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1. Introduction

Let A be the family of functions of the form
f(Z)=Z+Zanz" (1.1)
n=2

which are analytic in the open unitdisk D = {z:z€ C and |z < 1}.
For analytic functions f and g with f (0) = g (0), f is said to be subordinate to g in D if there exists
an analytic function f) on D such that

H0)=0, h@I<1 and f(z)=g{H(z) (zeD).

We denote the subordination by

f@<g®@ (zeD).

Note that if the function g is univalent in D, then we have

f@<g@@ ((eD)e f(0)=g0) and f(D)cgD).
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Let NV be the class consisting of analytic and univalent functions ¢ : D — C such that ¢(D) is

convex with
00) =1 and R(p@)>0 (zeD).

By means of functions belong to the class N and the principle of subordination, we consider

following subclasses of analytic function class A:

S (g) = {feﬂtzf/(Z)ﬂo(z) (QDEN;ZGD)},
f@
K(g) = {feﬂ 1+ 70 L (90€N;z€D)},
@
B f (@) ,
Cley) = A:geKWY) A ,()<so(z) (p,y eN; zeD)y,
_ ! f@ '
CS@e) = {feA €S W A LT <0@ (UeN: 2D,
QK (p.0) = {feﬂ geKW) A (Zg,((;)) <@ (so,weN;zeD)}.

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

The classes S*(¢) and K (¢) are introduced by Ma and Minda [2], and the class C(p,¥) is

introduced by Kim et al. [3]. Since
f@eK(p) e zf'(2) e S (),

we also have '
zf’" (2) -

f@QeClpy)odgeS W) st
g

¢ (zeD).

Remark 1. If we choose
1+ Az

1+ Bz

go(z)— (-1<B<A<1])

in (1.2) and (1.3), then we get the classes of Janowski starlike functions and Janowski convex functions

1+A 1+A
' 1=8'4,B)  and K ‘) =% @, B,
1+ Bz 1+ Bz
respectively, introduced by Janowski [4].
Remark 2. If we choose
1+Az 1+z
= —-1<B<AX<I1 =
Y@ =15 ClsB<AsD and Y@ =1
in (1.4) and (1.5), then we obtain the classes
1+Az 1+z 1+Az 14z
A,B A,B
(1+Bz 1- ) ceva.p, CS(1+BZ - ) T AB
introduced by Reade [5]; and from (1.6), we have the class
1+Az 1+z
A,B
(1 +Bz 1- ) AV )

introduced by Altintas and Kili¢ [1].
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Remark 3. If we choose

1+ (1-20)z 1+d-28)z

O<a<l) and ¥ (2= =

¢ (2) O<p<l)

-z
in (1.4), then we obtain the class of close-to-convex functions of order a and type S,

I1+(1-2a)z 1+(1-20)z
1-z ’ 1-z2

C = C(a.p),

introduced by Libera [6].

Remark 4. If we choose

1
0@ = Ly
—Z

in (1.2) — (1.4), then we get the familiar class S* consists of starlike functions in D, K consists of
convex functions in D and C consists of close-to-convex function in D, respectively. Also, from (1.5)
and (1.6), we get the class CS of close-to-starlike functions in D introduced by Reade [5], and the class
Q of quasi-convex functions in D introduced by Noor and Thomas [7], respectively.

Throughout this paper
0<o<a<1 and o, eN.

Now we define new comprehensive subclasses of analytic function class A, as follows:

Definition 1. A function f € A is said to be in the class K, s (¢, ¥) if

f @)+ A =86+28)zf" (2) + 162" (2) .
g (2)

¢ (2) (zeD), (1.7)

where g € K (V).

Definition 2. a function f € A is said to be in the class S, (¢, ) if

(1-2+8) f@)+A=9)zf () + 101" (2) -

¢ (2) (zeD), (1.8)
g ()

where g € S* (¥) .
Remark 5. If we set 6 = 0 and A = 1 in Definition 1 and Definition 2, then we have the classes

7(1,0 (‘;0’ l//) = Qq( (()0’ lﬁ) and SI,O (‘P’ '7[’) =C (‘P’ '7[’) .

Also when 6 = 0 and A = 0, we get the classes

Koo (@, ) = C (o, ¥) and Soo (@, ¥) =CS (o, ¥).

Remark 6. If we set 6 = 0 and

1+ Az 1+7
-1<B<AX<I1 d =_=
1B (-1<B<AZ] an ¥ (2) T

() =
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in Definition 1 and Definition 2, then we obtain the classes Qcy (1,A,B) and Qss (4, A, B),
respectively, introduced very recently by Altintas and Kili¢ [1]. These classes consist of functions

f € Asatisfying
@+ Azf" (2) - 1+Az

eK, zeD
7 @ 1+ B2 (g z€D)
and (1-Df@+Af' @)  1+A
- )+ Azf (2 + Az .
< eS8, zeD),
2@ 1+ B2 (g z€D)
respectively.

Altintag and Kili¢ [1] obtained following coefficient bounds for functions belong to the classes
Qcv (1, A, B) and Qsy (4, A, B), as follows:

Theorem 1. If f € Qcy (A, A, B), then

1 (n-1)(A - B)
|a”|31+(n—1)/‘1(1+ 1-B ) (

n=23,...).

Theorem 2. If f € Qs (A, A, B), then

n n-=1)(A-B)
l+m-DA\ © 1-B

la| <

) (n=2,3,...).

In this work, we obtain coefficient bounds for functions in the comprehensive subclasses K s (¢, ¥)
and S,s(p,¥) of analytic functions. Our results improve the results of Altintas and Kili¢ [1]
(Theorem 1 and Theorem 2).

2. Main results

Lemma 1. /8] Let the function ® given by
Q(z) = iAnz" (ze D)
n=1
be convex in D. Also let the function ¥ given by
Y(2) = i B,7" (z e D)
n=1

be holomorphic in D. If
Y (@) <2 (zeD),

then
|B,| < |A4] n=1,2,...).

Lemma 2. [9] Let f € K () and be of the form (1.1), then

ﬁu+W@D

J=
|an| <

n=2,3,...).
n!

AIMS Mathematics Volume 5, Issue 5, 4260-4267.



4264

Lemma 3. [9] Let f € S* (&) and be of the form (1.1), then

n—-2
[TG+ 'O

J=

jad <
(n—1)!

(n=2,3,...).

Theorem 3. Let f € K5 (¢,¢) and be of the form (1.1), then

[I1+(n=1)(A=0+2120) + (n—1)(n—2)A6]|a,|

n-2 n—k-2
11)(]'+ " (0))) /O] n-2 l_% (+ g’ (O))
J= J= _
< p + . l+k:§1 k=D (n=2,3,..).

2.1

Proof. Let the function f € K (¢,¢) be defined by (1.1). Therefore, by Definition 1, there exists a

function .
8@ =2+ ) b €KW, yeM
n=2

so that
f @+ A—=6+220)zf" (2) + 162 f(2) -

g (@)
Note that by (2.2) and Lemma 2, we have

TG+ o

J=0
b,| <

n=2,3,..).
n!

Let us define the function p(z) by

_ @)+ A=8+20)zf" (2) + 1602 f"(2)
8 (@)

P(2)
Then according to (2.3) and (2.5), we get

p(2) < ¢(z) (z€ D).

Hence, using Lemma 1, we obtain

™ (0) ,
P 2lzlel<ipOl  m=12..).
m.
where
p@)=l+ciz+cz +-+- (z € D).

Also from (2.5), we find

@+ A=6+220)zf" (2) + A6 (2) = p(2)g (2).

¢ (2) (zeD).

(z e D).

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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Since a; = b; = 1, in view of (2.9), we obtain

nfl+(n=-1)A-06+210)+mn—-1)(n—2)A6]a, — nb,
Cp—1 + 2c,,_2b2 + -+ (I’l — 1)Clbn_1

n—1
= Y (r-Keab (1=23,..). (2.10)
k=1
Now we get the desired result given in (2.1) by using (2.4),(2.7) and (2.10). |

Theorem 4. Let f € S, s (¢, ¥) and be of the form (1.1), then
[T+(n-=1)A-6+2200)+n—-1)(n—-2)A6]|a,|
n-2 n—k-2
[[0 (Jj+ 'O a2 11 G+ 0
= — O] 1+ )]

: k=1

=0 0
(n-1)

j:(n—k—l)! (n=2.3..). 2.11)

Proof. Let the function f € S,s (¢, ) be defined by (1.1). Therefore, by Definition 2, there exists a
function

g =2+ ) b €S W), yeM (2.12)
n=2

so that
(1-2+06) f(@+ A =08)zf (2) + 162" (2) -

g()
Note that by (2.12) and Lemma 3, we have

¢ (2) (zeD). (2.13)

n-2
E)(J' + [y (0)])
1bal < ’(n_—l), (n=2,3,...). (2.14)

Let us define the function g(z) by

_ (=240 f@+A=08)2f (2) + W2/ (2)

q(2) (z € D). (2.15)
g()
Then according to (2.13) and (2.15), we get
q(z) < ¢ (2) (zeD). (2.16)
Hence, using Lemma 1, we obtain
(m) 0) )
— '=|dm|suo O (m=12..), (2.17)
where
@) =1+diz+d*+---  (zeD). (2.18)
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Also from (2.15), we find

(1-2+6) f@+A=8)zf () + 62 f"(2) = ()8 (2) .
Since a; = by = 1, in view of (2.19), we obtain

[1-A4+6+n(1—-06)+nmn-1)A8]a, — b,
= Cp-1 +Cn_2b2+"' +C]bn_1

n—1

= chbn_k n=23,..).

k=1

Now we get the desired result given in (2.11) by using (2.14),(2.17) and (2.20) .

3. Corollaries and consequences

(2.19)

(2.20)

Letting 6 = 0 and 4 = 1 in Theorem 3 and Theorem 4, we obtain the following consequences,

respectively.

Corollary 1. Let f € QK (¢, ¥) and be of the form (1.1), then

n=2 n—k-2
f%(j + [’ (0)]) 0) n—2 q) (J + ' (0)))
J= j=
la,| < + 1+Z =R n=2,3,...).

2 (1 _ 2
n“n-1) n —

Corollary 2. Let f € C(p,y) and be of the form (1.1), then

n-2 n—k-2
_HO(J' + [y’ (0)]) 0/(0) n-2 HO (J+ 1 (O))
.1: j: _
| < —~ e DY FEy— (n=2.3,...).

k=1

Letting 6 = 0 and A = 0 in Theorem 4, we obtain the following consequence.

Corollary 3. Let f € CS (¢, ¥) and be of the form (1.1), then

n-2 n—k-2
_r% (J + ' (O)) n=2 HO (J+ 1O
Jj= ’ J= —
anl < o5 * ¥ O) 1+; Py (n=2,3,...).
If we choose
(@) = 1+(11_—22“)_Z O<a<l) and yY(2)= —1+(11__2'8)Z 0<p<1)

in Corollary 2, then we get following consequence.
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Corollary 4. [6] Let f € C(a,B) (0 < a,fB < 1) and be of the form (1.1), then
< 23-28)4-2p)---(n—-2P)

n!

laan|

Letting

1+ Az 1+z
-1<B<AX<I1 = —
B (-1< <D, v@ T

in Theorem 3 and Theorem 4, we obtain the following consequences, respectively.

Corollary 5. Let f € Qcy (A, A, B) and be of the form (1.1), then

=0, ¢(2)=

(n-1)(A-B)
< =2,3,...).
Ianl_“(n_l)ﬂ( + > ) (n=12,3,...)
Corollary 6. Let f € Qss (1, A, B) and be of the form (1.1), then
n n-=1)(A-B)
< =23 ...
|an|_1+(n_1)ﬂ( : ) (n=23,..)
Remark 7. It is clear that
A= - D@=-B g A<l n=23.).

2 - 1-B
which would obviously yield significant improvements of Theorem 1 and Theorem 2.

Letting
1=0, A=1, B=-1

in Corollary 5 and Corollary 6, we have following consequences, respectively.

Corollary 7. [5] Let f € C and be of the form (1.1), then

la,| < n n=23,..).
Corollary 8. [5] Let f € CS and be of the form (1.1), then

la.l <n®* (n=2,3,...).

Letting
A=1, A=1, B=-1

in Corollary 5, we have following consequence.

Corollary 9. [10] Let f € Q and be of the form (1.1), then
la,| <1 (n=2,3,...).

4. Conclusions

[n(1-a)+ (@-P)] n=2,3,...).

In this paper, we introduce two comprehensive subclasses K, s (¢, ¥) and S, (¢, ) of analytic
functions by means of the principle of subordination, and obtain the coefficient bounds for functions

in these classes. The well-known results are obtained as a corollary of our main results.
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