicz-Aleksandrov-Fenchel inequality for the Orlicz multiple mixed chord integrals are also derived.

    In Section 3, we introduce the following new notion of Orlicz chord addition of star bodies.

    Orlicz chord addition Let K and L be star bodies, the Orlicz chord addition of K and L, is denoted by Kˇ+ϕL, is defined by

    ϕ(d(K,u)d(Kˇ+ϕL,u),d(L,u)d(Kˇ+ϕL,u))=1, (1.3)

    where uSn1, and ϕΦ2, which is the set of convex functions ϕ:[0,)2(0,) that are decreasing in each variable and satisfy ϕ(0,0)= and ϕ(,1)=ϕ(1,)=1.

    The particular instance of interest corresponds to using (1.3) with ϕ(x1,x2)=ϕ1(x1)+εϕ2(x2) for ε>0 and some ϕ1,ϕ2Φ, which are the sets of convex functions ϕ1,ϕ2:[0,)(0,) that are decreasing and satisfy ϕ1(0)=ϕ2(0)=, ϕ1()=ϕ2()=0 and ϕ1(1)=ϕ2(1)=1.

    In accordance with the spirit of Aleksandrov [31], Fenchel and Jessen's [32] introduction of mixed quermassintegrals, and introduction of Lutwak's [33] Lp-mixed quermassintegrals, we are based on the study of first-order variations of the chord integrals. In Section 4, we prove that the first order Orlicz variation of the mixed chord integral can be expressed as: For K,LSn, ϕ1,ϕ2Φ, 0i<n and ε>0,

    ddε|ε=0+Bi(Kˇ+ϕεL)=(ni)1(ϕ1)r(1)Bϕ2,i(K,L), (1.4)

    where (ϕ1)r(1) denotes the value of the right derivative of convex function ϕ1 at point 1. In this first order variational equation (1.4), we find a new geometric quantity. Based on this, we extract the required geometric quantity, denoted by Bϕ,i(K,L) which we shall call Orlicz mixed chord integrals of K and L, as follows

    Bϕ2,i(K,L)=1ni(ϕ1)r(1)ddε|ε=0+Bi(Kˇ+ϕεL). (1.5)

    We show also that the new affine geometric quantity has an integral representation as follows:

    Bϕ,i(K,L)=1nSn1ϕ(d(L,u)d(K,u))d(K,u)nidS(u). (1.6)

    When ϕ(t)=tp and p1, the new affine geometric quantity becomes a new Lp-mixed chord integrals of K and L, denoted by Bp,i(K,L), which as is in (2.7).

    In Section 5, we establish an Orlicz Minkowski inequality for the mixed chord and Orlicz mixed chord integrals.

    Orlicz Minkowski inequality for the Orlicz mixed chord integrals If K,LSn, 0i<n and ϕΦ, then

    Bϕ,i(K,L)Bi(K)ϕ((Bi(L)Bi(K))1/(ni)). (1.7)

    If ϕ is strictly convex, the equality holds if and only if K and L are similar chord.

    When ϕ(t)=tp and p1, (1.7) becomes a new Lp-Minkowski inequality (2.8) for the Lp-mixed chord integrals.

    In Section 6, as an application, we establish an Orlicz Brunn-Minkowski inequality for the Orlicz chord additions and the mixed chord integrals:

    Orlicz Brunn-Minkowski inequality for the Orlicz chord additions If K,LSn, 0i<n and ϕΦ2, then

    1ϕ((Bi(K)Bi(Kˇ+ϕL))1/(ni),(Bi(L)Bi(Kˇ+ϕL))1/(ni)). (1.8)

    If ϕ is strictly convex, the equality holds if and only if K and L are similar chord.

    When ϕ(t)=tp and p1, (1.8) becomes a new Lp-Brunn-Minkowski inequality (2.9) for the mixed chord integrals.

    A new isoperimetric inequality for the chord integrals is given in Section 7. In Section 8, Orlicz multiple mixed chord integrals is introduced and Orlicz-Aleksandrov-Fenchel inequality for the Orlicz multiple mixed chord integrals is established.

    The setting for this paper is n-dimensional Euclidean space Rn. A body in Rn is a compact set equal to the closure of its interior. For a compact set KRn, we write V(K) for the (n-dimensional) Lebesgue measure of K and call this the volume of K. Associated with a compact subset K of Rn which is star-shaped with respect to the origin and contains the origin, its radial function is ρ(K,):Sn1[0,) is defined by

    ρ(K,u)=max{λ0:λuK}.

    Note that the class (star sets) is closed under union, intersection, and intersection with subspace. The radial function is homogeneous of degree 1, that is (see e.g. [1]),

    ρ(K,ru)=r1ρ(K,u),

    for all uSn1 and r>0. Let ˜δ denote the radial Hausdorff metric, as follows: if K,LSn, then

    ˜δ(K,L)=|ρ(K,u)ρ(L,u)|.

    From the definition of the radial function, it follows immediately that for AGL(n) the radial function of the image AK={Ay:yK} of K is given by (see e.g. [29])

    ρ(AK,x)=ρ(K,A1x), (2.1)

    for all xRn.

    For KiSn,i=1,,m, define the real numbers RKi and rKi by

    RKi=maxuSn1d(Ki,u),andrKi=minuSn1d(Ki,u). (2.2)

    Obviously, 0<rKi<RKi, for all KiSn. Writing R=max{RKi} and r=min{rKi}, where i=1,,m.

    If K1,,KnSn, the mixed chord integral of K1,,Kn, is denoted by B(K1,,Kn), is defined by (see [30])

    B(K1,,Kn)=1nSn1d(K1,u)d(Kn,u)dS(u).

    If K1==Kni=K, Kni+1==Kn=L, the mixed chord integral B(K1,,Kn) is written as Bi(K,L). If L=B (B is the unit ball centered at the origin), the mixed chord integral Bi(K,L)=Bi(K,B) is written as Bi(K) and called the i-th chord integral of K. Obviously, For KSn and 0i<n, we have

    Bi(K)=1nSn1d(K,u)nidS(u). (2.3)

    If K1==Kni1=K, Kni==Kn1=B and Kn=L, the mixed chord integral B(K,,Kni1,B,,Bi,L) is written as Bi(K,L) and called the i-th mixed chord integral of K and L. For K,LSn and 0i<n, it is easy to see that

    Bi(K,L)=1nSn1d(K,u)ni1d(L,u)dS(u). (2.4)

    This integral representation (2.4), together with the Hölder inequality, immediately give the Minkowski inequality for the i-th mixed chord integral: If K,LSn and 0i<n, then

    Bi(K,L)niBi(K)ni1Bi(L), (2.5)

    with equality if and only if K and L are similar chord.

    Definition 2.1 (The Lp-chord addition) Let K,LSn and p1, the Lp chord addition ˇ+p of star bodies K and L, is defined by

    d(Kˇ+pL,u)p=d(K,u)p+d(L,u)p, (2.6)

    for uSn1.

    Obviously, putting ϕ(x1,x2)=xp1+xp2 and p1 in (1.3), (1.3) becomes (2.6). The following result follows immediately from (2.6) with p1.

    npnilimε0+Bi(Kˇ+pεL)Bi(L)ε=1nSn1d(K,u)ni+pd(L,u)pdS(u).

    Definition 2.2 (The Lp-mixed chord integrals) Let K,LSn, 0i<n and p1, the Lp-mixed chord integral of star K and L, denoted by Bp,i(K,L), is defined by

    Bp,i(K,L)=1nSn1d(K,u)ni+pd(L,u)pdS(u). (2.7)

    Obviously, when K=L, the Lp-mixed chord integral Bp,i(K,K) becomes the i-th chord integral Bi(K). This integral representation (2.7), together with the Hölder inequality, immediately gives:

    Proposition 2.3 If K,LSn, 0i<n and p1, then

    Bp,i(K,L)niBi(K)ni+pBi(L)p, (2.8)

    with equality if and only if K and L are similar chord.

    Proposition 2.4 If K,LSn, 0i<n and p1, then

    Bi(Kˇ+pL)p/(ni)Bi(K)p/(ni)+Bi(L)p/(ni), (2.9)

    with equality if and only if K and L are similar chord.

    Proof From (2.6) and (2.7), it is easily seen that the Lp-chord integrals is linear with respect to the Lp-chord addition, and together with inequality (2.8), we have for p1

    Bp,i(Q,Kˇ+pL)=Bp,i(Q,K)+Bp,i(Q,L)Bi(Q)(ni+p)/(ni)(Bi(K)p/(ni)+Bi(L)p/(ni)),

    with equality if and only if K and L are similar chord.

    Take Kˇ+pL for Q, recall that Bp,i(Q,Q)=Bi(Q), inequality (2.9) follows easily.

    Throughout this paper, the standard orthonormal basis for Rn will be {e1,,en}. Let Φn, nN, denote the set of convex functions ϕ:[0,)n(0,) that are strictly decreasing in each variable and satisfy ϕ(0)= and ϕ(ej)=1, j=1,,n. When n=1, we shall write Φ instead of Φ1. The left derivative and right derivative of a real-valued function f are denoted by (f)l and (f)r, respectively. We first define the Orlicz chord addition.

    Definition 3.1 (The Orlicz chord addition) Let m2,ϕΦm, KjSn and j=1,,m, the Orlicz chord addition of K1,,Km, is denoted by ˇ+ϕ(K1,,Km), is defined by

    d(ˇ+ϕ(K1,,Km),u)=sup{λ>0:ϕ(d(K1,u)λ,,d(Km,u)λ)1}, (3.1)

    for uSn1. Equivalently, the Orlicz chord addition ˇ+ϕ(K1,,Km) can be defined implicitly by

    ϕ(d(K1,u)d(ˇ+ϕ(K1,,Km),u),,d(Km,u)d(ˇ+ϕ(K1,,Km),u))=1, (3.2)

    for all uSn1.

    An important special case is obtained when

    ϕ(x1,,xm)=mj=1ϕj(xj),

    for some fixed ϕjΦ such that ϕ1(1)==ϕm(1)=1. We then write ˇ+ϕ(K1,,Km)=K1ˇ+ϕˇ+ϕKm. This means that K1ˇ+ϕˇ+ϕKm is defined either by

    d(K1ˇ+ϕˇ+ϕKm,u)=sup{λ>0:mj=1ϕj(d(Kj,u)λ)1}, (3.3)

    for all uSn1, or by the corresponding special case of (3.2).

    Lemma 3.2 The Orlicz chord addition ˇ+ϕ:(Sn)mSn is monotonic.

    Proof This follows immediately from (3.1).

    Lemma 3.3 The Orlicz chord addition ˇ+ϕ:(Sn)mSn is GL(n) covariant.

    Proof From (2.1), (3.1) and let AGL(n), we obtain

    d(ˇ+ϕ(AK1,AK2,AKm),u)
    =sup{λ>0:ϕ(d(AK1,u)λ,d(AK2,u)λ,,d(AKm,u)λ)1}=sup{λ>0:ϕ(d(K1,A1u)λ,d(K2,A1u)λ,,d(Km,A1u)λ)1}=d(ˇ+ϕ(K1,,Km),A1u)=d(ˇ+ϕ(K1,,Km),u).

    This shows Orlicz chord addition ˇ+ϕ is GL(n) covariant.

    Lemma 3.4 Suppose K1,,KmSn. If ϕΦ, then

    ϕ(d(K1,u)t)++ϕ(d(Km,u)t)=1

    if and only if

    d(ˇ+ϕ(K1,,Km),u)=t

    Proof This follows immediately from Definition 3.1.

    Lemma 3.5 Suppose Km,,KmSn. If ϕΦ, then

    rϕ1(1m)d(ˇ+ϕ(K1,,Km),u)Rϕ1(1m).

    Proof Suppose d(ˇ+ϕ(K1,,Km),u)=t, from Lemma 3.4 and noting that ϕ is strictly deceasing on (0,), we have

    1=ϕ(d(K1,u)t)++ϕ(d(Km,u)t)ϕ(rK1t)++ϕ(rKmt)=mϕ(rt).

    Noting that the inverse ϕ1 is strictly deceasing on (0,), we obtain the lower bound for d(ˇ+ϕ(K1,,Km),u):

    trϕ1(1m).

    To obtain the upper estimate, observe the fact from the Lemma 3.4, together with the convexity and the fact ϕ is strictly deceasing on (0,), we have

    1=ϕ(d(K1,u)t)++ϕ(d(Km,u)t)mϕ(d(K1,u)++d(Km,u)mt)mϕ(Rt).

    Then we obtain the upper estimate:

    tRϕ1(1m).

    Lemma 3.6 The Orlicz chord addition ˇ+ϕ:(Sn)mSn is continuous.

    Proof To see this, indeed, let KijSn, iN{0}, j=1,,m, be such that KijK0j as i. Let

    d(ˇ+ϕ(Ki1,,Kim),u)=ti.

    Then Lemma 3.5 shows

    rijϕ1(1m)tiRijϕ1(1m),

    where rij=min{rKij} and Rij=max{RKij}. Since KijK0j, we have RKijRK0j< and rKijrK0j>0, and thus there exist a,b such that 0<atib< for all i. To show that the bounded sequence {ti} converges to d(ˇ+ϕ(K01,,K0m),u), we show that every convergent subsequence of {ti} converges to d(ˇ+ϕ(K01,,K0m),u). Denote any subsequence of {ti} by {ti} as well, and suppose that for this subsequence, we have

    tit.

    Obviously atb. Noting that ϕ is a continuous function, we obtain

    tsup{t>0:ϕ(d(K01,u)t,,d(K0m,u)t)1}
    =d(ˇ+ϕ(K01,,K0m),u).

    Hence

    d(ˇ+ϕ(Ki1,,Kim),u)d(ˇ+ϕ(K01,,K0m),u)

    as i.

    This shows that the Orlicz chord addition ˇ+ϕ:(Sn)mSn is continuous.

    Next, we define the Orlicz chord linear combination for the case m=2.

    Definition 3.7 (The Orlicz chord linear combination) The Orlicz chord linear combination, denoted by ˇ+ϕ(K,L,α,β) for K,LSn, and α,β0 (not both zero), is defined by

    αϕ1(d(K,u)d(ˇ+ϕ(K,L,α,β),u))+βϕ2(d(L,u)d(ˇ+ϕ(K,L,α,β),u))=1, (3.4)

    for ϕ1,ϕ2Φ and all uSn1.

    We shall write Kˇ+ϕεL instead of ˇ+ϕ(K,L,1,ε), for ε0 and assume throughout that this is defined by (3.1), if α=1,β=ε and ϕΦ. We shall write Kˇ+ϕL instead of ˇ+ϕ(K,L,1,1) and call it the Orlicz chord addition of K and L.

    In order to define Orlicz mixed chord integrals, we need the following Lemmas 4.1-4.4.

    Lemma 4.1 Let ϕΦ and ε>0. If K,LSn, then Kˇ+ϕεLSn.

    Proof Let u0Sn1, and {ui}Sn1 be any subsequence such that uiu0 as i.

    Let

    d(Kˇ+ϕL,ui)=λi.

    Then Lemma 3.5 shows

    rϕ1(12)λiRϕ1(12),

    where R=max{RK,RL} and r=min{rK,rL}.

    Since K,LSn, we have 0<rKRK< and 0<rLRL<, and thus there exist a,b such that 0<aλib< for all i. To show that the bounded sequence {λi} converges to d(Kˇ+ϕεL,u0), we show that every convergent subsequence of {λi} converges to d(Kˇ+ϕεL,u0). Denote any subsequence of {λi} by {λi} as well, and suppose that for this subsequence, we have

    λiλ0.

    Obviously aλ0b. From (3.4) and note that ϕ1,ϕ2 are continuous functions, so ϕ11 is continuous, we obtain

    λid(K,u0)ϕ11(1εϕ2(d(L,u0)λ0))

    as i. Hence

    ϕ1(d(K,u0)λ0)+εϕ2(d(L,u0)λ0)=1.

    Therefore

    λ0=d(Kˇ+ϕεL,u0).

    That is

    d(Kˇ+ϕεL,ui)d(Kˇ+ϕεL,u0).

    as i.

    This shows that Kˇ+ϕεLSn.

    Lemma 4.2 If K,LSn, ε>0 and ϕΦ, then

    Kˇ+ϕεLK (4.1)

    as ε0+.

    Proof This follows immediately from (3.4).

    Lemma 4.3 If K,LSn, 0i<n and ϕ1,ϕ2Φ, then

    ddε|ε=0+d(Kˇ+ϕεL,u)ni=ni(ϕ1)r(1)ϕ2(d(L,u)d(K,u))d(K,u)ni. (4.2)

    Proof From (3.4), Lemma 4.2 and notice that ϕ11, ϕ2 are continuous functions, we obtain for 0i<n

    ddε|ε=0+d(Kˇ+ϕεL,u)ni
    =limε0+(ni)d(K,u)ni1(d(K,u)ϕ2(d(L,u)d(Kˇ+ϕεL,u)))×limy1ϕ11(y)ϕ11(1)y1=ni(ϕ1)r(1)ϕ2(d(L,u)d(K,u))d(K,u)ni,

    where

    y=1εϕ2(d(L,u)d(Kˇ+ϕεL,u)),

    and note that y1 as ε0+.

    Lemma 4.4 If ϕΦ2, 0i<n and K,LSn, then

    (ϕ1)r(1)niddε|ε=0+Bi(Kˇ+ϕεL)=1nSn1ϕ2(d(L,u)d(K,u))d(K,u)nidS(u). (4.3)

    Proof This follows immediately from (2.1) and Lemma 4.3.

    Denoting by Bϕ,i(K,L), for any ϕΦ and 0i<n, the integral on the right-hand side of (4.3) with ϕ2 replaced by ϕ, we see that either side of the equation (4.3) is equal to Bϕ2,i(K,L) and hence this new Orlicz mixed chord integrals Bϕ,i(K,L) has been born.

    Definition 4.5 (The Orlicz mixed chord integral) For ϕΦ and 0i<n, Orlicz mixed chord integral of star bodies K and L, Bϕ,i(K,L), is defined by

    Bϕ,i(K,L)=:1nSn1ϕ(d(L,u)d(K,u))d(K,u)nidS(u). (4.4)

    Lemma 4.6 If ϕ1,ϕ2Φ, 0i<n and K,LSn, then

    Bϕ2,i(K,L)=(ϕ1)r(1)nilimε0+Bi(Kˇ+ϕεL)Bi(K)ε. (4.5)

    Proof This follows immediately from Lemma 4.4 and (4.4).

    Lemma 4.7 If K,LSn, ϕΦ and any ASL(n), then for ε>0

    A(Kˇ+ϕεL)=(AK)ˇ+ϕε(AL). (4.6)

    Proof This follows immediately from (2.1) and (3.3).

    We find easily that Bϕ,i(K,L) is invariant under simultaneous unimodular centro-affine transformation.

    Lemma 4.8 If ϕΦ, 0i<n and K,LSn, then for ASL(n),

    Bϕ,i(AK,AL)=Bϕ,i(K,L). (4.7)

    Proof This follows immediately from Lemmas 4.6 and 4.7.

    In this section, we will define a Borel measure in Sn1, denoted by Bn,i(K,υ), which we shall call the chord measure of star body K.

    Definition 5.1 (The chord measure) Let KSn and 0i<n, the chord measure of star body K, denoted by Bn,i(K,υ), is defined by

    dBn,i(K,υ)=1nd(K,υ)niBi(K)dS(υ). (5.1)

    Lemma 5.2 (Jensen's inequality) Let μ be a probability measure on a space X and g:XIR be a μ-integrable function, where I is a possibly infinite interval. If ψ:IR is a convex function, then

    Xψ(g(x))dμ(x)ψ(Xg(x)dμ(x)). (5.2)

    If ψ is strictly convex, the equality holds if and only if g(x) is constant for μ-almost all xX (see [34, p. 165]).

    Lemma 5.3 Suppose that ϕ:[0,)(0,) is decreasing and convex with ϕ(0)=. If K,LSn and 0i<n, then

    1nBi(K)Sn1ϕ(d(L,u)d(K,u))d(K,u)nidS(u)ϕ((Bi(L)Bi(K))1/(ni)). (5.3)

    If ϕ is strictly convex, the equality holds if and only if K and L are similar chord.

    Proof For KSn1, 0i<n and any uSn1, the chord measure d(K,u)ninBi(K)dS(u) is a probability measure on Sn1. Hence, from (2.4), (2.5), (5.1) and by using Jensen's inequality, and in view of ϕ is decreasing, we obtain

    1nBi(K)Sn1ϕ(d(L,u)d(K,u))d(K,u)nidS(u)
    =Sn1ϕ(d(L,u)d(K,u))dBn,i(K,u)ϕ(Bi(K,L)Bi(K))ϕ((Bi(L)Bi(K))1/(ni)).

    Next, we discuss the equality in (5.3). If ϕ is strictly convex, suppose the equality holds in (5.3), form the equality necessary conditions of Jensen's inequality and (2.5), it follows that d(L,u)/d(K,u) is constant, and K and L are similar chord, respectively. This yields that there exists r>0 such that d(L,u)=rd(K,u), for all uSn1. On the other hand, suppose that K and L are similar chord, i.e. there exists λ>0 such that d(L,u)=λd(K,u) for all uSn1. Hence

    1nBi(K)Sn1ϕ(d(L,u)d(K,u))d(K,u)nidS(u)
    =1nBi(K)Sn1ϕ((Bi(L)Bi(K))1/(ni))d(K,u)nidS(u)=ϕ((Bi(L)Bi(K))1/(ni)).

    This implies the equality in (5.3) holds.

    Theorem 5.4 (Orlicz chord Minkowski inequality) If K,LSn, 0i<n and ϕΦ, then

    Bϕ,i(K,L)Bi(K)ϕ((Bi(L)Bi(K))1/(ni)). (5.4)

    If ϕ is strictly convex, the equality holds if and only if K and L are similar chord.

    Proof This follows immediately from (4.4) and Lemma 5.3.

    Corollary 5.5 If K,LSn, 0i<n and p1, then

    Bp,i(K,L)niBi(K)ni+pBi(L)p, (5.5)

    with equality if and only if K and L are similar chord.

    Proof This follows immediately from Theorem 5.4 with ϕ1(t)=ϕ2(t)=tp and p1.

    Taking i=0 in (5.5), this yields Lp-Minkowski inequality: If K,LSn and p1, then

    Bp(K,L)nB(K)n+pB(L)p,

    with equality if and only if K and L are similar chord.

    Corollary 5.6 Let K,LMSn, 0i<n and ϕΦ, and if either

    Bϕ,i(Q,K)=Bϕ,i(Q,L),forallQM (5.6)

    or

    Bϕ,i(K,Q)Bi(K)=Bϕ,i(L,Q)Bi(L),forallQM, (5.7)

    then K=L.

    Proof Suppose (5.6) holds. Taking K for Q, then from (2.3), (4.4) and (5.3), we obtain

    Bi(K)=Bϕ,i(K,L)Bi(K)ϕ((Bi(L)Bi(K))1/(ni))

    with equality if and only if K and L are similar chord. Hence

    Bi(K)Bi(L),

    with equality if and only if K and L are similar chord. On the other hand, if taking L for Q, by similar arguments, we get Bi(K)Bi(L), with equality if and only if K and L are similar chord. Hence Bi(K)=Bi(L), and K and L are similar chord, it follows that K and L must be equal.

    Suppose (5.7) holds. Taking L for Q, then from from (2.3), (4.4) and (5.3), we obtain

    1=Bϕ,i(K,L)Bi(K)ϕ((Bi(L)Bi(K))1/(ni)),

    with equality if and only if K and L are similar chord. Hence

    Bi(K)Bi(L),

    with equality if and only if K and L are similar chord. On the other hand, if taking K for Q, by similar arguments, we get Bi(K)Bi(L), with equality if and only if K and L are similar chord. Hence Bi(K)=Bi(L), and K and L have similar chord, it follows that K and L must be equal.

    When ϕ1(t)=ϕ2(t)=tp and p1, Corollary 5.6 becomes the following result.

    Corollary 5.7 Let K,LMSn, 0i<n and p1, and if either

    Bp,i(K,Q)=Bp,i(L,Q),forallQM

    or

    Bp,i(K,Q)Bi(K)=Bp,i(L,Q)Bi(L),forallQM,

    then K=L.

    Lemma 6.1 If K,LSn, 0i<n, and ϕ1,ϕ2Φ, then

    Bi(Kˇ+ϕL)=Bϕ1,i(Kˇ+ϕL,K)+Bϕ2,i(Kˇ+ϕL,L). (6.1)

    Proof From (3.1), (3.4) and (4.4), we have for Kˇ+ϕL=QSn

    Bϕ1,i(Q,K)+Bϕ2,i(Q,L)
    =1nSn1ϕ(d(K,u)d(Q,u),d(L,u)d(Q,u))d(Q,u)nidS(u)
    =Bi(Q). (6.2)

    The completes the proof.

    Lemma 6.2 Let K,LSn, ε>0 and ϕΦ.

    (1) If K and L are similar chord, then K and Kˇ+ϕεL are similar chord.

    (2) If K and Kˇ+ϕεL are similar chord, then K and L are similar chord.

    Proof Suppose exist a constant λ>0 such that d(L,u)=λd(K,u), we have

    ϕ(d(K,u)d(Kˇ+ϕεL,u))+εϕ(λd(K,u)d(Kˇ+ϕεL,u))=1.

    On the other hand, the exist unique constant δ>0 such that

    ϕ(d(K,u)d(δK,u))+εϕ(λd(K,u)d(δK,u))=1,

    where δ satisfies that

    ϕ(1δ)+εϕ(λδ)=1.

    This shows that d(Kˇ+ϕεL,u)=δd(K,u).

    Suppose exist a constant λ>0 such that d(Kˇ+ϕεL,u)=λd(K,u). Then

    ϕ(1λ)+εϕ(d(L,u)d(Kˇ+ϕεL,u))=1.

    This shows that

    d(L,u)d(Kˇ+ϕεL,u)

    is a constant. This yields that Kˇ+ϕεL and L are similar chord. Namely K and L are similar chord.

    Theorem 6.3 (Orlicz chord Brunn-Minkowski inequality) If K,LSn, 0i<n and ϕΦ2, then

    1ϕ((Bi(K)Bi(Kˇ+ϕL))1/(ni),(Bi(L)Bi(Kˇ+ϕL))1/(ni)). (6.3)

    If ϕ is strictly convex, the equality holds if and only if K and L are similar chord.

    Proof From (5.4) and Lemma 6.1, we have

    Bi(Kˇ+ϕL)=Bϕ1,i(Kˇ+ϕL,K)+Bϕ2,i(Kˇ+ϕL,L)Bi(Kˇ+ϕL)(ϕ1((Bi(K)Bi(Kˇ+ϕL))1/(ni))+ϕ2((Bi(L)kBi(Kˇ+ϕL))1/(ni)))=Bi(Kˇ+ϕL)ϕ((Bi(K)Bi(Kˇ+ϕL))1/(ni),(Bi(L)Bi(Kˇ+ϕL))1/(ni)).

    This is just inequality (6.3). From the equality condition of (5.4) and Lemma 6.3, it yields that if ϕ is strictly convex, equality in (6.3) holds if and only if K and L are similar chord.

    Corollary 6.4 If K,LSn, 0i<n and p1, then

    Bi(Kˇ+pL)p/(ni)Bi(K)p/(ni)+Bi(L)p/(ni), (6.4)

    with equality if and only if K and L are similar chord.

    Proof This follows immediately from Theorem 6.2 with ϕ(x1,x2)=xp1+xp2 and p1.

    Taking i=0 in (6.4), this yields the Lp-Brunn-Minkowski inequality for the chord integrals. If K,LSn and p1, then

    B(Kˇ+pL)p/nB(K)p/n+B(L)p/n,

    with equality if and only if K and L are similar chord.

    As a application, in the section, we give a new isoperimetric inequality for chord integrals. As we all know, the isoperimetric inequality for convex bodies can be stated below (see e.g. [26], p. 318).

    The isoperimetric inequality If K is convex body in Rn, then

    (V(K)V(B))n1(S(K)S(B))n, (7.1)

    with equality if and only if K is an n-ball.

    Here B is the unit ball centered at the origin, V(K) denotes the volume of K and S(K) is the surface area of K, defined by (see [26], p. 318)

    S(K)=limε0V(K+εB)V(K)ε=nV1(K,B),

    where + the usual Minkowski sum. Here, the mixed volume of convex bodies K and L, V1(K,L), defined by (see e.g. [1])

    V1(K,L)=1nSn1h(L,u)dS(K,u). (7.2)

    Next, we give some new isoperimetric inequalities for mixed chord integrals by using the Orlicz chord Minkowski inequality established in Section 5.

    Theorem 7.1 (The Lp-isoperimetric inequality for mixed chord integrals) If KSn, 0i<n and p1, then

    (˜Bp,i(K)S(B))ni(Bi(K)V(B))ni+p, (7.3)

    with equality if and only if K is an n-ball, where ˜Bp,i(K)=nBp,i(K,B).

    Proof Putting L=B, ϕ(t)=tp and p1 in Orlicz chord Minkowski inequality (5.4)

    Bp,i(K,B)Bi(K)(Bi(B)Bi(K))p/(ni).

    That is

    (Bp,i(K,B)Bi(K))ni(Bi(K)V(B))p.

    Hence

    (nBp,i(K,B)S(B))ni(Bi(K)V(B))ni+p.

    From the equality of (5.4), we find that the equality in (7.3) holds if and only if K and B are similar chord. This yields that the equality in (7.3) holds if and only if K is an n-ball.

    Theorem 7.2 (The isoperimetric inequality for the chord integrals) If KSn, then

    (˜B(K)S(B))n(B(K)V(B))n+1, (7.4)

    with equality if and only if K is an n-ball, where ˜B(K)=nB1(K,B).

    Proof This follows immediately from (7.3) with p=1 and i=0.

    This is just a similar form of the classical isoperimetric inequality (7.1).

    As extensions, in the Section, the Orlicz mixed chord integral of K and L, Bϕ(K,L), is generalized into Orlicz multiple mixed chord integral of (n+1) star bodies L1,K1,,Kn. Further, we generalize the Orlicz-Minklowski inequality into Orlicz-Aleksandrov-Fenchel inequality for the Orlicz multiple mixed chord integrals.

    Theorem 8.1 If L1,K1,,KnSn and ϕ1,ϕ2Φ, then

    ddε|ε=0+B(L1ˇ+ϕεK1,K2,,Kn)=1n(ϕ1)r(1)
    ×Sn1ϕ2(d(K1,u)d(L1,u))d(L1,u)d(K2,u)d(Kn,u)dS(u). (8.1)

    Proof This may yield by using a generalized idea and method of proving Lemma 4.4. Here, we omit the details.

    Obviously, (4.3) is a special case of (8.1). Moreover, from Theorem 8.1, we can find the following definition:

    Definition 8.2 (Orlicz multiple mixed chord integrals) Let L1,K1,,KnSn and ϕΦ, the Orlicz multiple mixed chord integral of (n+1) star bodies L1,K1,,Kn, is denoted by Bϕ(L1,K1,,Kn), is defined by

    Bϕ(L1,K1,,Kn)=1nSn1ϕ(d(K1,u)d(L1,u))d(L1,u)d(K2,u)d(Kn,u)dS(u). (8.2)

    When L1=K1, Bϕ(L1,K1,,Kn) becomes the well-known mixed chord integral B(K1,,Kn). Obviously, for 0i<n, Bϕ,i(K,L) is also a special case of Bϕ(L1,K1,,Kn).

    Corollary 8.3 If L1,K1,,KnSn and ϕ1,ϕ2Φ, then

    Bϕ2(L1,K1,,Kn)=(ϕ1)r(1)ddε|ε=0B(L1+ϕεK1,K2,,Kn). (8.3)

    Proof This yields immediately from (8.1) and (8.2).

    Similar to the proof of Theorem 5.4, we may establish an Orlicz-Aleksandrov-Fenchel inequality as follows:

    Theorem 8.4 (Orlicz-Aleksandrov-Fenchel inequality for the Orlicz multiple mixed chord integrals) If L1,K1,,KnSn, ϕΦ and 1rn, then

    Bϕ(L1,K1,K2,,Kn)B(L1,K2,,Kn)ϕ(ri=1B(Ki,Ki,Kr+1,,Kn)1rB(L1,K2,Kn)). (8.4)

    If ϕ is strictly convex, equality holds if and only if L1,K1,,Kr are all of similar chord.

    Proof This yields immediately by using a generalized idea and method of proving Theorem 5.4. Here, we omit the details.

    Obviously, the Orlicz-Minklowski inequality (5.4) is a special case of the Orlicz-Aleksandrov-Fenchel inequality (8.4). Moreover, when L1=K1, (8.4) becomes the following Aleksandrov-Fenchel inequality for the mixed chords.

    Corollary 8.5 (Aleksandrov-Fenchel inequality for the mixed chord integrals) If K1,,KnSn and 1rn, then

    B(K1,,Kn)ri=1B(Ki,Ki,Kr+1,,Kn)1r. (8.5)

    with equality if and only if K1,,Kr are all of similar chord.

    Finally, it is worth mentioning: when ϕ(t)=tp and p1, Bϕ(L1,K1,,Kn) written as Bp(L1,K1,,Kn) and call it Lp-multiple mixed chord integrals of (n+1) star bodies L1,K1,,Kn. So, the new concept of Lp-multiple mixed chord integrals and Lp-Aleksandrov-Fenchel inequality for the Lp-multiple mixed chord integrals may be also derived. Here, we omit the details of all derivations.

    Research is supported by National Natural Science Foundation of China (11371334, 10971205).

    The author declares that no conflicts of interest in this paper.



    [1] D. J. Acheson, Elementary Fluid Dynamics, The Clarendon Press Oxford University Press, New York, 1990.
    [2] V. S. Ajaev, Evolution of dry patches in evaporating liquid films, Phys. Rev. E, 72 (2005), 031605.
    [3] V. S. Ajaev, Spreading of thin volatile liquid droplets on uniformly heated surfaces, J. Fluid Mech., 528 (2005), 279-296. doi: 10.1017/S0022112005003320
    [4] V. S. Ajaev, Interfacial Fluid Mechanics, Springer, New York, 2012.
    [5] V. S. Ajaev, E. Y. Gatapova, O. A. Kabov, Stability and break-up of thin liquid films on patterned and structured surfaces, Adv. Colloid Interface Sci., 228 (2016), 92-104. doi: 10.1016/j.cis.2015.11.011
    [6] V. S. Ajaev and G. M. Homsy, Steady vapor bubbles in rectangular microchannels, J. Colloid Interface Sci., 240 (2001), 259-271. doi: 10.1006/jcis.2001.7562
    [7] V. S. Ajaev, J. Klentzman, T. Gambaryan-Roisman, et al. Fingering instability of partially wetting evaporating liquids, J. Eng. Math., 73 (2012), 31-38. doi: 10.1007/s10665-010-9448-y
    [8] D. M. Anderson, M. K. Gupta, A. A. Voevodin, et al. Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation, ACS Nano, 6 (2012), 3262-3268. doi: 10.1021/nn300183d
    [9] D. G. Aronson, The porous medium equation. In Nonlinear diffusion problems (Montecatini Terme, 1985), volume 1224 of Lecture Notes in Math., pages 1-46. Springer, Berlin, 1986.
    [10] M. Asgari and A. Moosavi, Coarsening dynamics of dewetting nanodroplets on chemically patterned substrates, Phys. Rev. E, 86 (2012), 016303.
    [11] G. I. Barenblatt, Scaling, Self-similarity, and Intermediate Asymptotics, Cambridge University Press, New York, 1996.
    [12] G. I. Barenblatt, Scaling, Cambridge University Press, New York, 2003.
    [13] J. Becker, G. Grün, R. Seemann, et al. Complex dewetting scenarios captured by thin-film models, Nat. Mater., 2 (2003), 59-63. doi: 10.1038/nmat788
    [14] P. Beltrame and U. Thiele, Time integration and steady-state continuation for 2d lubrication equations, SIAM J. Appl. Dyn. Syst., 9 (2010), 484-518. doi: 10.1137/080718619
    [15] F. Bernis, Finite speed of propagation and continuity of the interface for thin viscous flows, Adv. Differential Equ., 1 (1996), 337-368.
    [16] F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Differ. Equations, 83 (1990), 179-206. doi: 10.1016/0022-0396(90)90074-Y
    [17] F. Bernis, J. Hulshof, J. R. King, Dipoles and similarity solutions of the thin film equation in the half-line, Nonlinearity, 13 (2000), 413-439. doi: 10.1088/0951-7715/13/2/305
    [18] A. L. Bertozzi, Symmetric singularity formation in lubrication-type equations for interface motion, SIAM J. Appl. Math., 56 (1996), 681-714. doi: 10.1137/S0036139994271972
    [19] A. L. Bertozzi, The mathematics of moving contact lines in thin liquid films, Notices of the American Mathematical Society, 45 (1998), 689-697.
    [20] A. L. Bertozzi, M. P. Brenner, T. F. Dupont, et al. Singularities and similarities in interface flows. In Trends and perspectives in applied mathematics, pages 155-208. Springer, New York, 1994.
    [21] A. L. Bertozzi, G. Grün, T. P. Witelski, Dewetting films: bifurcations and concentrations, Nonlinearity, 14 (2001), 1569-1592. doi: 10.1088/0951-7715/14/6/309
    [22] A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: the moving contact line with a "porous media" cut-off of van der Waals interactions, Nonlinearity, 7 (1994), 1535-1564. doi: 10.1088/0951-7715/7/6/002
    [23] A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions, Commun. Pure Appl. Math., 49 (1996), 85-123. doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2
    [24] A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations, Commun. Pure Appl. Math., 51 (1998), 625-661. doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.0.CO;2-9
    [25] A. L. Bertozzi and M. C. Pugh, Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J., 49 (2000), 1323-1366.
    [26] M. Bertsch, R. Dal Passo, H. Garcke, et al. The thin viscous flow equation in higher space dimensions, Adv. Differ. Equations, 3 (1998), 417-440.
    [27] J. Bischof, D. Scherer, S. Herminghaus, et al. Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting, Phys. Rev. Lett., 77 (1996), 1536-1539. doi: 10.1103/PhysRevLett.77.1536
    [28] S. Boatto, L. P. Kadanoff, P. Olla, Traveling-wave solutions to thin-film equations, Phys. Rev. E, 48 (1993), 4423-4431.
    [29] D. Bonn, J. Eggers, J. Indekeu, et al. Wetting and spreading, Rev. Mod. Phys., 81 (2009), 739-805. doi: 10.1103/RevModPhys.81.739
    [30] M. Bowen, J. Hulshof, J. R. King, Anomalous exponents and dipole solutions for the thin film equation, SIAM J. Appl. Math., 62 (2001), 149-179. doi: 10.1137/S0036139900366936
    [31] R. J. Braun, Dynamics of the tear film, Annu. Rev. Fluid Mech., 44 (2012), 267-297. doi: 10.1146/annurev-fluid-120710-101042
    [32] L. Brusch, H. Kühne, U. Thiele, et al. Dewetting of thin films on heterogeneous substrates: Pinning versus coarsening, Phys. Rev. E, 66 (2002), 011602.
    [33] L. N. Brush and S. H. Davis, A new law of thinning in foam dynamics, J. Fluid Mech., 534 (2005), 227-236. doi: 10.1017/S0022112005004763
    [34] J. P. Burelbach, S. G. Bankoff, S. H. Davis, Nonlinear stability of evaporating/condensing liquid films, J. Fluid Mech., 195 (1988), 463-494. doi: 10.1017/S0022112088002484
    [35] J. A. Carrillo and G. Toscani, Long-time asymptotics for strong solutions of the thin film equation, Commun. Math. Phys., 225 (2002), 551-571. doi: 10.1007/s002200100591
    [36] A.-M. Cazabat and G. Guena, Evaporation of macroscopic sessile droplets, Soft Matter, 6 (2010), 2591-2612. doi: 10.1039/b924477h
    [37] S. J. Chapman, P. H. Trinh, T. P. Witelski, Exponential asymptotics for thin film rupture, SIAM J. Appl. Math., 73 (2013), 232-253. doi: 10.1137/120872012
    [38] K.-S. Chou and S.-Z. Du, Estimates on the Hausdorff dimension of the rupture set of a thin film, SIAM J. Math. Anal., 40 (2008), 790-823. doi: 10.1137/070685348
    [39] K.-S. Chou and Y.-C. Kwong, Finite time rupture for thin films under van der Waals forces, Nonlinearity, 20 (2007), 299-317. doi: 10.1088/0951-7715/20/2/004
    [40] P. Constantin, T. F. Dupont, R. E. Goldstein, et al. Droplet breakup in a model of the Hele-Shaw cell, Phys. Rev. E, 47 (1993), 4169-4181. doi: 10.1103/PhysRevE.47.4169
    [41] P. Constantin, T. Elgindi, H. Nguyen, et al. On singularity formation in a Hele-Shaw model, Commun. Math. Phys., 363 (2018), 139-171. doi: 10.1007/s00220-018-3241-6
    [42] R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films, Rev. Mod. Phys., 81(2009), 1131-1198. doi: 10.1103/RevModPhys.81.1131
    [43] M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), 851-1112. doi: 10.1103/RevModPhys.65.851
    [44] B. Dai, L. G. Leal, A. Redondo, Disjoining pressure for nonuniform thin films, Phys. Rev. E, 78 (2008), 061602.
    [45] S. B. Dai, On a mean field model for 1D thin film droplet coarsening, Nonlinearity, 23 (2010), 325-340. doi: 10.1088/0951-7715/23/2/006
    [46] S. B. Dai, On the Ostwald ripening of thin liquid films, Commun. Math. Sci., 9 (2011), 143-160. doi: 10.4310/CMS.2011.v9.n1.a7
    [47] S. B. Dai and R. L. Pego, Universal bounds on coarsening rates for mean-field models of phase transitions, SIAM J. Math. Anal., 37 (2005), 347-371. doi: 10.1137/040618047
    [48] R. Dal Passo, H. Garcke, G. Grün, On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal., 29 (1998), 321-342. doi: 10.1137/S0036141096306170
    [49] R. Dal Passo, L. Giacomelli, A. Shishkov, The thin film equation with nonlinear diffusion, Commun. Part. Diff. Eq., 26 (2001), 1509-1557. doi: 10.1081/PDE-100107451
    [50] M. C. Dallaston, M. A. Fontelos, D. Tseluiko, et al. Discrete self-similarity in interfacial hydrodynamics and the formation of iterated structures, Phys. Rev. Lett., 120 (2018), 34505.
    [51] M. C. Dallaston, D. Tseluiko, Z. Zheng, et al. Self-similar finite-time singularity formation in degenerate parabolic equations arising in thin-film flows, Nonlinearity, 30 (2017), 2647-2666. doi: 10.1088/1361-6544/aa6eb3
    [52] A. A. Darhuber and S. M. Troian, Principles of microfluidic actuation by modulation of surface stresses, Annu. Rev. Fluid Mech., 37 (2005), 425-455. doi: 10.1146/annurev.fluid.36.050802.122052
    [53] A. A. Darhuber, S. M. Troian, S. M. Miller, et al. Morphology of liquid microstructures on chemically patterned surfaces, J. Appl. Phys., 87 (2000), 7768-7775. doi: 10.1063/1.373452
    [54] A. A. Darhuber, S. M. Troian, W. W. Reisner, Dynamics of capillary spreading along hydrophilic microstripes, Phys. Rev. E, 64 (2001), 031603.
    [55] B. Davidovitch, E. Moro, H. A. Stone, Spreading of viscous fluid drops on a solid substrate assisted by thermal fluctuations, Phys. Rev. Lett., 95 (2005), 244505.
    [56] P. G. de Gennes, Wetting - statics and dynamics, Rev. Mod. Phys., 57 (1985), 827-863. doi: 10.1103/RevModPhys.57.827
    [57] P. G. de Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer Verlag, New York, 2003.
    [58] M. di Bernardo, C. J. Budd, A. R. Champneys, et al. Piecewise-smooth Dynamical Systems, volume 163 of Applied Mathematical Sciences, Springer-Verlag London, Ltd., London, 2008.
    [59] J. A. Diez, A. G. Gonzalez, L. Kondic, On the breakup of fluid rivulets, Phys. Fluids, 21 (2009), 082105.
    [60] J. A. Diez and L. Kondic, On the breakup of fluid films of finite and infinite extent, Phys. Fluids, 19 (2007), 072107.
    [61] M. A. Durán-Olivencia, R. S. Gvalani, S. Kalliadasis, et al. Instability, rupture and fluctuations in thin liquid films: Theory and computations, J. Stat. Phys., 174 (2019), 579-604. doi: 10.1007/s10955-018-2200-0
    [62] M. Dziwnik, M. Korzec, A. Münch, et al. Stability analysis of unsteady, nonuniform base states in thin film equations, Multiscale Model. Sim., 12 (2014), 755-780. doi: 10.1137/130943352
    [63] E. Weinan, Principles of Multiscale Modeling, Cambridge University Press, Cambridge, 2011.
    [64] J. Eggers, Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys., 69 (1997), 865-929. doi: 10.1103/RevModPhys.69.865
    [65] J. Eggers and M. A. Fontelos, The role of self-similarity in singularities of partial differential equations, Nonlinearity, 22 (2009), R1-R44.
    [66] J. Eggers and M. A. Fontelos, Singularities: Formation, Structure, and Propagation, Cambridge University Press, 2015.
    [67] J. Eggers and L. Pismen, Nonlocal description of evaporating drops, Phys. Fluids, 22 (2010), 112101.
    [68] C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423. doi: 10.1137/S0036141094267662
    [69] S. Engelnkemper, S. V. Gurevich, H. Uecker, et al. Continuation for thin film hydrodynamics and related scalar problems. In Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, pages 459-501. Springer, 2019.
    [70] R. Enright, N. Miljkovic, J. L. Alvarado, et al. Dropwise condensation on micro-and nanostructured surfaces, Nanosc. Microsc. Therm., 18 (2014), 223-250. doi: 10.1080/15567265.2013.862889
    [71] P. L. Evans, J. R. King, A. Münch, Intermediate-asymptotic structure of a dewetting rim with strong slip, Applied Mathematics Research Express, 2006 (2006), 25262.
    [72] P. L. Evans, J. R. King, A. Münch, The structure of a dewetting rim with strong slip: the long-time evolution, Multiscale Model. Sim., 16 (2018), 1365-1391. doi: 10.1137/15M1051221
    [73] R. Fetzer, K. Jacobs, A. Munch, et al. New slip regimes and the shape of dewetting thin liquid films, Phys. Rev. Lett., 95 (2005), 127801.
    [74] J. Fischer and G. Grün, Existence of positive solutions to stochastic thin-film equations, SIAM J. Math. Anal., 50 (2018), 411-455. doi: 10.1137/16M1098796
    [75] L. S. Fisher and A. A. Golovin, Nonlinear stability analysis of a two-layer thin liquid film: Dewetting and autophobic behavior, J. Colloid Interf. Sci., 291 (2005), 515-528. doi: 10.1016/j.jcis.2005.05.024
    [76] Y. Gao, H. Ji, J.-G. Liu, et al. A vicinal surface model for epitaxial growth with logarithmic free energy, Discrete & Continuous Dynamical Systems-B, 23 (2018), 4433-4453.
    [77] Y. Gao, J.-G. Liu, X. Y. Lu, Gradient flow approach to an exponential thin film equation: global existence and latent singularity, ESAIM: Control, Optimisation and Calculus of Variations, 25 (2019), 49.
    [78] A. Ghatak, R. Khanna, A. Sharma, Dynamics and morphology of holes in dewetting thin films, J. Colloid Interf. Sci., 212 (1999), 483-494. doi: 10.1006/jcis.1998.6052
    [79] L. Giacomelli, A fourth-order degenerate parabolic equation describing thin viscous flows over an inclined plane, Appl. Math. Lett., 12 (1999), 107-111.
    [80] L. Giacomelli, M. V. Gnann, F. Otto, Regularity of source-type solutions to the thin-film equation with zero contact angle and mobility exponent between 3/2 and 3, Eur. J. Appl. Math., 24 (2013), 735-760. doi: 10.1017/S0956792513000156
    [81] L. Giacomelli and F. Otto, Rigorous lubrication approximation, Interfaces Free Bound., 5 (2003), 483-529.
    [82] M.-H. Giga, Y. Giga, J. Saal, Nonlinear Partial Differential Equations: Asymptotic Behavior of Solutions and Self-Similar Solutions, Birkhäuser Boston, Ltd., Boston, MA, 2010.
    [83] K. Glasner and S. Orizaga, Improving the accuracy of convexity splitting methods for gradient flow equations, J. Comput. Phys., 315 (2016), 52-64. doi: 10.1016/j.jcp.2016.03.042
    [84] K. Glasner, F. Otto, T. Rump, et al. Ostwald ripening of droplets: The role of migration, Eur. J. Appl. Math., 20 (2009), 1-67. doi: 10.1017/S0956792508007559
    [85] K. B. Glasner, Spreading of droplets under the influence of intermolecular forces, Phys. Fluids, 15 (2003), 1837-1842. doi: 10.1063/1.1578076
    [86] K. B. Glasner, Ostwald ripening in thin film equations, SIAM J. Appl. Math., 6 (2008), 473-493.
    [87] K. B. Glasner and T. P. Witelski, Coarsening dynamics of dewetting films, Phys. Rev. E, 67 (2003), 016302.
    [88] K. B. Glasner and T. P. Witelski, Collision versus collapse of droplets in coarsening of dewetting thin films, Physica D, 209 (2005), 80-104. doi: 10.1016/j.physd.2005.06.010
    [89] M. V. Gnann and M. Petrache, The Navier-slip thin-film equation for 3D fluid films: existence and uniqueness, J. Differ. Equations, 265 (2018), 5832-5958. doi: 10.1016/j.jde.2018.07.015
    [90] R. E. Goldstein, A. I. Pesci, M. J. Shelley, Attracting manifold for a viscous topology transition, Phys. Rev. Lett., 75 (1995), 3665-3668. doi: 10.1103/PhysRevLett.75.3665
    [91] C. P. Grant, Spinodal decomposition for the Cahn-Hilliard equation, Commun. Part. Diff. Eq., 18 (1993), 453-490. doi: 10.1080/03605309308820937
    [92] M. B. Gratton and T. P. Witelski, Transient and self-similar dynamics in thin film coarsening, Physica D, 238 (2009), 2380-2394. doi: 10.1016/j.physd.2009.09.015
    [93] H. P. Greenspan, On the motion of a small viscous droplet that wets a surface, J. Fluid Mech., 84 (1978), 125-143. doi: 10.1017/S0022112078000075
    [94] G. Grün, K. Mecke, M. Rauscher, Thin-film flow influenced by thermal noise, J. Stat. Phys., 122 (2006), 1261-1291. doi: 10.1007/s10955-006-9028-8
    [95] G. Grün and M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation, Numer. Math., 87 (2000), 113-152. doi: 10.1007/s002110000197
    [96] G. Grün and M. Rumpf, Simulation of singularities and instabilities arising in thin film flow, Eur. J. Appl. Math., 12 (2001), 293-320. doi: 10.1017/S0956792501004429
    [97] E. K. O. Hellen and J. Krug, Coarsening of sand ripples in mass transfer models, Phys. Rev. E, 66 (2002), 011304.
    [98] D. Herde, U. Thiele, S. Herminghaus, et al. Driven large contact angle droplets on chemically heterogeneous substrates, EPL, 100 (2012), 16002.
    [99] S. Herminghaus, M. Brinkmann, R. Seemann, Wetting and dewetting of complex surface geometries, Annu. Rev. Mater. Res., 38 (2008), 101-121. doi: 10.1146/annurev.matsci.38.060407.130335
    [100] S. Herminghaus and F. Brochard, Dewetting though nucleation, C. R. Phys., 7 (2006), 1073-1081. doi: 10.1016/j.crhy.2006.10.021
    [101] S. Herminghaus, K. Jacobs, K. Mecke, et al. Spinodal dewetting in liquid crystal and liquid metal films, Science, 282 (1998), 916-919.
    [102] L. M. Hocking, The influence of intermolecular forces on thin fluid layers, Phys. Fluids, 5 (1993), 793-798. doi: 10.1063/1.858627
    [103] C. Huh and L. E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interf. Sci., 35 (1971), 85-101. doi: 10.1016/0021-9797(71)90188-3
    [104] H. J. Hwang and T. P. Witelski, Short-time pattern formation in thin film equations, Discrete and Continuous Dynamical Systems. Series A, 23 (2009), 867-885. doi: 10.3934/dcds.2009.23.867
    [105] J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, New York, 1992.
    [106] K. Jacobs, R. Seemann, S. Herminghaus, Stability and dewetting of thin liquid films. In Polymer thin films, pages 243-265. World Scientific, 2008.
    [107] H. Ji and T. P. Witelski, Finite-time thin film rupture driven by modified evaporative loss, Physica D, 342 (2017), 1-15. doi: 10.1016/j.physd.2016.10.002
    [108] H. Ji and T. P. Witelski, Instability and dynamics of volatile thin films, Phys. Rev. Fluids, 3 (2018), 024001.
    [109] H. Ji and T. P. Witelski, Steady states and dynamics of a thin-film-type equation with nonconserved mass, Eur. J. Appl. Math., (2019), 1-34.
    [110] H. Jiang and W.-M. Ni, On steady states of van der Waals force driven thin film equations, Eur. J. Appl. Math., 18 (2007), 153-180. doi: 10.1017/S0956792507006936
    [111] S. Kalliadasis, C. Ruyer-Quil, B. Scheid, et al. Falling Liquid Films, volume 176 of Applied Mathematical Sciences, Springer, London, 2012.
    [112] H. S. Kheshgi and L. E. Scriven, Dewetting - nucleation and growth of dry regions, Chem. Eng. Sci., 46 (1991), 519-526. doi: 10.1016/0009-2509(91)80012-N
    [113] J. R. King, Two generalisations of the thin film equation, Math. Comput. Model., 34 (2001), 737-756. doi: 10.1016/S0895-7177(01)00095-4
    [114] J. R. King and M. Bowen, Moving boundary problems and non-uniqueness for the thin film equation, Eur. J. Appl. Math., 12 (2001), 321-356. doi: 10.1017/S0956792501004405
    [115] J. R. King, A. Münch, B. Wagner, Linear stability of a ridge, Nonlinearity, 19 (2006), 2813-2831. doi: 10.1088/0951-7715/19/12/005
    [116] J. R. King, A. Münch, B. A. Wagner, Linear stability analysis of a sharp-interface model for dewetting thin films, J. Eng. Math., 63 (2009), 177-195. doi: 10.1007/s10665-008-9242-2
    [117] G. Kitavtsev, L. Recke, B. Wagner, Centre manifold reduction approach for the lubrication equation, Nonlinearity, 24 (2011), 2347-2369. doi: 10.1088/0951-7715/24/8/010
    [118] G. Kitavtsev, L. Recke, B. Wagner, Asymptotics for the spectrum of a thin film equation in a singular limit, SIAM J. Appl. Dyn. Syst., 11 (2012), 1425-1457. doi: 10.1137/100813488
    [119] R. V. Kohn and F. Otto, Upper bounds on coarsening rates, Commun. Math. Phys., 229 (2002), 275-295.
    [120] R. Konnur, K. Kargupta, A. Sharma, Instability and morphology of thin liquid films on chemically heterogeneous substrates, Phys. Rev. Lett., 84 (2000), 931-934. doi: 10.1103/PhysRevLett.84.931
    [121] M.-A. Y.-H. Lam, L. J. Cummings, L. Kondic, Computing dynamics of thin films via large scale GPU-based simulations, Journal of Computational Physics: X, 2 (2019), 100001.
    [122] E. Lauga, M. P. Brenner, H. A. Stone, Microfluidics: The no-slip boundary condition. In J. Foss, C. Tropea, and A. Yarin, editors, Handbook of Experimental Fluid Dynamics, chapter 19, pages 1-27. Springer, 2007.
    [123] R. S. Laugesen and M. C. Pugh, Linear stability of steady states for thin film and Cahn-Hilliard type equations, Arch. Ration. Mech. An., 154 (2000), 3-51. doi: 10.1007/PL00004234
    [124] R. S. Laugesen and M. C. Pugh, Properties of steady states for thin film equations, Eur. J. Appl. Math., 11 (2000), 293-351. doi: 10.1017/S0956792599003794
    [125] R. S. Laugesen and M. C. Pugh, Energy levels of steady states for thin-film-type equations, J. Differ. Equations, 182 (2002), 377-415. doi: 10.1006/jdeq.2001.4108
    [126] R. S. Laugesen and M. C. Pugh, Heteroclinic orbits, mobility parameters and stability for thin film type equations, Electron. J. Differ. Eq., 2002 (2002), 1-29.
    [127] R. N. Leach, F. Stevens, S. C. Langford, et al. Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system, Langmuir, 22 (2006), 8864-8872. doi: 10.1021/la061901+
    [128] L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, Cambridge University Press, 2007.
    [129] I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19 (1961), 35-50. doi: 10.1016/0022-3697(61)90054-3
    [130] R. Limary and P. F. Green, Dewetting instabilities in thin block copolymer films: nucleation and growth, Langmuir, 15 (1999), 5617-5622. doi: 10.1021/la981693o
    [131] R. Limary and P. F. Green, Dynamics of droplets on the surface of a structured fluid film: latestage coarsening, Langmuir, 19 (2003), 2419-2424. doi: 10.1021/la026560o
    [132] F. Liu, G. Ghigliotti, J. J. Feng, et al. Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces, J. Fluid Mech., 752 (2014), 39-65. doi: 10.1017/jfm.2014.320
    [133] W. Liu and T. P. Witelski, Steady-states of thin film droplets on chemically heterogeneous substrates, preprint, 2020.
    [134] A. M. Macner, S. Daniel, P. H. Steen, Condensation on surface energy gradient shifts drop size distribution toward small drops, Langmuir, 30 (2014), 1788-1798. doi: 10.1021/la404057g
    [135] J. A. Marqusee and J. Ross, Kinetics of phase transitions: Theory of Ostwald ripening, J. Chem. Phys., 79 (1983), 373-378. doi: 10.1063/1.445532
    [136] L. C. Mayo, S. W. McCue, T. J. Moroney, et al. Simulating droplet motion on virtual leaf surfaces, Roy. Soc. Open Sci., 2 (2015), 140528.
    [137] K. Mecke and M. Rauscher, On thermal fluctuations in thin film flow, Journal of Physics: Condensed Matter, 17 (2005), S3515.
    [138] N. Miljkovic, R. Enright, E. N. Wang, Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces, ACS Nano, 6 (2012), 1776-1785. doi: 10.1021/nn205052a
    [139] A. Miranville, The Cahn-Hilliard equation and some of its variants, AIMS Mathematics, 2 (2017), 479-544. doi: 10.3934/Math.2017.2.479
    [140] V. Mitlin, Dewetting revisited: New asymptotics of the film stability diagram and the metastable regime of nucleation and growth of dry zones, J. Colloid Interf. Sci., 227 (2000), 371-379. doi: 10.1006/jcis.2000.6792
    [141] V. S. Mitlin, Dewetting of a solid surface: analogy with spinodal decomposition, J. Colloid Interf. Sci., 156 (1993), 491-497. doi: 10.1006/jcis.1993.1142
    [142] V. S. Mitlin and N. V. Petviashvili, Nonlinear dynamics of dewetting: kinetically stable structures, Phys. Lett. A, 192 (1994), 323-326. doi: 10.1016/0375-9601(94)90213-5
    [143] R. Mukherjee and A. Sharma, Instability, self-organization and pattern formation in thin soft films, Soft matter, 11 (2015), 8717-8740. doi: 10.1039/C5SM01724F
    [144] A. Münch and B. Wagner, Contact-line instability of dewetting thin films, Physica D, 209 (2005), 178-190. doi: 10.1016/j.physd.2005.06.027
    [145] A. Münch, B. Wagner, T. P. Witelski, Lubrication models with small to large slip lengths, J. Eng. Math., 53 (2005), 359-383. doi: 10.1007/s10665-005-9020-3
    [146] N. Murisic and L. Kondic, On evaporation of sessile drops with moving contact lines, J. Fluid Mech., 679 (2011), 219-246. doi: 10.1017/jfm.2011.133
    [147] T. G. Myers, Thin films with high surface tension, SIAM Review, 40 (1998), 441-462. doi: 10.1137/S003614459529284X
    [148] C. Neto, K. Jacobs, R. Seemann, et al. Correlated dewetting patterns in thin polystyrene films, Journal of Physics: Condensed Matter, 15 (2003), S421-S426.
    [149] C. Neto, K. Jacobs, R. Seemann, et al. Satellite hole formation during dewetting: experiment and simulation, Journal of Physics: Condensed Matter, 15 (2003), 3355-3366. doi: 10.1088/0953-8984/15/19/334
    [150] B. Niethammer, Derivation of the LSW-theory for Ostwald ripening by homogenization methods, Arch. Ration. Mech. An., 147 (1999), 119-178. doi: 10.1007/s002050050147
    [151] B. Niethammer, The mathematics of Ostwald ripening. In Geometric analysis and nonlinear partial differential equations, pages 649-663. Springer, Berlin, 2003.
    [152] B. Niethammer and R. L. Pego, Non-self-similar behavior in the LSW theory of Ostwald ripening, J. Stat. Phys., 95 (1999), 867-902. doi: 10.1023/A:1004546215920
    [153] B. Niethammer and R. L. Pego, On the initial-value problem in the Lifshitz-Slyozov-Wagner theory of Ostwald ripening, SIAM J. Math. Anal., 31 (2000), 467-485. doi: 10.1137/S0036141098338211
    [154] B. Niethammer and R. L. Pego, Well-posedness for measure transport in a family of nonlocal domain coarsening models, Indiana U. Math. J., 54 (2005), 499-530. doi: 10.1512/iumj.2005.54.2598
    [155] B. Niethammer and J. J. L. Velázquez, On the convergence to the smooth self-similar solution in the LSW model, Indiana U. Math. J., 55 (2006), 761-794. doi: 10.1512/iumj.2006.55.2854
    [156] A. Novick-Cohen, The Cahn-Hilliard equation. In Handbook of differential equations: evolutionary equations. Vol. IV, Handb. Differ. Equ., pages 201-228. Elsevier/North-Holland, Amsterdam, 2008.
    [157] A. Novick-Cohen and L. A. Segel, Nonlinear aspects of the Cahn-Hilliard equation, Physica D, 10 (1984), 277-298. doi: 10.1016/0167-2789(84)90180-5
    [158] J. R. Ockendon and H. Ockendon, Viscous Flow, Cambridge University, Cambridge, 1995.
    [159] A. Oron and S. G. Bankoff, Dewetting of a heated surface by an evaporating liquid film under conjoining/disjoining pressures, J. Colloid Interf. Sci., 218 (1999), 152-166. doi: 10.1006/jcis.1999.6390
    [160] A. Oron and S. G. Bankoff, Dynamics of a condensing liquid film under conjoining/disjoining pressures, Phys. Fluids, 13 (2001), 1107-1117. doi: 10.1063/1.1355022
    [161] A. Oron, S. H. Davis, S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69 (1997), 931-980. doi: 10.1103/RevModPhys.69.931
    [162] F. Otto, T. Rump, D. Slepcev, Coarsening rates for a droplet model: rigorous upper bounds, SIAM J. Math. Anal., 38 (2006), 503-529. doi: 10.1137/050630192
    [163] S. B. G. O'Brien and L. W. Schwartz, Theory and Modeling of Thin Film Flows, In Encyclopedia of Surface and Colloid Science, pages 5283-5297. Marcel Dekker, 2002.
    [164] A. A. Pahlavan, L. Cueto-Felgueroso, A. E. Hosoi, et al. Thin films in partial wetting: Stability, dewetting and coarsening, J. Fluid Mech., 845 (2018), 642-681. doi: 10.1017/jfm.2018.255
    [165] A. A. Pahlavan, L. Cueto-Felgueroso, G. H. McKinley, et al. Thin films in partial wetting: internal selection of contact-line dynamics, Phys. Rev. Lett., 115 (2015), 034502.
    [166] D. Peschka, S. Haefner, L. Marquant, et al. Signatures of slip in dewetting polymer films, P. Natl. Acad. Sci. USA, 116 (2019), 9275-9284. doi: 10.1073/pnas.1820487116
    [167] L. M. Pismen, Spinodal dewetting in a volatile liquid film, Phys. Rev. E, 70 (2004), 021601.
    [168] L. M. Pismen and Y. Pomeau, Mobility and interactions of weakly nonwetting droplets, Phys. Fluids, 16 (2004), 2604-2612. doi: 10.1063/1.1758911
    [169] A. Pototsky, M. Bestehorn, D. Merkt, et al. Alternative pathways of dewetting for a thin liquid two-layer film, Phys. Rev. E, 70 (2004), 025201.
    [170] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1992.
    [171] M. Rauscher and S. Dietrich, Wetting phenomena in nanofluidics, Annu. Rev. Mater. Res., 38 (2008), 143-172. doi: 10.1146/annurev.matsci.38.060407.132451
    [172] G. Reiter, Dewetting of thin polymer films, Phys. Rev. Lett., 68 (1992), 75-78. doi: 10.1103/PhysRevLett.68.75
    [173] S. N. Reznik and A. L. Yarin, Spreading of a viscous drop due to gravity and capillarity on a horizontal or an inclined dry wall, Phys. Fluids, 14 (2002), 118-132. doi: 10.1063/1.1426388
    [174] A. J. Roberts and Z. Li, An accurate and comprehensive model of thin fluid flows with inertia on curved substrates, J. Fluid Mech., 553 (2006), 33-73. doi: 10.1017/S0022112006008640
    [175] N. O. Rojas, M. Argentina, E. Cerda, et al. Inertial lubrication theory, Phys. Rev. Lett., 104 (2010), 187801.
    [176] J. W. Rose, On the mechanism of dropwise condensation, Int. J. Heat Mass Tran., 10 (1967), 755-762. doi: 10.1016/0017-9310(67)90135-4
    [177] J. W. Rose, Dropwise condensation theory and experiment: A review, Journal of Power Energy, 216 (2012), 115-128.
    [178] R. V. Roy, A. J. Roberts, M. E. Simpson, A lubrication model of coating flows over a curved substrate in space, J. Fluid Mech., 454 (2002), 235-261. doi: 10.1017/S0022112001007133
    [179] E. Ruckenstein and R. K. Jain, Spontaneous rupture of thin liquid films, Journal of the Chemical Society-Faraday Transactions II, 70 (1974), 132-147. doi: 10.1039/f29747000132
    [180] K. Rykaczewski, A. T. Paxson, M. Staymates, et al. Dropwise condensation of low surface tension fluids on omniphobic surfaces, Scientific reports, 4 (2015), 4158.
    [181] E. Sander and T. Wanner, Monte Carlo simulations for spinodal decomposition, J. Stat. Phys., 95 (1999), 925-948. doi: 10.1023/A:1004550416829
    [182] E. Sander and T. Wanner, Unexpectedly linear behavior for the Cahn-Hilliard equation, SIAM J. Appl. Math., 60 (2000), 2182-2202. doi: 10.1137/S0036139999352225
    [183] L. W. Schwartz, Unsteady simulation of viscous thin-layer flows. In P. A. Tyvand, editor, Free surface flows with viscosity, pages 203-233. Computational Mechanics Publications, Boston, 1997.
    [184] L. W. Schwartz, R. V. Roy, R. R. Eley, et al. Dewetting patterns in a drying liquid film, J. Colloid Interf. Sci., 234 (2001), 363-374. doi: 10.1006/jcis.2000.7312
    [185] L. W. Schwartz and D. E. Weidner, Modeling of coating flows on curved surfaces, J. Eng. Math., 29 (1995), 91-103. doi: 10.1007/BF00046385
    [186] R. Seemann, S. Herminghaus, K. Jacobs, Dewetting patterns and molecular forces: a reconciliation, Phys. Rev. Lett., 86 (2001), 5534-5537. doi: 10.1103/PhysRevLett.86.5534
    [187] A. Sharma, Many paths to dewetting of thin films, Eur. Phys. J. E, 12 (2003), 397-407. doi: 10.1140/epje/e2004-00008-5
    [188] A. Sharma and R. Khanna, Pattern formation in unstable thin liquid films, Phys. Rev. Lett., 81 (1998), 3463-3466. doi: 10.1103/PhysRevLett.81.3463
    [189] A. Sharma and G. Reiter, Instability of thin polymer films on coated substrates: rupture, dewetting, and drop formation, J. Colloid Interf. Sci., 178 (1996), 383-399. doi: 10.1006/jcis.1996.0133
    [190] A. Sharma and R. Verma, Pattern formation and dewetting in thin films of liquids showing complete macroscale wetting: From "pancakes" to "swiss cheese", Langmuir, 20 (2004), 10337-10345. doi: 10.1021/la048669x
    [191] D. N. Sibley, A. Nold, N. Savva, et al. A comparison of slip, disjoining pressure, and interface formation models for contact line motion through asymptotic analysis of thin two-dimensional droplet spreading, J. Eng. Math., 94 (2015), 19-41.
    [192] V. M. Starov, M. G. Velarde, C. J. Radke, Wetting and Spreading Dynamics, CRC Press, Boca Raton Florida, 2007.
    [193] P. S. Stewart and S. H. Davis, Dynamics and stability of metallic foams: Network modeling, J. Rheol., 56 (2012), 543-574. doi: 10.1122/1.3695029
    [194] P. S. Stewart and S. H. Davis, Self-similar coalescence of clean foams, J. Fluid Mech., 722 (2013), 645-664. doi: 10.1017/jfm.2013.145
    [195] H. A. Stone, A. D. Stroock, A. Ajdari, Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech., 36 (2004), 381-411. doi: 10.1146/annurev.fluid.36.050802.122124
    [196] U. Thiele, Open questions and promising new fields in dewetting, Eur. Phys. J. E, 12 (2003), 409-414. doi: 10.1140/epje/e2004-00009-4
    [197] U. Thiele, Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth, Journal of Physics: Condensed Matter, 22 (2010), 084019.
    [198] U. Thiele, Patterned deposition at moving contact lines, Adv. Colloid Interfac., 206 (2014), 399-413. doi: 10.1016/j.cis.2013.11.002
    [199] U. Thiele, Recent advances in and future challenges for mesoscopic hydrodynamic modelling of complex wetting, Colloids and Surfaces A, 553 (2018), 487-495. doi: 10.1016/j.colsurfa.2018.05.049
    [200] U. Thiele, A. J. Archer, L. M. Pismen, Gradient dynamics models for liquid films with soluble surfactant, Phys. Rev. Fluids, 1 (2016), 083903.
    [201] U. Thiele, A. J. Archer, M. Plapp, Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration, Phys. Fluids, 24 (2012), 102107.
    [202] U. Thiele and E. Knobloch, Driven drops on heterogeneous substrates: Onset of sliding motion, Phys. Rev. Lett., 97 (2006), 204501.
    [203] U. Thiele, M. Mertig, W. Pompe, Dewetting of an evaporating thin liquid film: Heterogeneous nucleation and surface instability, Phys. Rev. Lett., 80 (1998), 2869-2872. doi: 10.1103/PhysRevLett.80.2869
    [204] U. Thiele, M. G. Velarde, K. Neuffer, et al. Film rupture in the diffuse interface model coupled to hydrodynamics, Phys. Rev. E, 64 (2001), 031602.
    [205] D. Tseluiko and D. T. Papageorgiou, Nonlinear dynamics of electrified thin liquid films, SIAM J. Appl. Math., 67 (2007), 1310-1329. doi: 10.1137/060663532
    [206] D. Tseluiko, J. Baxter, U. Thiele, A homotopy continuation approach for analysing finite-time singularities in thin liquid films, IMA J. Appl. Math., 78 (2013), 762-776. doi: 10.1093/imamat/hxt021
    [207] H. B. van Lengerich, M. J. Vogel, P. H. Steen, Coarsening of capillary drops coupled by conduit networks, Phys. Rev. E, 82 (2010), 66312.
    [208] F. Vandenbrouck, M. P. Valignat, A. M. Cazabat, Thin nematic films: metastability and spinodal dewetting, Phys. Rev. Lett., 82 (1999), 2693-2696. doi: 10.1103/PhysRevLett.82.2693
    [209] S. J. VanHook, M. F. Schatz, W. D. McCormick, et al. Long-wavelength surface-tension-driven Bénard convection: experiment and theory, J. Fluid Mech., 345 (1997), 45-78. doi: 10.1017/S0022112097006101
    [210] J. L. Vázquez, The Porous Medium Equation, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.
    [211] A. Vrij, Possible mechanism for spontaneous rupture of thin free liquid films, Discussions of the Faraday Society, 42 (1966), 23-33. doi: 10.1039/df9664200023
    [212] C. Wagner, Theorie der alterung von niedershlagen durch umlosen (Ostwald-Reifung), Z. Elektrochem, 65 (1961), 581-591.
    [213] M. H. Ward, Interfacial thin films rupture and self-similarity, Phys. Fluids, 23 (2011), 062105.
    [214] S. J. Watson, F. Otto, B. Y. Rubinstein, et al. Coarsening dynamics of the convective Cahn-Hilliard equation, Physica D, 178 (2003), 127-148. doi: 10.1016/S0167-2789(03)00048-4
    [215] T. Wei and F. Duan, Interfacial stability and self-similar rupture of evaporating liquid layers under vapor recoil, Phys. Fluids, 28 (2016), 124106.
    [216] G. M. Whitesides, The origins and the future of microfluidics, Nature, 442 (2006), 368-373. doi: 10.1038/nature05058
    [217] M. B. Williams and S. H. Davis, Nonlinear theory of film rupture, J. Colloid Interf. Sci., 90 (1982), 220-228. doi: 10.1016/0021-9797(82)90415-5
    [218] T. P. Witelski, Computing finite-time singularities in interfacial flows. In G. Sabidussi, editor, Modern Methods in Scientific Computing and Applications, NATO ASI series proceedings, pages 451-487. Kluwer, 2002.
    [219] T. P. Witelski and A. J. Bernoff, Stability of self-similar solutions for van der Waals driven thin film rupture, Phys. Fluids, 11 (1999), 2443-2445. doi: 10.1063/1.870138
    [220] T. P. Witelski and A. J. Bernoff, Dynamics of three-dimensional thin film rupture, Physica D, 147 (2000), 155-176. doi: 10.1016/S0167-2789(00)00165-2
    [221] T. P. Witelski, A. J. Bernoff, A. L. Bertozzi, Blowup and dissipation in a critical-case unstable thin film equation, Eur. J. Appl. Math., 15 (2004), 223-256. doi: 10.1017/S0956792504005418
    [222] T. P. Witelski and M. Bowen, ADI schemes for higher-order nonlinear diffusion equations, Appl. Numer. Math., 45 (2003), 331-351. doi: 10.1016/S0168-9274(02)00194-0
    [223] Q. Wu and H. Wong, A slope-dependent disjoining pressure for non-zero contact angles, J. Fluid Mech., 506 (2004), 157-185. doi: 10.1017/S0022112004008420
    [224] W. W. Zhang and J. R. Lister, Similarity solutions for van der Waals rupture of a thin film on a solid substrate, Phys. Fluids, 11 (1999), 2454-2462. doi: 10.1063/1.870110
    [225] L. Zhornitskaya and A. L. Bertozzi, Positivity-preserving numerical schemes for lubrication-type equations, SIAM J. Numer. Anal., 37 (2000), 523-555.
  • This article has been cited by:

    1. Zhen-Hang Yang, Feng Qi, Bivariate homogeneous functions of two parameters: monotonicity, convexity, comparisons, and functional inequalities, 2024, 0022247X, 129091, 10.1016/j.jmaa.2024.129091
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6931) PDF downloads(884) Cited by(14)

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog