
Citation: Yongyi Gu, Najva Aminakbari. Two different systematic methods for constructing meromorphic exact solutions to the KdV-Sawada-Kotera equation[J]. AIMS Mathematics, 2020, 5(4): 3990-4010. doi: 10.3934/math.2020257
[1] | Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264 |
[2] | Muhammad Bilal Riaz, Faiza Naseer, Muhammad Abbas, Magda Abd El-Rahman, Tahir Nazir, Choon Kit Chan . Solitary wave solutions of Sawada-Kotera equation using two efficient analytical methods. AIMS Mathematics, 2023, 8(12): 31268-31292. doi: 10.3934/math.20231601 |
[3] | Jin Hyuk Choi, Hyunsoo Kim . Exact traveling wave solutions of the stochastic Wick-type fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation. AIMS Mathematics, 2021, 6(4): 4053-4072. doi: 10.3934/math.2021240 |
[4] | Mahmoud A. E. Abdelrahman, Sherif I. Ammar, Kholod M. Abualnaja, Mustafa Inc . New solutions for the unstable nonlinear Schrödinger equation arising in natural science. AIMS Mathematics, 2020, 5(3): 1893-1912. doi: 10.3934/math.2020126 |
[5] | Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed . Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163 |
[6] | Jianhong Zhuang, Yaqing Liu, Ping Zhuang . Variety interaction solutions comprising lump solitons for the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation. AIMS Mathematics, 2021, 6(5): 5370-5386. doi: 10.3934/math.2021316 |
[7] | P. Veeresha, D. G. Prakasha, Jagdev Singh . Solution for fractional forced KdV equation using fractional natural decomposition method. AIMS Mathematics, 2020, 5(2): 798-810. doi: 10.3934/math.2020054 |
[8] | M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199 |
[9] | Weiping Gao, Yanxia Hu . The exact traveling wave solutions of a class of generalized Black-Scholes equation. AIMS Mathematics, 2017, 2(3): 385-399. doi: 10.3934/Math.2017.3.385 |
[10] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
Hirota and Ito [1] proposed the following Sawada-Kotera equation to theoretically study the resonances of solitons in one dimension,
ut+b(15u3+15uuxx+uxxxx)x=0, | (1.1) |
which has a non-vanishing boundary condition
u|x=∞=constant. | (1.2) |
Replace u by u+a15b and apply the Galilei transformation to remove ux, then Eq (1.1) changes to the KdV-Sawada-Kotera equation [2]
ut+a(3u2+uxx)x+b(15u3+15uuxx+uxxxx)x=0, | (1.3) |
where a, b are constants. It is a linear combination of the Sawada-Kotera equation and the KdV equation, with considering a=0, Eq (1.3) reduces to the Sawada-Kotera equation, when b=0, Eq (1.3) reduces to the KdV equation. In the past few years, many achievements have been made in the study of KdV-Sawada-Kotera equation. About this equation, conservation laws are investigated by Konno [3], and traveling wave solutions are discovered in [4]. Quasi-periodic wave and exact solitary wave solutions to the KdV-Sawada-Kotera equation are obtained [5].
As we know, nonlinear differential equations (NLDEs) are widely utilized in fluid dynamics, solid state physics, plasma physics, biology, nonlinear optics, chemistry and so on. The study to exact solutions of various NLDEs is extremely important in modern mathematics with ramifications to some areas of physics, mathematics and other sciences. There are many systematic methods to seek exact solutions of NLDEs, for example, Hirota bilinear method [6,7], modified simple equation method [8], generalized (G′/G)-expansion method [9,10], modified Kudryashov method [11,12], exp function method [13,14], modified extended tanh method [15,16], sine-Gordon expansion method [17,18], extended sine-Gordon expansion method [19,20], complex method [21,22,23,24] and exp(−ψ(z))-expansion method [25,26,27,28].
Eremenko showed that all meromorphic solutions of the Kuramoto Sivashinsky equation are elliptic function and its degeneration in [29]. After that, Laurent series were applied by Kudryashov et al. [30,31] to obtain meromorphic exact solutions to certain nonlinear differential equations. On the basis of their work, Yuan et al. [32,33] established the complex method combining the theories of complex analysis and complex differential equations. It is a powerful approach to obtain exact solutions for NLDEs that admit ⟨p,q⟩ condition or are Briot-Bouquet (BB) equations [34]. Following their work, we propose the extended complex method to get meromorphic exact solutions for NLDEs which neither admit ⟨p,q⟩ condition nor BB equations. Therefore, the extended complex method is an enhancement of the complex method and should deal with more NLDEs in applied sciences.
The exp(−ψ(z))-expansion approach is an effectual technique to seek analytical solutions for NLDEs. A lot of researchers, for instance, Jafari, Khan, Roshid, etc [25,26,27,28], made good use of this method to study NLDEs. In this article, we utilize two different systematic methods mentioned above to seek meromorphic exact solutions of the KdV-Sawada-Kotera equation. Dynamic behaviors of the solutions are shown by some graphs in which the profiles of Weierstrass elliptic function solutions have never been shown in former literatures.
Consider the following nonlinear PDE:
P(u,ux,ut,uxx,utt,⋯)=0, | (2.1) |
where P is a polynomial consisted by the unknown function u(x,t) as well as its partial derivatives.
Step 1. Reduce Eq (2.1) to the ODE
F(u,u′,u″,u‴,⋯)=0, | (2.2) |
by traveling wave transform
u(x,t)=u(z),z=kx+rt. |
Step 2. Assume that Eq (2.2) has exact solutions as follows:
u(z)=m∑τ=0Bτ(exp(−ψ(z)))τ, | (2.3) |
where Bτ(0≤τ≤m) are constants to be determined latter, such that Bm≠0 and ψ=ψ(z) admits the following ODE:
ψ′(z)=γ+exp(−ψ(z))+μexp(ψ(z)). | (2.4) |
The solutions of Eq (2.4) are given in the following.
When γ2−4μ>0, μ≠0,
ψ(z)=ln(−√(γ2−4μ)tanh(√γ2−4μ2(z+c))−γ2μ), | (2.5) |
ψ(z)=ln(−√(γ2−4μ)coth(√γ2−4μ2(z+c))−γ2μ). | (2.6) |
When γ2−4μ<0, μ≠0,
ψ(z)=ln(√(4μ−γ2)tan(√(4μ−γ2)2(z+c))−γ2μ), | (2.7) |
ψ(z)=ln(√(4μ−γ2)cot(√(4μ−γ2)2(z+c))−γ2μ). | (2.8) |
When γ2−4μ>0, γ≠0, μ=0,
ψ(z)=−ln(γexp(γ(z+c))−1). | (2.9) |
When γ2−4μ=0, γ≠0, μ≠0,
ψ(z)=ln(−2(γ(z+c)+2)γ2(z+c)). | (2.10) |
When γ2−4μ=0, γ=0, μ=0,
ψ(z)=ln(z+c). | (2.11) |
In Eqs (2.5)–(2.11), Bm≠0,γ,μ,c are constants. Taking the homogeneous balance between nonlinear terms and highest order derivatives of Eq (2.2) yields the positive integer m.
Step 3. Insert Eq (2.3) into Eq (2.2) and collect the function exp(−ψ(z)) to yield the polynomial to exp(−ψ(z)). Letting all coefficients with same power of exp(−ψ(z)) be zero to obtain a system of algebraic equations. Solving these equations, we achieve the values of Bm≠0,γ,μ and substitute them into Eq (2.3) as well as Eqs (2.5)–(2.11) to accomplish the determination for analytical solutions of the original PDE.
Substituting
u(x,t)=u(z),z=kx+rt, |
into Eq (1.3) and then integrating it we obtain
ru+3kau2+k3au″+15kbu3+15k3buu″+k5bu⁗+ζ=0. | (3.1) |
where ζ is the integration constant.
Taking the homogeneous balance between u⁗ and uu″ in Eq (3.1) to yields
u(z)=B0+B1exp(−ψ(z))+B2(exp(−ψ(z)))2, | (3.2) |
where B2≠0, B1 and B0 are constants.
Substituting u⁗,uu″,u″,u3,u2,u into Eq.(3.1) and equating the coefficients about exp(−ψ(z)) to zero, we obtain
e0(−ψ(z)): |
k5bB1γ3μ+14k5bB2γ2μ2+8k5bB1γμ2+16k5bB2μ3+15k3bB0B1μγ |
+30k3bB0B2μ2+ak3B1μγ+2ak3B22μ+15kbB03+3kaB20+rB0+ζ=0, |
e1(−ψ(z)): |
B1bγ4k5+30B2bγ3k5μ+22B1bγ2k5μ+120B2bγk5μ2+30k3bB0B1μ |
+15B0B1bγ2k3+90B0B2bγk3μ+15B12bγk3μ+30B1B2bk3μ2+16B1bk5μ2 |
+B1aγ2k3+6B2aγk3μ+2ak3B1μ+45B20B1bk+6B0B1ak+B1r=0, |
e2(−ψ(z)): |
16B2bγ4k5+15B1bγ3k5+232B2bγ2k5μ+60B1bγk5μ+136B2bk5μ2 |
+60B0B2bγ2k3+15B12bγ2k3+105B1B2bγk3μ+30B22bk3μ2+45B0B1bγk3 |
+120B0B2bk3μ+30B21bk3μ+4B2aγ2k3+3B1aγk3+8B2ak3μ+45B20B2bk |
+45B0B21bk+6B0B2ak+3B21ak+B2r=0, |
e3(−ψ(z)): |
130B2bγ3k5+50B1bγ2k5+440B2bγk5μ+75B1B2bγ2k3+40B1bk5μ |
+90B22bγk3μ+150B0B2bγk3+45B21bγk3+30B0B1bk3+10B2aγk3 |
+150B1B2bk3μ+90B0B1B2bk+15B31bk+2B1ak3+6B1B2ak=0, |
e4(−ψ(z)): |
330B2bγ2k5+60B1bγk5+60B22bγ2k3+240B2bk5μ+195B1B2bγk3 |
+90B0B2bk3+30B21bk3+45B0B22bk+45B21B2bk+6B2ak3+3B22ak |
+120B22bk3μ=0, |
e5(−ψ(z)): |
336B2bγk5+24B1bk5+150B22bγk3+120B1B2bk3+45B1B22bk=0, |
e6(−ψ(z)): |
120B2bk5+90B22bk3+15B32bk=0. |
We solve the above algebraic equations and derive two different families:
Family 1:
B2=−4k2,B1=−4γk2,B0=−5k2b(γ2+8μ)+a15b,r=−k(5k4b2(γ2−4μ)2−a2)5b, | (3.3) |
where γ and μ are arbitrary constants.
Substituting Eq (3.3) into Eq (3.2) yields
u(z)=−5k2b(γ2+8μ)+a15b−4k2γexp(−ψ(z))−4k2(exp(−ψ(z)))2. | (3.4) |
Applying Eqs (2.5)–(2.11) into Eq (3.4) respectively, we get the following exact solutions of the KdV-Sawada-Kotera equation.
Family 1.1: When γ2−4μ>0, μ≠0,
u11(z)=−5k2b(γ2+8μ)+a15b+8k2γμ√(γ2−4μ)tanh(√γ2−4μ2(z+c))+γ |
−16k2μ2(√(γ2−4μ)tanh(√γ2−4μ2(z+c))+γ)2, |
u12(z)=−5k2b(γ2+8μ)+a15b+8k2γμ√(γ2−4μ)coth(√γ2−4μ2(z+c))+γ |
−16k2μ2(√(γ2−4μ)coth(√γ2−4μ2(z+c))+γ)2. |
Family 1.2: When γ2−4μ<0, μ≠0,
u13(z)=−5k2b(γ2+8μ)+a15b−8k2γμ√(4μ−γ2)tan(√4μ−γ22(z+c))−γ |
−16k2μ2(√(4μ−γ2)tan(√4μ−γ22(z+c))−γ)2, |
u14(z)=−5k2b(γ2+8μ)+a15b−8k2γμ√(4μ−γ2)cot(√4μ−γ22(z+c))−γ |
−16k2μ2(√(4μ−γ2)cot(√4μ−γ22(z+c))−γ)2. |
Family 1.3: When γ2−4μ>0, γ≠0, μ=0,
u15(z)=−5k2bγ2+a15b−4k2γ2exp(γ(z+c))−1−4k2γ2(exp(γ(z+c))−1)2. |
Family 1.4: When γ2−4μ=0, γ≠0, μ≠0,
u16(z)=−60k2bμ+a15b+2k2γ3(z+c)γ(z+c)+2−k2γ4(z+c)2(γ(z+c)+2)2. |
Family 1.5: When γ2−4μ=0, γ=0, μ=0,
u17(z)=−a15b−4k2(z+c)2. |
Family 2:
B2=−2k2,B1=−2γk2,B0=−2a+5k2b(γ2+8μ)30b,r=−k(4a2+5k4b2(γ2−4μ)2)20b, | (3.5) |
where γ and μ are arbitrary.
Substituting Eq (3.5) into Eq (3.2) yields
u(z)=−2a+5k2b(γ2+8μ)30b−2k2γexp(−ψ(z))−2k2(exp(−ψ(z)))2. | (3.6) |
Applying Eqs (2.5)–(2.11) into Eq (3.6) respectively, we get the following exact solutions of the KdV-Sawada-Kotera equation.
Family 2.1: When γ2−4μ>0, μ≠0,
u21(z)=−2a+5k2b(γ2+8μ)30b+4k2γμ√(γ2−4μ)tanh(√γ2−4μ2(z+c))+γ |
−8k2μ2(√(γ2−4μ)tanh(√γ2−4μ2(z+c))+γ)2, |
u22(z)=−2a+5k2b(γ2+8μ)30b+4k2γμ√(γ2−4μ)coth(√γ2−4μ2(z+c))+γ |
−8k2μ2(√(γ2−4μ)coth(√γ2−4μ2(z+c))+γ)2. |
Family 2.2: When γ2−4μ<0, μ≠0,
u23(z)=−2a+5k2b(γ2+8μ)30b−4k2γμ√(4μ−γ2)tan(√4μ−γ22(z+c))−γ |
−8k2μ2(√(4μ−γ2)tan(√4μ−γ22(z+c))−γ)2, |
u24(z)=−2a+5k2b(γ2+8μ)30b−4k2γμ√(4μ−γ2)cot(√4μ−γ22(z+c))−γ |
−8k2μ2(√(4μ−γ2)cot(√4μ−γ22(z+c))−γ)2. |
Family 2.3: When γ2−4μ>0, γ≠0, μ=0,
u25(z)=−2a+5k2bγ230b−2k2γ2exp(γ(z+c))−1−2k2γ2(exp(γ(z+c))−1)2. |
Family 2.4: When γ2−4μ=0, γ≠0, μ≠0,
u26(z)=−a+30k2bμ15b+k2γ3(z+c)γ(z+c)+2−k2γ4(z+c)22(γ(z+c)+2)2. |
Family 2.5: When γ2−4μ=0, γ=0, μ=0,
u27(z)=−a15b−2k2(z+c)2. |
Figures 1–6 show the properties of the solutions.
Step 1. Substitute the transformation I:u(x,t)→U(z), (x,t)→z into a nonlinear PDE to yield an ODE
G(U,U′,U″,⋯)=0. | (4.1) |
Step 2. Determination of the weak ⟨p,q⟩ condition.
Assume that the meromorphic solutions U of Eq (4.1) have at least one pole and let q,p∈N. Substitute the Laurent series
U(z)=∞∑k=−qTkzk,T−q≠0,q>0, | (4.2) |
into Eq (4.1) to determine p distinct Laurent principal parts
−1∑k=−qTkzk, |
then we say that the weak ⟨p,q⟩ condition of Eq (4.1) holds.
It is know that Weierstrass elliptic function ℘(z):=℘(z,g2,g3) has double periods and satisfies:
(℘′(z))2=4℘(z)3−g2℘(z)−g3, |
and it admit an addition formula [35] as follows:
℘(z−z0)=−℘(z)+14[℘′(z)+℘′(z0)℘(z)−℘(z0)]2−℘(z0). |
Step 3. Substituting the indeterminate forms
U(z)=h−1∑i=1q∑j=2(−1)jβ−ij(j−1)!dj−2dzj−2(14(℘′(z)+Di℘(z)−Ci)2−℘(z))+h−1∑i=1β−i12℘′(z)+Di℘(z)−Ci |
+q∑j=2(−1)jβ−hj(j−1)!dj−2dzj−2℘(z)+β0, | (4.3) |
U(z)=h∑i=1q∑j=1βij(z−zi)j+β0, | (4.4) |
U(eαz)=h∑i=1q∑j=1βij(eαz−eαzi)j+β0, | (4.5) |
into Eq (4.1) respectively yields a set of algebraic equations, and then solving these equations, we achieve elliptic function solutions, simply periodic solutions and rational function solutions with a pole at z=0, in which D2i=4C3i−g2Ci−g3, β−ij are determined by (4.2), and h∑i=1β−i1=0, and R(z), R(eαz)(α∈C) have h(≤p) distinct poles of multiplicity q.
Step 4. Derive the meromorphic solutions at arbitrary pole, and insert the inverse transform I−1 back to the meromorphic solutions to obtain exact solutions of the given PDE.
Inserting (4.2) into Eq.(3.1) yields
T−2=−4k2,T−1=0,T0=−a15b,T1=0,T2=5rb−ka2300k3b2,⋯ |
and
T−2=−2k2,T−1=0,T0=−a15b,T1=0,T2=ka2−5rb150k3b2,⋯ |
Therefore we know that p=2,q=2, then the weak ⟨2,2⟩ condition of Eq (3.1) hold.
By the weak ⟨2,2⟩ condition and (4.3), we have the form of the elliptic solutions of Eq (3.1)
U10(z)=β−2℘(z)+β20, |
with pole at z=0.
Substituting U10(z) into Eq (3.1) yields
4∑i=1c1i℘i−1(z)=0, | (5.1) |
where
c11=−12k5bβ−2g3−152k3bβ−2β20g2+15kbβ320+3kaβ220−12ak3β−2g2+rβ20+ζ, |
c12=−18k5bβ−2g2−152k3bβ2−2g2+45kbβ−2β220+6kaβ−2β20+rβ−2, |
c13=90k3bβ−2β20+6ak3β−2+45bkβ2−2β20+3akβ2−2, |
c14=120bk5β−2+90bk3β2−2+15bkβ3−2. |
Equate the coefficients of all powers of ℘(z) in Eq (5.1) to zero to achieve one set of algebraic equations:
c11=0,c12=0,c13=0,c14=0. |
Solve the above equations, then
β−2=−4k2,β20=−a15b,g2=a2k−5br60b2k5,g3=−2a3k+225ζb2−15abr10800b3k7, |
and
β−2=−2k2,β20=−a15b,g2=5br−a2k15b2k5,g3=−2a3k+225ζb2−15abr5400b3k7, |
then
U11,0(z)=−4k2℘(z)−a15b, |
and
U12,0(z)=−2k2℘(z)−a15b. |
Thus, elliptic solutions of Eq (3.1) with arbitrary pole are
U11(z)=−4k2℘(z−z0)−a15b, |
and
U12(z)=−2k2℘(z−z0)−a15b, |
where z0∈C.
Use the addition formula to U11(z) and U12(z), then
U11(z)=4k2℘(z)−k2(℘′(z)+D℘(z)−C)2+60k2bC−a15b, |
and
U12(z)=2k2℘(z)−k22(℘′(z)+D℘(z)−C)2+30k2bC−a15b, |
where C2=4D3−g2D−g3. g2=a2k−5bμ60b2k5,g3=−2a3k+225ζb2−15abμ10800b3k7 in the former case, g2=5br−a2k15b2k5,g3=−2a3k+225ζb2−15abr5400b3k7 in the latter case.
By (4.4) and the weak ⟨2,2⟩ condition, we have the indeterminate form of rational solutions
U20(z)=β12z2+β11z+β10, |
with pole at z=0.
Substituting U20(z) into Eq (3.1) yields
7∑i=1c2izi−7=0, | (5.2) |
where
c21=120bk5β12+90bk3β122+15bkβ123, |
c22=24bk5β11+120bk3β11β12+45bkβ11β122, |
c23=90bk3β10β12+30bk3β112+6ak3β12+45bkβ10β122+45bkβ112β12+3akβ122, |
c24=30bk3β10β11+2ak3β11+90bkβ10β11β12+15bkβ113+6akβ11β12, |
c25=45bkβ102β12+45bkβ10β112+6akβ10β12+3akβ112+rβ12, |
c26=45bkβ102β11+6akβ10β11+rβ11, |
c27=15kbβ103+3kaβ102+rβ10+ζ. |
Equate the coefficients of all powers of z in Eq (5.2) to zero to achieve a system of algebraic equations:
c21=0,c22=0,c23=0,c24=0,c25=0,c26=0,c27=0. |
Solving the above equations, we get
β12=−4k2,β11=0,β10=−a15b, |
and
β12=−2k2,β11=0,β10=−a15b, |
then
U21,0(z)=−4k2z2−a15b, |
and
U22,0(z)=−2k2z2−a15b, |
where r=ka25b, ζ=ka3225b2.
Insert U(z)=R(η) into Eq (3.1) to yield
k5bα4(R(4)η4+6R‴η3+7R″η2+R′η)+15k3bα2R(ηR′+η2R″) |
+15kbR3+3kaR2+ak3α2(ηR′+η2R″)+rR+ζ=0, | (5.3) |
where η=eαz (α∈C).
Substituting
U30(z)=b12(eαz−1)2+b11eαz−1+b10, |
into the Eq (5.3), we have
7∑i=1c3iα2e(7−i)αz(eαz−1)−6=0, | (5.4) |
in which
c31=15bkb310+3akb210+rb10+ζ, |
c32=α4bk5b11+15α2bk3b10b11+aα2k3b11−90bkb310+45bkb210b11−18akb210 |
+6akb10b11−6rb10+rb11−6ζ, |
c33=10α4bk5b11+16α4bk5b12−30α2bk3b10b11+60α2bk3b10b12+15α2bk3b211 |
−2aα2k3b11+4aα2k3b12+225bkb103−225bkb102b11+45bkb102b12+45bkb10b211 |
+45akb210−30akb10b11+6akb10b12+3kab211+15rb10−5rb11+rb12+15ζ, |
c34=66α4bk5b12−90α2bk3b10b12−15α2bk3b112+75α2bk3b11b12−6aα2k3b12 |
−300bkb310+450bkb210b11−180bkb210b12−180bkb10b211+90bkb10b11b12+15kbb311 |
+60akb10b11−24akb10b12−12kab211+6akb11b12−20rb10+10rb11−4rb12−20ζ |
−60akb210, |
c35=−10α4bk5b11+36α4bk5b12+30α2bk3b10b11−15α2bk3b211−30α2bk3b11b12 |
+60α2bk3b212+2aα2k3b11+225bkb310−450bkb210b11+270bkb210b12+270bkb10b211 |
−270bkb10b11b12+45bkb10b212−45kbb311+45bkb211b12+45akb210−60akb10b11 |
+36akb10b12+18kab211−18akb11b12+3kab212+15rb10−10rb11+6rb12+15ζ, |
c36=−α4bk5b11+2α4bk5b12−15α2bk3b10b11+30α2bk3b10b12+15α2bk3b211 |
−45α2bk3b11b12+30α2bk3b212−aα2k3b11+2aα2k3b12−90bkb310+18akb11b12 |
+225bkb210b11−180bkb210b12−180bkb10b211+270bkb10b11b12+45kbb311−6rb10 |
−90bkb211b12+45bkb11b212−18akb210+30akb10b11−24akb10b12−6kab212+5rb11 |
−12kab211−90bkb10b212−4rb12−6ζ, |
c37=15bkb310−45bkb210b11+45bkb210b12+45bkb10b211−90bkb10b11b12+45bkb10b212 |
−15kbb311+45bkb211b12−45bkb11b212+15kbb312+3akb102−6akb10b11+6akb10b12 |
+3kab211−6akb11b12+3kab212+rb10−rb11+rb12+ζ. |
Equate the coefficients of all powers about eαz in Eq (5.4) to zero to achieve a system of algebraic equations:
c31=0,c32=0,c33=0,c34=0,c35=0,c36=0,c37=0. |
Solving the above equations, we get
b12=−4k2α2,b11=−4k2α2,b10=−5k2bα2+a15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2, |
and
b12=−2k2α2,b11=−2k2α2,b10=−5k2bα2+a15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2. |
So simply periodic solutions of Eq (3.1) with pole at z=0 are
U31,0(z)=−4k2α2(eαz−1)2−4k2α2(eαz−1)−5k2bα2+a15b |
=−4k2α2eαz(eαz−1)2−5k2bα2+a15b |
=−k2α2coth2αz2+10k2bα2−a15b, |
and
U32,0(z)=−2k2α2(eαz−1)2−2k2α2(eαz−1)−5k2bα2+a15b |
=−2k2α2eαz(eαz−1)2−5k2bα2+a15b |
=−k2α22coth2αz2+5k2bα2−2a30b. |
Similar to U30(z), we substitute
U40(z)=b12(eαz+1)2+b11eαz+1+b10, |
into the Eq (5.3) to yield
b12=−4k2α2,b11=4k2α2,b10=−5k2bα2+a15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2, |
and
b12=−2k2α2,b11=2k2α2,b10=−5k2bα2+a15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2, |
then
U41,0(z)=−4k2α2(eαz+1)2+4k2α2(eαz+1)−5k2bα2+a15b |
=4k2α2eαz(eαz+1)2−5k2bα2+a15b |
=−k2α2tanh2αz2−a−10k2bα215b, |
and
U42,0(z)=−2k2α2(eαz+1)2+2k2α2(eαz+1)−5k2bα2+a15b |
=2k2α2eαz(eαz+1)2−5k2bα2+a15b |
=−k2α22tanh2αz2−2a−5k2bα230b. |
Substituting
U50(z)=b14(eαz−1)2+b13(eαz+1)2+b12eαz−1+b11eαz+1+b10, |
into the Eq (5.3) to yield
b14−4k2α2,b13=−4k2α2,b12=−4k2α2,b11=4k2α2,b10=−2(5k2bα2+a)15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2, |
and
b14−2k2α2,b13=−2k2α2,b12=−2k2α2,b11=2k2α2,b10=−2(5k2bα2+a)15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2, |
then
U51,0(z)=−4k2α2(eαz−1)2−4k2α2(eαz+1)2−4k2α2(eαz−1)+4k2α2(eαz+1)−2(5k2bα2+a)15b |
=−4k2α2eαz(eαz−1)2+4k2α2eαz(eαz+1)2−2(5k2bα2+a)15b, |
and
U52,0(z)=−2k2α2(eαz−1)2−2k2α2(eαz+1)2−2k2α2(eαz−1)+2k2α2(eαz+1)−2(5k2bα2+a)15b |
=−2k2α2eαz(eαz−1)2+2k2α2eαz(eαz+1)2−2(5k2bα2+a)15b. |
Collecting meromorphic solutions of Eq (3.1) in above procedures, we have the following solutions with arbitrary pole:
(1)U11(z)=4k2℘(z)−k2(℘′(z)+D℘(z)−C)2+60k2bC−a15b, |
(2)U12(z)=2k2℘(z)−k22(℘′(z)+D℘(z)−C)2+30k2bC−a15b, |
where C2=4D3−g2D−g3, g2=a2k−5bμ60b2k5,g3=−2a3k+225ζb2−15abμ10800b3k7 in the former case, g2=5br−a2k15b2k5,g3=−2a3k+225ζb2−15abr5400b3k7 in the latter case;
(3)U21(z)=−4k2(z−z0)2−a15b, |
(4)U22(z)=−2k2(z−z0)2−a15b, |
where r=ka25b, ζ=ka3225b2;
(5)U31(z)=−k2α2coth2α(z−z0)2+10k2bα2−a15b, |
(6)U32(z)=−k2α22coth2α(z−z0)2+5k2bα2−2a30b, |
(7)U41(z)=−k2α2tanh2α(z−z0)2−a−10k2bα215b, |
(8)U42(z)=−k2α22tanh2α(z−z0)2−2a−5k2bα230b, |
(9)U51(z)=−4k2α2eα(z−z0)(eα(z−z0)−1)2+4k2α2eα(z−z0)(eα(z−z0)+1)2−2(5k2bα2+a)15b, |
(10)U52(z)=−2k2α2eα(z−z0)(eα(z−z0)−1)2+2k2α2eα(z−z0)(eα(z−z0)+1)2−2(5k2bα2+a)15b, |
where r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2.
Figures 7–11 show the properties of the solutions.
In this paper, we derive meromorphic exact solutions to the KdV-Sawada-Kotera equation via two different systematic methods. Five types of solutions are constructed, including hyperbolic, trigonometric, exponential, elliptic and rational function solutions. Dynamic behaviors of these solutions are given by some graphs. Observing from the figures, we know that the obtained solutions are soliton solutions. Among of them, figures 3, 7 and 8 show multiple soliton solutions, and others show singular soliton solutions. The graphs of Weierstrass elliptic function solutions U11(z) and U12(z) are more interesting and have never been shown in other literatures. We can use the ideas of this study to other differential equations in complexity and nonlinear science.
This research is supported by the NSFC (11901111); Visiting Scholar Program of Chern Institute of Mathematics.
The authors declare no conflict of interest.
[1] |
R. Hirota, M. Ito, Resonance of solitons in one dimension, J. Phys. Soc. Jpn., 52 (1983), 744-748. doi: 10.1143/JPSJ.52.744
![]() |
[2] | J. Zhang, J. Zhang, L. L. Bo, Abundant travelling wave solutions for KdV-Sawada-Kotera equation with symbolic computation, Appl. Math. Comput., 203 (2008), 233-237. |
[3] |
K. Konno, Conservation laws of modified Sawada-Kotera equation in complex plane, J. Phys. Soc. Jpn., 61 (1992), 51-54. doi: 10.1143/JPSJ.61.51
![]() |
[4] | Z. Qin, G. Mu, H. Ma, G'/G-expansion method for the fifth-order forms of KdV-Sawada-Kotera equation, Appl. Math. Comput., 222 (2013), 29-33. |
[5] |
L. Zhang, C. M. Khalique, Exact solitary wave and quasi-periodic wave solutions of the KdVSawada-Kotera-Ramani equation, Adv. Differ. Equ., 2015 (2015), 1-12. doi: 10.1186/s13662-014-0331-4
![]() |
[6] |
C. F. Wu, H. N. Chan, K. W. Chow, A system of coupled partial differential equations exhibiting both elevation and depression rogue wave modes, Appl. Math. Lett., 47 (2015), 35-42. doi: 10.1016/j.aml.2015.02.021
![]() |
[7] |
M. Li, W. K. Hu, C. F. Wu, Rational solutions of the classical Boussinesq-Burgers system, Nonlinear Dyn., 94 (2018), 1291-1302. doi: 10.1007/s11071-018-4424-6
![]() |
[8] |
M. N. Islam, M. Asaduzzaman, M. S. Ali, Exact wave solutions to the simplified modified CamassaHolm equation in mathematical physics, AIMS Mathematics, 5 (2019), 26-41. doi: 10.3934/math.2020003
![]() |
[9] |
M. H. Islam, K. Khan, M. A. Akbar, et al. Exact traveling wave solutions of modified KdVZakharov-Kuznetsov equation and viscous Burgers equation, SpringerPlus, 3 (2014), 1-9. doi: 10.1186/2193-1801-3-1
![]() |
[10] | M. N. Alam, M. A. Akbar, Some new exact traveling wave solutions to the simplified MCH and the (1+1)-dimensional combined KdV-mKdV equations, J. Assoc. Arab Univ. Basic Appl. Sci., 17 (2015), 6-13. |
[11] |
K. Hosseini, F. Samadani, D. Kumar, et al. New optical solitons of cubic-quartic nonlinear Schrödinger equation, Optik, 157 (2018), 1101-1105. doi: 10.1016/j.ijleo.2017.11.124
![]() |
[12] |
K. Hosseini, E. Y. Bejarbaneh, A. Bekir, et al. New exact solutions of some nonlinear evolution equations of pseudoparabolic type, Opt. Quant. Electron., 49 (2017), 1-10. doi: 10.1007/s11082-016-0848-8
![]() |
[13] |
K. Hosseini, A. Zabihi, F. Samadani, et al. New explicit exact solutions of the unstable nonlinear Schrödinger's equation using the expa and hyperbolic function methods, Opt. Quant. Electron., 50 (2018), 1-8. doi: 10.1007/s11082-017-1266-2
![]() |
[14] |
K. Hosseini, J. Manafian, F. Samadani, et al. Resonant optical solitons with perturbation terms and fractional temporal evolution using improved tan (φ(η)/2)-expansion method and exp function approach, Optik, 158 (2018), 933-939. doi: 10.1016/j.ijleo.2017.12.139
![]() |
[15] |
K. R. Raslan, K. K. Ali, M. A. Shallal, The modified extended tanh method with the Riccati equation for solving the space-time fractional EW and MEW equations, Chaos Soliton. Fract., 103 (2017), 404-409. doi: 10.1016/j.chaos.2017.06.029
![]() |
[16] |
M. A. Shallal, H. N. Jabbar, K. K. Ali, Analytic solution for the space-time fractional Klein-Gordon and coupled conformable Boussinesq equations, Results Phys., 8 (2018), 372-378. doi: 10.1016/j.rinp.2017.12.051
![]() |
[17] | H. M. Baskonus, T. A. Sulaiman, H. Bulut, New solitary wave solutions to the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff and the Kadomtsev-Petviashvili hierarchy equations, Indian J. Phys., 135 (2017), 327-336. |
[18] |
H. M. Baskonus, T. A. Sulaiman, H. Bulut, On the novel wave behaviors to the coupled nonlinear Maccari's system with complex structure, Optik, 131 (2017), 1036-1043. doi: 10.1016/j.ijleo.2016.10.135
![]() |
[19] |
H. Bulut, T. A. Sulaiman, H. M. Baskonus, et al. On the bright and singular optical solitons to the (2+1)-dimensional NLS and the Hirota equations, Opt. Quant. Electron., 50 (2018), 1-12. doi: 10.1007/s11082-017-1266-2
![]() |
[20] |
H. Bulut, T. A. Sulaiman, H. M. Baskonus, Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion, Optik, 163 (2018), 1-7. doi: 10.1016/j.ijleo.2018.02.086
![]() |
[21] | H. Li, Y. Z. Li, Meromorphic exact solutions of two extended (3+1)-dimensional Jimbo-Miwa equations, Appl. Math. Comput., 333 (2018), 369-375. |
[22] | W. Yuan, F. Meng, Y. Huang, et al. All traveling wave exact solutions of the variant Boussinesq equations, Appl. Math. Comput., 268 (2015), 865-872. |
[23] | Y. Gu, W. Yuan, N. Aminakbari, et al. Exact solutions of the Vakhnenko-Parkes equation with complex method, J. Funct. Spaces, 2017 (2017), 1-6. |
[24] |
Y. Gu, W. Yuan, N. Aminakbari, et al. Meromorphic solutions of some algebraic differential equations related Painlevé equation IV and its applications, Math. Meth. Appl. Sci., 41 (2018), 3832-3840. doi: 10.1002/mma.4869
![]() |
[25] |
H. Roshid, M. Rahman, The exp(-φ(ξ))-expansion method with application in the (1+1)- dimensional classical Boussinesq equations, Results Phys., 4 (2014), 150-155. doi: 10.1016/j.rinp.2014.07.006
![]() |
[26] | K. Khan, M. Akbar, The exp(-φ(ξ))-expansion method for finding traveling wave solutions of Vakhnenko-Parkes equation, Int. J. Dyn. Syst. Differ. Equ., 5 (2014), 72-83. |
[27] |
S. Islam, K. Khan, M. Akbar, Exact solutions of unsteady Korteweg-de Vries and time regularized long wave equations, Springerplus, 4 (2015), 1-11. doi: 10.1186/2193-1801-4-1
![]() |
[28] |
N. Kadkhoda, H. Jafari, Analytical solutions of the Gerdjikov-Ivanov equation by using exp(-φ(ξ))- expansion method, Optik, 139 (2017), 72-76. doi: 10.1016/j.ijleo.2017.03.078
![]() |
[29] | A. Eremenko, Meromorphic traveling wave solutions of the Kuramoto-Sivashinsky equation, J. Math. Phys., 2 (2006), 278-286. |
[30] |
N. A. Kudryashov, Meromorphic solutions of nonlinear ordinary differential equations, Commun. Nonlinear Sci. Numer. simul., 15 (2010), 2778-2790. doi: 10.1016/j.cnsns.2009.11.013
![]() |
[31] |
N. A. Kudryashov, D. I. Sinelshchikov, M. V. Demina, Exact solutions of the generalized Bretherton equation, Phys. Lett. A, 375 (2011), 1074-1079. doi: 10.1016/j.physleta.2011.01.010
![]() |
[32] |
W. Yuan, Y. Li, J. Lin, Meromorphic solutions of an auxiliary ordinary differential equation using complex method, Math. Meth. Appl. Sci., 36 (2013), 1776-1782. doi: 10.1002/mma.2723
![]() |
[33] | W. Yuan, Y. Wu, Q. Chen, et al. All meromorphic solutions for two forms of odd order algebraic differential equations and its applications, Appl. Math. Comput., 240 (2014), 240-251. |
[34] |
W. Yuan, Y. Li, J. Qi, All meromorphic solutions of some algebraic differential equations and their applications, Adv. Differ. Equ., 2014 (2014), 1-14. doi: 10.1186/1687-1847-2014-1
![]() |
[35] | S. Lang, Elliptic Functions, Springer, New York, 1987. |
1. | Asim Zafar, Mustafa Inc, Muhammad Shakeel, Muhammad Mohsin, Analytical study of nonlinear water wave equations for their fractional solution structures, 2022, 36, 0217-9849, 10.1142/S0217984922500713 | |
2. | Qinghao Zhu, Jianming Qi, Rodica Luca, On the Exact Solutions of Nonlinear Potential Yu–Toda–Sasa–Fukuyama Equation by Different Methods, 2022, 2022, 1607-887X, 1, 10.1155/2022/2179375 | |
3. | Qinghao Zhu, Jianming Qi, Mohammad Mirzazadeh, Abundant Exact Soliton Solutions of the ( 2 + 1 )-Dimensional Heisenberg Ferromagnetic Spin Chain Equation Based on the Jacobi Elliptic Function Ideas, 2022, 2022, 1687-9139, 1, 10.1155/2022/7422491 | |
4. | Yongyi Gu, Wenjun Yuan, Closed form solutions of nonlinear space‐time fractional Drinfel'd‐Sokolov‐Wilson equation via reliable methods, 2021, 0170-4214, 10.1002/mma.7868 | |
5. | Yongyi Gu, Najva Aminakbari, New optical soliton solutions for the variable coefficients nonlinear Schrödinger equation, 2022, 54, 0306-8919, 10.1007/s11082-022-03645-4 | |
6. | Najva Aminakbari, Yongyi Gu, Wenjun Yuan, Bernoulli $$(G'/G)$$-expansion method for nonlinear Schrödinger equation under effect of constant potential, 2021, 53, 0306-8919, 10.1007/s11082-021-02807-0 | |
7. | Lingxiao Li, Jinliang Zhang, Mingliang Wang, The travelling wave solutions of nonlinear evolution equations with both a dissipative term and a positive integer power term, 2022, 7, 2473-6988, 15029, 10.3934/math.2022823 | |
8. | Chaodong Chen, New singular wave solutions to the KdV‐Sawada‐Kotera‐Ramani equation by the modified simple equation method, 2021, 0170-4214, 10.1002/mma.7790 | |
9. | Elahe Miri Eskandari, Nasir Taghizadeh, Sining Zheng, Applications of Two Methods in Exact Wave Solutions in the Space-Time Fractional Drinfeld–Sokolov–Wilson System, 2022, 2022, 1687-9651, 1, 10.1155/2022/4470344 | |
10. | Yongyi Gu, Baixin Chen, Feng Ye, Najva Aminakbari, Soliton solutions of nonlinear Schrödinger equation with the variable coefficients under the influence of Woods–Saxon potential, 2022, 42, 22113797, 105979, 10.1016/j.rinp.2022.105979 | |
11. | Muhammad Bilal Riaz, Faiza Naseer, Muhammad Abbas, Magda Abd El-Rahman, Tahir Nazir, Choon Kit Chan, Solitary wave solutions of Sawada-Kotera equation using two efficient analytical methods, 2023, 8, 2473-6988, 31268, 10.3934/math.20231601 | |
12. | Jianming Qi, Qinghao Zhu, Guowei Zhang, Parameters and dynamical graphs analysis about the new dynamics traveling wave solutions of longitudinal bud equation in a magneto-electro-elastic round rod, 2023, 37, 0217-9849, 10.1142/S0217984923500318 | |
13. | Muhammad Qasim, Fengping Yao, Muhammad Zafarullah Baber, Usman Younas, Investigating the higher dimensional Kadomtsev–Petviashvili–Sawada–Kotera–Ramani equation: exploring the modulation instability, Jacobi elliptic and soliton solutions, 2025, 100, 0031-8949, 025215, 10.1088/1402-4896/ada20c |