Citation: Yongyi Gu, Najva Aminakbari. Two different systematic methods for constructing meromorphic exact solutions to the KdV-Sawada-Kotera equation[J]. AIMS Mathematics, 2020, 5(4): 3990-4010. doi: 10.3934/math.2020257
[1] | R. Hirota, M. Ito, Resonance of solitons in one dimension, J. Phys. Soc. Jpn., 52 (1983), 744-748. doi: 10.1143/JPSJ.52.744 |
[2] | J. Zhang, J. Zhang, L. L. Bo, Abundant travelling wave solutions for KdV-Sawada-Kotera equation with symbolic computation, Appl. Math. Comput., 203 (2008), 233-237. |
[3] | K. Konno, Conservation laws of modified Sawada-Kotera equation in complex plane, J. Phys. Soc. Jpn., 61 (1992), 51-54. doi: 10.1143/JPSJ.61.51 |
[4] | Z. Qin, G. Mu, H. Ma, G'/G-expansion method for the fifth-order forms of KdV-Sawada-Kotera equation, Appl. Math. Comput., 222 (2013), 29-33. |
[5] | L. Zhang, C. M. Khalique, Exact solitary wave and quasi-periodic wave solutions of the KdVSawada-Kotera-Ramani equation, Adv. Differ. Equ., 2015 (2015), 1-12. doi: 10.1186/s13662-014-0331-4 |
[6] | C. F. Wu, H. N. Chan, K. W. Chow, A system of coupled partial differential equations exhibiting both elevation and depression rogue wave modes, Appl. Math. Lett., 47 (2015), 35-42. doi: 10.1016/j.aml.2015.02.021 |
[7] | M. Li, W. K. Hu, C. F. Wu, Rational solutions of the classical Boussinesq-Burgers system, Nonlinear Dyn., 94 (2018), 1291-1302. doi: 10.1007/s11071-018-4424-6 |
[8] | M. N. Islam, M. Asaduzzaman, M. S. Ali, Exact wave solutions to the simplified modified CamassaHolm equation in mathematical physics, AIMS Mathematics, 5 (2019), 26-41. doi: 10.3934/math.2020003 |
[9] | M. H. Islam, K. Khan, M. A. Akbar, et al. Exact traveling wave solutions of modified KdVZakharov-Kuznetsov equation and viscous Burgers equation, SpringerPlus, 3 (2014), 1-9. doi: 10.1186/2193-1801-3-1 |
[10] | M. N. Alam, M. A. Akbar, Some new exact traveling wave solutions to the simplified MCH and the (1+1)-dimensional combined KdV-mKdV equations, J. Assoc. Arab Univ. Basic Appl. Sci., 17 (2015), 6-13. |
[11] | K. Hosseini, F. Samadani, D. Kumar, et al. New optical solitons of cubic-quartic nonlinear Schrödinger equation, Optik, 157 (2018), 1101-1105. doi: 10.1016/j.ijleo.2017.11.124 |
[12] | K. Hosseini, E. Y. Bejarbaneh, A. Bekir, et al. New exact solutions of some nonlinear evolution equations of pseudoparabolic type, Opt. Quant. Electron., 49 (2017), 1-10. doi: 10.1007/s11082-016-0848-8 |
[13] | K. Hosseini, A. Zabihi, F. Samadani, et al. New explicit exact solutions of the unstable nonlinear Schrödinger's equation using the expa and hyperbolic function methods, Opt. Quant. Electron., 50 (2018), 1-8. doi: 10.1007/s11082-017-1266-2 |
[14] | K. Hosseini, J. Manafian, F. Samadani, et al. Resonant optical solitons with perturbation terms and fractional temporal evolution using improved tan (φ(η)/2)-expansion method and exp function approach, Optik, 158 (2018), 933-939. doi: 10.1016/j.ijleo.2017.12.139 |
[15] | K. R. Raslan, K. K. Ali, M. A. Shallal, The modified extended tanh method with the Riccati equation for solving the space-time fractional EW and MEW equations, Chaos Soliton. Fract., 103 (2017), 404-409. doi: 10.1016/j.chaos.2017.06.029 |
[16] | M. A. Shallal, H. N. Jabbar, K. K. Ali, Analytic solution for the space-time fractional Klein-Gordon and coupled conformable Boussinesq equations, Results Phys., 8 (2018), 372-378. doi: 10.1016/j.rinp.2017.12.051 |
[17] | H. M. Baskonus, T. A. Sulaiman, H. Bulut, New solitary wave solutions to the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff and the Kadomtsev-Petviashvili hierarchy equations, Indian J. Phys., 135 (2017), 327-336. |
[18] | H. M. Baskonus, T. A. Sulaiman, H. Bulut, On the novel wave behaviors to the coupled nonlinear Maccari's system with complex structure, Optik, 131 (2017), 1036-1043. doi: 10.1016/j.ijleo.2016.10.135 |
[19] | H. Bulut, T. A. Sulaiman, H. M. Baskonus, et al. On the bright and singular optical solitons to the (2+1)-dimensional NLS and the Hirota equations, Opt. Quant. Electron., 50 (2018), 1-12. doi: 10.1007/s11082-017-1266-2 |
[20] | H. Bulut, T. A. Sulaiman, H. M. Baskonus, Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion, Optik, 163 (2018), 1-7. doi: 10.1016/j.ijleo.2018.02.086 |
[21] | H. Li, Y. Z. Li, Meromorphic exact solutions of two extended (3+1)-dimensional Jimbo-Miwa equations, Appl. Math. Comput., 333 (2018), 369-375. |
[22] | W. Yuan, F. Meng, Y. Huang, et al. All traveling wave exact solutions of the variant Boussinesq equations, Appl. Math. Comput., 268 (2015), 865-872. |
[23] | Y. Gu, W. Yuan, N. Aminakbari, et al. Exact solutions of the Vakhnenko-Parkes equation with complex method, J. Funct. Spaces, 2017 (2017), 1-6. |
[24] | Y. Gu, W. Yuan, N. Aminakbari, et al. Meromorphic solutions of some algebraic differential equations related Painlevé equation IV and its applications, Math. Meth. Appl. Sci., 41 (2018), 3832-3840. doi: 10.1002/mma.4869 |
[25] | H. Roshid, M. Rahman, The exp(-φ(ξ))-expansion method with application in the (1+1)- dimensional classical Boussinesq equations, Results Phys., 4 (2014), 150-155. doi: 10.1016/j.rinp.2014.07.006 |
[26] | K. Khan, M. Akbar, The exp(-φ(ξ))-expansion method for finding traveling wave solutions of Vakhnenko-Parkes equation, Int. J. Dyn. Syst. Differ. Equ., 5 (2014), 72-83. |
[27] | S. Islam, K. Khan, M. Akbar, Exact solutions of unsteady Korteweg-de Vries and time regularized long wave equations, Springerplus, 4 (2015), 1-11. doi: 10.1186/2193-1801-4-1 |
[28] | N. Kadkhoda, H. Jafari, Analytical solutions of the Gerdjikov-Ivanov equation by using exp(-φ(ξ))- expansion method, Optik, 139 (2017), 72-76. doi: 10.1016/j.ijleo.2017.03.078 |
[29] | A. Eremenko, Meromorphic traveling wave solutions of the Kuramoto-Sivashinsky equation, J. Math. Phys., 2 (2006), 278-286. |
[30] | N. A. Kudryashov, Meromorphic solutions of nonlinear ordinary differential equations, Commun. Nonlinear Sci. Numer. simul., 15 (2010), 2778-2790. doi: 10.1016/j.cnsns.2009.11.013 |
[31] | N. A. Kudryashov, D. I. Sinelshchikov, M. V. Demina, Exact solutions of the generalized Bretherton equation, Phys. Lett. A, 375 (2011), 1074-1079. doi: 10.1016/j.physleta.2011.01.010 |
[32] | W. Yuan, Y. Li, J. Lin, Meromorphic solutions of an auxiliary ordinary differential equation using complex method, Math. Meth. Appl. Sci., 36 (2013), 1776-1782. doi: 10.1002/mma.2723 |
[33] | W. Yuan, Y. Wu, Q. Chen, et al. All meromorphic solutions for two forms of odd order algebraic differential equations and its applications, Appl. Math. Comput., 240 (2014), 240-251. |
[34] | W. Yuan, Y. Li, J. Qi, All meromorphic solutions of some algebraic differential equations and their applications, Adv. Differ. Equ., 2014 (2014), 1-14. doi: 10.1186/1687-1847-2014-1 |
[35] | S. Lang, Elliptic Functions, Springer, New York, 1987. |