Citation: Serap Bulut. Comprehensive subclasses of analytic functions and coefficient bounds[J]. AIMS Mathematics, 2020, 5(5): 4260-4267. doi: 10.3934/math.2020271
[1] | O. Altıntaş, Ö. Ö Kılıç, Coefficient estimates for a class containing quasi-convex functions, Turk. J. Math., 42 (2018), 2819-2825. doi: 10.3906/mat-1805-90 |
[2] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions. In: Proceedings of the conference on complex analysis, Cambridge, MA, (1992), 157-169. |
[3] | Y. C. Kim, J. H. Choi, T. Sugawa, Coefficient bounds and convolution properties for certain classes of close-to-convex functions, P. Jpn. Acad. A-Math., 76 (2000), 95-98. doi: 10.3792/pjaa.76.95 |
[4] | W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Pol. Math., 28 (1973), 297-326. doi: 10.4064/ap-28-3-297-326 |
[5] | M. O. Reade, On close-to-convex univalent functions, Mich. Math. J., 3 (1955), 59-62. |
[6] | R. J. Libera, Some radius of convexity problems, Duke Math. J., 31 (1964), 143-158. doi: 10.1215/S0012-7094-64-03114-X |
[7] | K. I. Noor, D. K. Thomas, Quasi-convex univalent functions, Int. J. Math. Math. Sci., 3 (1980), 255-266. doi: 10.1155/S016117128000018X |
[8] | W. Rogosinski, On the coefficients of subordinate functions, P. Lon. Math. Soc., 48 (1943), 48-82. |
[9] | Q. Xu, Y. Gui, H. M. Srivastava, Coefficient estimates for certain subclasses of analytic functions of complex order, Taiwan. J. Math., 15 (2011), 2377-2386. doi: 10.11650/twjm/1500406441 |
[10] | K. I. Noor, On quasi-convex functions and related topics, Int. J. Math. Math. Sci., 10 (1987), 241-258. doi: 10.1155/S0161171287000310 |