Research article

Two different systematic methods for constructing meromorphic exact solutions to the KdV-Sawada-Kotera equation

  • Received: 28 December 2019 Accepted: 17 April 2020 Published: 26 April 2020
  • MSC : 30D35, 34A05, 35C07

  • In this paper, we obtain meromorphic exact solutions of the KdV-Sawada-Kotera equation via two different systematic methods. Applying the exp(-ψ(z))-expansion method, we achieve the trigonometric, exponential, hyperbolic and rational function solutions for the mentioned equation. It is more interesting that we firstly proposed the extended complex method based on the previous work of Yuan et al., and as an example we use it to search exact solutions to the KdV-Sawada-Kotera equation. Dynamic behaviors of solutions obtained by these two different systematic techniques are also shown by some graphs. The results show that these two methods are direct and efficient methods to deal with various differential equations in the applied sciences.

    Citation: Yongyi Gu, Najva Aminakbari. Two different systematic methods for constructing meromorphic exact solutions to the KdV-Sawada-Kotera equation[J]. AIMS Mathematics, 2020, 5(4): 3990-4010. doi: 10.3934/math.2020257

    Related Papers:

    [1] Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264
    [2] Muhammad Bilal Riaz, Faiza Naseer, Muhammad Abbas, Magda Abd El-Rahman, Tahir Nazir, Choon Kit Chan . Solitary wave solutions of Sawada-Kotera equation using two efficient analytical methods. AIMS Mathematics, 2023, 8(12): 31268-31292. doi: 10.3934/math.20231601
    [3] Jin Hyuk Choi, Hyunsoo Kim . Exact traveling wave solutions of the stochastic Wick-type fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation. AIMS Mathematics, 2021, 6(4): 4053-4072. doi: 10.3934/math.2021240
    [4] Mahmoud A. E. Abdelrahman, Sherif I. Ammar, Kholod M. Abualnaja, Mustafa Inc . New solutions for the unstable nonlinear Schrödinger equation arising in natural science. AIMS Mathematics, 2020, 5(3): 1893-1912. doi: 10.3934/math.2020126
    [5] Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed . Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163
    [6] Jianhong Zhuang, Yaqing Liu, Ping Zhuang . Variety interaction solutions comprising lump solitons for the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation. AIMS Mathematics, 2021, 6(5): 5370-5386. doi: 10.3934/math.2021316
    [7] P. Veeresha, D. G. Prakasha, Jagdev Singh . Solution for fractional forced KdV equation using fractional natural decomposition method. AIMS Mathematics, 2020, 5(2): 798-810. doi: 10.3934/math.2020054
    [8] M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199
    [9] Weiping Gao, Yanxia Hu . The exact traveling wave solutions of a class of generalized Black-Scholes equation. AIMS Mathematics, 2017, 2(3): 385-399. doi: 10.3934/Math.2017.3.385
    [10] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
  • In this paper, we obtain meromorphic exact solutions of the KdV-Sawada-Kotera equation via two different systematic methods. Applying the exp(-ψ(z))-expansion method, we achieve the trigonometric, exponential, hyperbolic and rational function solutions for the mentioned equation. It is more interesting that we firstly proposed the extended complex method based on the previous work of Yuan et al., and as an example we use it to search exact solutions to the KdV-Sawada-Kotera equation. Dynamic behaviors of solutions obtained by these two different systematic techniques are also shown by some graphs. The results show that these two methods are direct and efficient methods to deal with various differential equations in the applied sciences.


    Hirota and Ito [1] proposed the following Sawada-Kotera equation to theoretically study the resonances of solitons in one dimension,

    ut+b(15u3+15uuxx+uxxxx)x=0, (1.1)

    which has a non-vanishing boundary condition

    u|x==constant. (1.2)

    Replace u by u+a15b and apply the Galilei transformation to remove ux, then Eq (1.1) changes to the KdV-Sawada-Kotera equation [2]

    ut+a(3u2+uxx)x+b(15u3+15uuxx+uxxxx)x=0, (1.3)

    where a, b are constants. It is a linear combination of the Sawada-Kotera equation and the KdV equation, with considering a=0, Eq (1.3) reduces to the Sawada-Kotera equation, when b=0, Eq (1.3) reduces to the KdV equation. In the past few years, many achievements have been made in the study of KdV-Sawada-Kotera equation. About this equation, conservation laws are investigated by Konno [3], and traveling wave solutions are discovered in [4]. Quasi-periodic wave and exact solitary wave solutions to the KdV-Sawada-Kotera equation are obtained [5].

    As we know, nonlinear differential equations (NLDEs) are widely utilized in fluid dynamics, solid state physics, plasma physics, biology, nonlinear optics, chemistry and so on. The study to exact solutions of various NLDEs is extremely important in modern mathematics with ramifications to some areas of physics, mathematics and other sciences. There are many systematic methods to seek exact solutions of NLDEs, for example, Hirota bilinear method [6,7], modified simple equation method [8], generalized (G/G)-expansion method [9,10], modified Kudryashov method [11,12], exp function method [13,14], modified extended tanh method [15,16], sine-Gordon expansion method [17,18], extended sine-Gordon expansion method [19,20], complex method [21,22,23,24] and exp(ψ(z))-expansion method [25,26,27,28].

    Eremenko showed that all meromorphic solutions of the Kuramoto Sivashinsky equation are elliptic function and its degeneration in [29]. After that, Laurent series were applied by Kudryashov et al. [30,31] to obtain meromorphic exact solutions to certain nonlinear differential equations. On the basis of their work, Yuan et al. [32,33] established the complex method combining the theories of complex analysis and complex differential equations. It is a powerful approach to obtain exact solutions for NLDEs that admit p,q condition or are Briot-Bouquet (BB) equations [34]. Following their work, we propose the extended complex method to get meromorphic exact solutions for NLDEs which neither admit p,q condition nor BB equations. Therefore, the extended complex method is an enhancement of the complex method and should deal with more NLDEs in applied sciences.

    The exp(ψ(z))-expansion approach is an effectual technique to seek analytical solutions for NLDEs. A lot of researchers, for instance, Jafari, Khan, Roshid, etc [25,26,27,28], made good use of this method to study NLDEs. In this article, we utilize two different systematic methods mentioned above to seek meromorphic exact solutions of the KdV-Sawada-Kotera equation. Dynamic behaviors of the solutions are shown by some graphs in which the profiles of Weierstrass elliptic function solutions have never been shown in former literatures.

    Consider the following nonlinear PDE:

    P(u,ux,ut,uxx,utt,)=0, (2.1)

    where P is a polynomial consisted by the unknown function u(x,t) as well as its partial derivatives.

    Step 1. Reduce Eq (2.1) to the ODE

    F(u,u,u,u,)=0, (2.2)

    by traveling wave transform

    u(x,t)=u(z),z=kx+rt.

    Step 2. Assume that Eq (2.2) has exact solutions as follows:

    u(z)=mτ=0Bτ(exp(ψ(z)))τ, (2.3)

    where Bτ(0τm) are constants to be determined latter, such that Bm0 and ψ=ψ(z) admits the following ODE:

    ψ(z)=γ+exp(ψ(z))+μexp(ψ(z)). (2.4)

    The solutions of Eq (2.4) are given in the following.

    When γ24μ>0, μ0,

    ψ(z)=ln((γ24μ)tanh(γ24μ2(z+c))γ2μ), (2.5)
    ψ(z)=ln((γ24μ)coth(γ24μ2(z+c))γ2μ). (2.6)

    When γ24μ<0, μ0,

    ψ(z)=ln((4μγ2)tan((4μγ2)2(z+c))γ2μ), (2.7)
    ψ(z)=ln((4μγ2)cot((4μγ2)2(z+c))γ2μ). (2.8)

    When γ24μ>0, γ0, μ=0,

    ψ(z)=ln(γexp(γ(z+c))1). (2.9)

    When γ24μ=0, γ0, μ0,

    ψ(z)=ln(2(γ(z+c)+2)γ2(z+c)). (2.10)

    When γ24μ=0, γ=0, μ=0,

    ψ(z)=ln(z+c). (2.11)

    In Eqs (2.5)–(2.11), Bm0,γ,μ,c are constants. Taking the homogeneous balance between nonlinear terms and highest order derivatives of Eq (2.2) yields the positive integer m.

    Step 3. Insert Eq (2.3) into Eq (2.2) and collect the function exp(ψ(z)) to yield the polynomial to exp(ψ(z)). Letting all coefficients with same power of exp(ψ(z)) be zero to obtain a system of algebraic equations. Solving these equations, we achieve the values of Bm0,γ,μ and substitute them into Eq (2.3) as well as Eqs (2.5)–(2.11) to accomplish the determination for analytical solutions of the original PDE.

    Substituting

    u(x,t)=u(z),z=kx+rt,

    into Eq (1.3) and then integrating it we obtain

    ru+3kau2+k3au+15kbu3+15k3buu+k5bu+ζ=0. (3.1)

    where ζ is the integration constant.

    Taking the homogeneous balance between u and uu in Eq (3.1) to yields

    u(z)=B0+B1exp(ψ(z))+B2(exp(ψ(z)))2, (3.2)

    where B20, B1 and B0 are constants.

    Substituting u,uu,u,u3,u2,u into Eq.(3.1) and equating the coefficients about exp(ψ(z)) to zero, we obtain

    e0(ψ(z)):
    k5bB1γ3μ+14k5bB2γ2μ2+8k5bB1γμ2+16k5bB2μ3+15k3bB0B1μγ
    +30k3bB0B2μ2+ak3B1μγ+2ak3B22μ+15kbB03+3kaB20+rB0+ζ=0,
    e1(ψ(z)):
    B1bγ4k5+30B2bγ3k5μ+22B1bγ2k5μ+120B2bγk5μ2+30k3bB0B1μ
    +15B0B1bγ2k3+90B0B2bγk3μ+15B12bγk3μ+30B1B2bk3μ2+16B1bk5μ2
    +B1aγ2k3+6B2aγk3μ+2ak3B1μ+45B20B1bk+6B0B1ak+B1r=0,
    e2(ψ(z)):
    16B2bγ4k5+15B1bγ3k5+232B2bγ2k5μ+60B1bγk5μ+136B2bk5μ2
    +60B0B2bγ2k3+15B12bγ2k3+105B1B2bγk3μ+30B22bk3μ2+45B0B1bγk3
    +120B0B2bk3μ+30B21bk3μ+4B2aγ2k3+3B1aγk3+8B2ak3μ+45B20B2bk
    +45B0B21bk+6B0B2ak+3B21ak+B2r=0,
    e3(ψ(z)):
    130B2bγ3k5+50B1bγ2k5+440B2bγk5μ+75B1B2bγ2k3+40B1bk5μ
    +90B22bγk3μ+150B0B2bγk3+45B21bγk3+30B0B1bk3+10B2aγk3
    +150B1B2bk3μ+90B0B1B2bk+15B31bk+2B1ak3+6B1B2ak=0,
    e4(ψ(z)):
    330B2bγ2k5+60B1bγk5+60B22bγ2k3+240B2bk5μ+195B1B2bγk3
    +90B0B2bk3+30B21bk3+45B0B22bk+45B21B2bk+6B2ak3+3B22ak
    +120B22bk3μ=0,
    e5(ψ(z)):
    336B2bγk5+24B1bk5+150B22bγk3+120B1B2bk3+45B1B22bk=0,
    e6(ψ(z)):
    120B2bk5+90B22bk3+15B32bk=0.

    We solve the above algebraic equations and derive two different families:

    Family 1:

    B2=4k2,B1=4γk2,B0=5k2b(γ2+8μ)+a15b,r=k(5k4b2(γ24μ)2a2)5b, (3.3)

    where γ and μ are arbitrary constants.

    Substituting Eq (3.3) into Eq (3.2) yields

    u(z)=5k2b(γ2+8μ)+a15b4k2γexp(ψ(z))4k2(exp(ψ(z)))2. (3.4)

    Applying Eqs (2.5)–(2.11) into Eq (3.4) respectively, we get the following exact solutions of the KdV-Sawada-Kotera equation.

    Family 1.1: When γ24μ>0, μ0,

    u11(z)=5k2b(γ2+8μ)+a15b+8k2γμ(γ24μ)tanh(γ24μ2(z+c))+γ
    16k2μ2((γ24μ)tanh(γ24μ2(z+c))+γ)2,
    u12(z)=5k2b(γ2+8μ)+a15b+8k2γμ(γ24μ)coth(γ24μ2(z+c))+γ
    16k2μ2((γ24μ)coth(γ24μ2(z+c))+γ)2.

    Family 1.2: When γ24μ<0, μ0,

    u13(z)=5k2b(γ2+8μ)+a15b8k2γμ(4μγ2)tan(4μγ22(z+c))γ
    16k2μ2((4μγ2)tan(4μγ22(z+c))γ)2,
    u14(z)=5k2b(γ2+8μ)+a15b8k2γμ(4μγ2)cot(4μγ22(z+c))γ
    16k2μ2((4μγ2)cot(4μγ22(z+c))γ)2.

    Family 1.3: When γ24μ>0, γ0, μ=0,

    u15(z)=5k2bγ2+a15b4k2γ2exp(γ(z+c))14k2γ2(exp(γ(z+c))1)2.

    Family 1.4: When γ24μ=0, γ0, μ0,

    u16(z)=60k2bμ+a15b+2k2γ3(z+c)γ(z+c)+2k2γ4(z+c)2(γ(z+c)+2)2.

    Family 1.5: When γ24μ=0, γ=0, μ=0,

    u17(z)=a15b4k2(z+c)2.

    Family 2:

    B2=2k2,B1=2γk2,B0=2a+5k2b(γ2+8μ)30b,r=k(4a2+5k4b2(γ24μ)2)20b, (3.5)

    where γ and μ are arbitrary.

    Substituting Eq (3.5) into Eq (3.2) yields

    u(z)=2a+5k2b(γ2+8μ)30b2k2γexp(ψ(z))2k2(exp(ψ(z)))2. (3.6)

    Applying Eqs (2.5)–(2.11) into Eq (3.6) respectively, we get the following exact solutions of the KdV-Sawada-Kotera equation.

    Family 2.1: When γ24μ>0, μ0,

    u21(z)=2a+5k2b(γ2+8μ)30b+4k2γμ(γ24μ)tanh(γ24μ2(z+c))+γ
    8k2μ2((γ24μ)tanh(γ24μ2(z+c))+γ)2,
    u22(z)=2a+5k2b(γ2+8μ)30b+4k2γμ(γ24μ)coth(γ24μ2(z+c))+γ
    8k2μ2((γ24μ)coth(γ24μ2(z+c))+γ)2.

    Family 2.2: When γ24μ<0, μ0,

    u23(z)=2a+5k2b(γ2+8μ)30b4k2γμ(4μγ2)tan(4μγ22(z+c))γ
    8k2μ2((4μγ2)tan(4μγ22(z+c))γ)2,
    u24(z)=2a+5k2b(γ2+8μ)30b4k2γμ(4μγ2)cot(4μγ22(z+c))γ
    8k2μ2((4μγ2)cot(4μγ22(z+c))γ)2.

    Family 2.3: When γ24μ>0, γ0, μ=0,

    u25(z)=2a+5k2bγ230b2k2γ2exp(γ(z+c))12k2γ2(exp(γ(z+c))1)2.

    Family 2.4: When γ24μ=0, γ0, μ0,

    u26(z)=a+30k2bμ15b+k2γ3(z+c)γ(z+c)+2k2γ4(z+c)22(γ(z+c)+2)2.

    Family 2.5: When γ24μ=0, γ=0, μ=0,

    u27(z)=a15b2k2(z+c)2.

    Figures 16 show the properties of the solutions.

    Figure 1.  The 3D and 2D surfaces of u11(z) by considering the values γ=4, μ=3, k=1, r=1, c=1, b=1, a=215 and t=0 for the 2D graphic.
    Figure 2.  The 3D and 2D surfaces of u12(z) by considering the values γ=4, μ=3, k=1, r=1, c=1, b=1, a=215 and t=0 for the 2D graphic.
    Figure 3.  The 3D and 2D surfaces of u13(z) by considering the values γ=4, μ=5, k=1, r=1, c=1, b=1, a=295 and t=0 for the 2D graphic.
    Figure 4.  The 3D and 2D surfaces of u14(z) by considering the values γ=4, μ=5, k=1, r=1, c=1, b=1, a=295 and t=0 for the 2D graphic.
    Figure 5.  The 3D and 2D surfaces of u15(z) by considering the values γ=1, μ=0, k=1, r=1, c=1, b=1, a=20 and t=0 for the 2D graphic.
    Figure 6.  The 3D and 2D surfaces of u16(z) by considering the values γ=1, μ=14, k=1, r=1, c=1, b=1, a=30 and t=0 for the 2D graphic.

    Step 1. Substitute the transformation I:u(x,t)U(z), (x,t)z into a nonlinear PDE to yield an ODE

    G(U,U,U,)=0. (4.1)

    Step 2. Determination of the weak p,q condition.

    Assume that the meromorphic solutions U of Eq (4.1) have at least one pole and let q,pN. Substitute the Laurent series

    U(z)=k=qTkzk,Tq0,q>0, (4.2)

    into Eq (4.1) to determine p distinct Laurent principal parts

    1k=qTkzk,

    then we say that the weak p,q condition of Eq (4.1) holds.

    It is know that Weierstrass elliptic function (z):=(z,g2,g3) has double periods and satisfies:

    ((z))2=4(z)3g2(z)g3,

    and it admit an addition formula [35] as follows:

    (zz0)=(z)+14[(z)+(z0)(z)(z0)]2(z0).

    Step 3. Substituting the indeterminate forms

    U(z)=h1i=1qj=2(1)jβij(j1)!dj2dzj2(14((z)+Di(z)Ci)2(z))+h1i=1βi12(z)+Di(z)Ci
    +qj=2(1)jβhj(j1)!dj2dzj2(z)+β0, (4.3)
    U(z)=hi=1qj=1βij(zzi)j+β0, (4.4)
    U(eαz)=hi=1qj=1βij(eαzeαzi)j+β0, (4.5)

    into Eq (4.1) respectively yields a set of algebraic equations, and then solving these equations, we achieve elliptic function solutions, simply periodic solutions and rational function solutions with a pole at z=0, in which D2i=4C3ig2Cig3, βij are determined by (4.2), and hi=1βi1=0, and R(z), R(eαz)(αC) have h(p) distinct poles of multiplicity q.

    Step 4. Derive the meromorphic solutions at arbitrary pole, and insert the inverse transform I1 back to the meromorphic solutions to obtain exact solutions of the given PDE.

    Inserting (4.2) into Eq.(3.1) yields

    T2=4k2,T1=0,T0=a15b,T1=0,T2=5rbka2300k3b2,

    and

    T2=2k2,T1=0,T0=a15b,T1=0,T2=ka25rb150k3b2,

    Therefore we know that p=2,q=2, then the weak 2,2 condition of Eq (3.1) hold.

    By the weak 2,2 condition and (4.3), we have the form of the elliptic solutions of Eq (3.1)

    U10(z)=β2(z)+β20,

    with pole at z=0.

    Substituting U10(z) into Eq (3.1) yields

    4i=1c1ii1(z)=0, (5.1)

    where

    c11=12k5bβ2g3152k3bβ2β20g2+15kbβ320+3kaβ22012ak3β2g2+rβ20+ζ,
    c12=18k5bβ2g2152k3bβ22g2+45kbβ2β220+6kaβ2β20+rβ2,
    c13=90k3bβ2β20+6ak3β2+45bkβ22β20+3akβ22,
    c14=120bk5β2+90bk3β22+15bkβ32.

    Equate the coefficients of all powers of (z) in Eq (5.1) to zero to achieve one set of algebraic equations:

    c11=0,c12=0,c13=0,c14=0.

    Solve the above equations, then

    β2=4k2,β20=a15b,g2=a2k5br60b2k5,g3=2a3k+225ζb215abr10800b3k7,

    and

    β2=2k2,β20=a15b,g2=5bra2k15b2k5,g3=2a3k+225ζb215abr5400b3k7,

    then

    U11,0(z)=4k2(z)a15b,

    and

    U12,0(z)=2k2(z)a15b.

    Thus, elliptic solutions of Eq (3.1) with arbitrary pole are

    U11(z)=4k2(zz0)a15b,

    and

    U12(z)=2k2(zz0)a15b,

    where z0C.

    Use the addition formula to U11(z) and U12(z), then

    U11(z)=4k2(z)k2((z)+D(z)C)2+60k2bCa15b,

    and

    U12(z)=2k2(z)k22((z)+D(z)C)2+30k2bCa15b,

    where C2=4D3g2Dg3. g2=a2k5bμ60b2k5,g3=2a3k+225ζb215abμ10800b3k7 in the former case, g2=5bra2k15b2k5,g3=2a3k+225ζb215abr5400b3k7 in the latter case.

    By (4.4) and the weak 2,2 condition, we have the indeterminate form of rational solutions

    U20(z)=β12z2+β11z+β10,

    with pole at z=0.

    Substituting U20(z) into Eq (3.1) yields

    7i=1c2izi7=0, (5.2)

    where

    c21=120bk5β12+90bk3β122+15bkβ123,
    c22=24bk5β11+120bk3β11β12+45bkβ11β122,
    c23=90bk3β10β12+30bk3β112+6ak3β12+45bkβ10β122+45bkβ112β12+3akβ122,
    c24=30bk3β10β11+2ak3β11+90bkβ10β11β12+15bkβ113+6akβ11β12,
    c25=45bkβ102β12+45bkβ10β112+6akβ10β12+3akβ112+rβ12,
    c26=45bkβ102β11+6akβ10β11+rβ11,
    c27=15kbβ103+3kaβ102+rβ10+ζ.

    Equate the coefficients of all powers of z in Eq (5.2) to zero to achieve a system of algebraic equations:

    c21=0,c22=0,c23=0,c24=0,c25=0,c26=0,c27=0.

    Solving the above equations, we get

    β12=4k2,β11=0,β10=a15b,

    and

    β12=2k2,β11=0,β10=a15b,

    then

    U21,0(z)=4k2z2a15b,

    and

    U22,0(z)=2k2z2a15b,

    where r=ka25b, ζ=ka3225b2.

    Insert U(z)=R(η) into Eq (3.1) to yield

    k5bα4(R(4)η4+6Rη3+7Rη2+Rη)+15k3bα2R(ηR+η2R)
    +15kbR3+3kaR2+ak3α2(ηR+η2R)+rR+ζ=0, (5.3)

    where η=eαz (αC).

    Substituting

    U30(z)=b12(eαz1)2+b11eαz1+b10,

    into the Eq (5.3), we have

    7i=1c3iα2e(7i)αz(eαz1)6=0, (5.4)

    in which

    c31=15bkb310+3akb210+rb10+ζ,
    c32=α4bk5b11+15α2bk3b10b11+aα2k3b1190bkb310+45bkb210b1118akb210
    +6akb10b116rb10+rb116ζ,
    c33=10α4bk5b11+16α4bk5b1230α2bk3b10b11+60α2bk3b10b12+15α2bk3b211
    2aα2k3b11+4aα2k3b12+225bkb103225bkb102b11+45bkb102b12+45bkb10b211
    +45akb21030akb10b11+6akb10b12+3kab211+15rb105rb11+rb12+15ζ,
    c34=66α4bk5b1290α2bk3b10b1215α2bk3b112+75α2bk3b11b126aα2k3b12
    300bkb310+450bkb210b11180bkb210b12180bkb10b211+90bkb10b11b12+15kbb311
    +60akb10b1124akb10b1212kab211+6akb11b1220rb10+10rb114rb1220ζ
    60akb210,
    c35=10α4bk5b11+36α4bk5b12+30α2bk3b10b1115α2bk3b21130α2bk3b11b12
    +60α2bk3b212+2aα2k3b11+225bkb310450bkb210b11+270bkb210b12+270bkb10b211
    270bkb10b11b12+45bkb10b21245kbb311+45bkb211b12+45akb21060akb10b11
    +36akb10b12+18kab21118akb11b12+3kab212+15rb1010rb11+6rb12+15ζ,
    c36=α4bk5b11+2α4bk5b1215α2bk3b10b11+30α2bk3b10b12+15α2bk3b211
    45α2bk3b11b12+30α2bk3b212aα2k3b11+2aα2k3b1290bkb310+18akb11b12
    +225bkb210b11180bkb210b12180bkb10b211+270bkb10b11b12+45kbb3116rb10
    90bkb211b12+45bkb11b21218akb210+30akb10b1124akb10b126kab212+5rb11
    12kab21190bkb10b2124rb126ζ,
    c37=15bkb31045bkb210b11+45bkb210b12+45bkb10b21190bkb10b11b12+45bkb10b212
    15kbb311+45bkb211b1245bkb11b212+15kbb312+3akb1026akb10b11+6akb10b12
    +3kab2116akb11b12+3kab212+rb10rb11+rb12+ζ.

    Equate the coefficients of all powers about eαz in Eq (5.4) to zero to achieve a system of algebraic equations:

    c31=0,c32=0,c33=0,c34=0,c35=0,c36=0,c37=0.

    Solving the above equations, we get

    b12=4k2α2,b11=4k2α2,b10=5k2bα2+a15b,
    r=(5α4b2k4+a2)k5b,ζ=(10α4b2k45aα2bk2+a2)k(5α2bk2+a)225b2,

    and

    b12=2k2α2,b11=2k2α2,b10=5k2bα2+a15b,
    r=(5α4b2k4+a2)k5b,ζ=(10α4b2k45aα2bk2+a2)k(5α2bk2+a)225b2.

    So simply periodic solutions of Eq (3.1) with pole at z=0 are

    U31,0(z)=4k2α2(eαz1)24k2α2(eαz1)5k2bα2+a15b
    =4k2α2eαz(eαz1)25k2bα2+a15b
    =k2α2coth2αz2+10k2bα2a15b,

    and

    U32,0(z)=2k2α2(eαz1)22k2α2(eαz1)5k2bα2+a15b
    =2k2α2eαz(eαz1)25k2bα2+a15b
    =k2α22coth2αz2+5k2bα22a30b.

    Similar to U30(z), we substitute

    U40(z)=b12(eαz+1)2+b11eαz+1+b10,

    into the Eq (5.3) to yield

    b12=4k2α2,b11=4k2α2,b10=5k2bα2+a15b,
    r=(5α4b2k4+a2)k5b,ζ=(10α4b2k45aα2bk2+a2)k(5α2bk2+a)225b2,

    and

    b12=2k2α2,b11=2k2α2,b10=5k2bα2+a15b,
    r=(5α4b2k4+a2)k5b,ζ=(10α4b2k45aα2bk2+a2)k(5α2bk2+a)225b2,

    then

    U41,0(z)=4k2α2(eαz+1)2+4k2α2(eαz+1)5k2bα2+a15b
    =4k2α2eαz(eαz+1)25k2bα2+a15b
    =k2α2tanh2αz2a10k2bα215b,

    and

    U42,0(z)=2k2α2(eαz+1)2+2k2α2(eαz+1)5k2bα2+a15b
    =2k2α2eαz(eαz+1)25k2bα2+a15b
    =k2α22tanh2αz22a5k2bα230b.

    Substituting

    U50(z)=b14(eαz1)2+b13(eαz+1)2+b12eαz1+b11eαz+1+b10,

    into the Eq (5.3) to yield

    b144k2α2,b13=4k2α2,b12=4k2α2,b11=4k2α2,b10=2(5k2bα2+a)15b,
    r=(5α4b2k4+a2)k5b,ζ=(10α4b2k45aα2bk2+a2)k(5α2bk2+a)225b2,

    and

    b142k2α2,b13=2k2α2,b12=2k2α2,b11=2k2α2,b10=2(5k2bα2+a)15b,
    r=(5α4b2k4+a2)k5b,ζ=(10α4b2k45aα2bk2+a2)k(5α2bk2+a)225b2,

    then

    U51,0(z)=4k2α2(eαz1)24k2α2(eαz+1)24k2α2(eαz1)+4k2α2(eαz+1)2(5k2bα2+a)15b
    =4k2α2eαz(eαz1)2+4k2α2eαz(eαz+1)22(5k2bα2+a)15b,

    and

    U52,0(z)=2k2α2(eαz1)22k2α2(eαz+1)22k2α2(eαz1)+2k2α2(eαz+1)2(5k2bα2+a)15b
    =2k2α2eαz(eαz1)2+2k2α2eαz(eαz+1)22(5k2bα2+a)15b.

    Collecting meromorphic solutions of Eq (3.1) in above procedures, we have the following solutions with arbitrary pole:

    (1)U11(z)=4k2(z)k2((z)+D(z)C)2+60k2bCa15b,
    (2)U12(z)=2k2(z)k22((z)+D(z)C)2+30k2bCa15b,

    where C2=4D3g2Dg3, g2=a2k5bμ60b2k5,g3=2a3k+225ζb215abμ10800b3k7 in the former case, g2=5bra2k15b2k5,g3=2a3k+225ζb215abr5400b3k7 in the latter case;

    (3)U21(z)=4k2(zz0)2a15b,
    (4)U22(z)=2k2(zz0)2a15b,

    where r=ka25b, ζ=ka3225b2;

    (5)U31(z)=k2α2coth2α(zz0)2+10k2bα2a15b,
    (6)U32(z)=k2α22coth2α(zz0)2+5k2bα22a30b,
    (7)U41(z)=k2α2tanh2α(zz0)2a10k2bα215b,
    (8)U42(z)=k2α22tanh2α(zz0)22a5k2bα230b,
    (9)U51(z)=4k2α2eα(zz0)(eα(zz0)1)2+4k2α2eα(zz0)(eα(zz0)+1)22(5k2bα2+a)15b,
    (10)U52(z)=2k2α2eα(zz0)(eα(zz0)1)2+2k2α2eα(zz0)(eα(zz0)+1)22(5k2bα2+a)15b,

    where r=(5α4b2k4+a2)k5b,ζ=(10α4b2k45aα2bk2+a2)k(5α2bk2+a)225b2.

    Figures 711 show the properties of the solutions.

    Figure 7.  The 3D and 2D surfaces of U11(z) by considering the values k=0.28, r=0.42, a=3.79, b=4.97, D=0.032, μ=1.32, ζ=0.071 and t=0 for the 2D graphic.
    Figure 8.  The 3D and 2D surfaces of U12(z) by considering the valuesk=0.28, r=0.42, a=3.79, b=4.97, D=0.032, μ=1.32, ζ=0.071 and t=0 for the 2D graphic.
    Figure 9.  The 3D and 2D surfaces of U22(z) by considering the values k=1, r=1, b=1, a=15, z0=1 and t=0 for the 2D graphic.
    Figure 10.  The 3D and 2D surfaces of U32(z) by considering the values k=1, r=1, b=1, a=5, α=2, z0=5 and t=0 for the 2D graphic.
    Figure 11.  The 3D and 2D surfaces of U42(z) by considering the values k=1, r=1, b=1, a=5, α=2, z0=5 and t=0 for the 2D graphic.

    In this paper, we derive meromorphic exact solutions to the KdV-Sawada-Kotera equation via two different systematic methods. Five types of solutions are constructed, including hyperbolic, trigonometric, exponential, elliptic and rational function solutions. Dynamic behaviors of these solutions are given by some graphs. Observing from the figures, we know that the obtained solutions are soliton solutions. Among of them, figures 3, 7 and 8 show multiple soliton solutions, and others show singular soliton solutions. The graphs of Weierstrass elliptic function solutions U11(z) and U12(z) are more interesting and have never been shown in other literatures. We can use the ideas of this study to other differential equations in complexity and nonlinear science.

    This research is supported by the NSFC (11901111); Visiting Scholar Program of Chern Institute of Mathematics.

    The authors declare no conflict of interest.



    [1] R. Hirota, M. Ito, Resonance of solitons in one dimension, J. Phys. Soc. Jpn., 52 (1983), 744-748. doi: 10.1143/JPSJ.52.744
    [2] J. Zhang, J. Zhang, L. L. Bo, Abundant travelling wave solutions for KdV-Sawada-Kotera equation with symbolic computation, Appl. Math. Comput., 203 (2008), 233-237.
    [3] K. Konno, Conservation laws of modified Sawada-Kotera equation in complex plane, J. Phys. Soc. Jpn., 61 (1992), 51-54. doi: 10.1143/JPSJ.61.51
    [4] Z. Qin, G. Mu, H. Ma, G'/G-expansion method for the fifth-order forms of KdV-Sawada-Kotera equation, Appl. Math. Comput., 222 (2013), 29-33.
    [5] L. Zhang, C. M. Khalique, Exact solitary wave and quasi-periodic wave solutions of the KdVSawada-Kotera-Ramani equation, Adv. Differ. Equ., 2015 (2015), 1-12. doi: 10.1186/s13662-014-0331-4
    [6] C. F. Wu, H. N. Chan, K. W. Chow, A system of coupled partial differential equations exhibiting both elevation and depression rogue wave modes, Appl. Math. Lett., 47 (2015), 35-42. doi: 10.1016/j.aml.2015.02.021
    [7] M. Li, W. K. Hu, C. F. Wu, Rational solutions of the classical Boussinesq-Burgers system, Nonlinear Dyn., 94 (2018), 1291-1302. doi: 10.1007/s11071-018-4424-6
    [8] M. N. Islam, M. Asaduzzaman, M. S. Ali, Exact wave solutions to the simplified modified CamassaHolm equation in mathematical physics, AIMS Mathematics, 5 (2019), 26-41. doi: 10.3934/math.2020003
    [9] M. H. Islam, K. Khan, M. A. Akbar, et al. Exact traveling wave solutions of modified KdVZakharov-Kuznetsov equation and viscous Burgers equation, SpringerPlus, 3 (2014), 1-9. doi: 10.1186/2193-1801-3-1
    [10] M. N. Alam, M. A. Akbar, Some new exact traveling wave solutions to the simplified MCH and the (1+1)-dimensional combined KdV-mKdV equations, J. Assoc. Arab Univ. Basic Appl. Sci., 17 (2015), 6-13.
    [11] K. Hosseini, F. Samadani, D. Kumar, et al. New optical solitons of cubic-quartic nonlinear Schrödinger equation, Optik, 157 (2018), 1101-1105. doi: 10.1016/j.ijleo.2017.11.124
    [12] K. Hosseini, E. Y. Bejarbaneh, A. Bekir, et al. New exact solutions of some nonlinear evolution equations of pseudoparabolic type, Opt. Quant. Electron., 49 (2017), 1-10. doi: 10.1007/s11082-016-0848-8
    [13] K. Hosseini, A. Zabihi, F. Samadani, et al. New explicit exact solutions of the unstable nonlinear Schrödinger's equation using the expa and hyperbolic function methods, Opt. Quant. Electron., 50 (2018), 1-8. doi: 10.1007/s11082-017-1266-2
    [14] K. Hosseini, J. Manafian, F. Samadani, et al. Resonant optical solitons with perturbation terms and fractional temporal evolution using improved tan (φ(η)/2)-expansion method and exp function approach, Optik, 158 (2018), 933-939. doi: 10.1016/j.ijleo.2017.12.139
    [15] K. R. Raslan, K. K. Ali, M. A. Shallal, The modified extended tanh method with the Riccati equation for solving the space-time fractional EW and MEW equations, Chaos Soliton. Fract., 103 (2017), 404-409. doi: 10.1016/j.chaos.2017.06.029
    [16] M. A. Shallal, H. N. Jabbar, K. K. Ali, Analytic solution for the space-time fractional Klein-Gordon and coupled conformable Boussinesq equations, Results Phys., 8 (2018), 372-378. doi: 10.1016/j.rinp.2017.12.051
    [17] H. M. Baskonus, T. A. Sulaiman, H. Bulut, New solitary wave solutions to the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff and the Kadomtsev-Petviashvili hierarchy equations, Indian J. Phys., 135 (2017), 327-336.
    [18] H. M. Baskonus, T. A. Sulaiman, H. Bulut, On the novel wave behaviors to the coupled nonlinear Maccari's system with complex structure, Optik, 131 (2017), 1036-1043. doi: 10.1016/j.ijleo.2016.10.135
    [19] H. Bulut, T. A. Sulaiman, H. M. Baskonus, et al. On the bright and singular optical solitons to the (2+1)-dimensional NLS and the Hirota equations, Opt. Quant. Electron., 50 (2018), 1-12. doi: 10.1007/s11082-017-1266-2
    [20] H. Bulut, T. A. Sulaiman, H. M. Baskonus, Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion, Optik, 163 (2018), 1-7. doi: 10.1016/j.ijleo.2018.02.086
    [21] H. Li, Y. Z. Li, Meromorphic exact solutions of two extended (3+1)-dimensional Jimbo-Miwa equations, Appl. Math. Comput., 333 (2018), 369-375.
    [22] W. Yuan, F. Meng, Y. Huang, et al. All traveling wave exact solutions of the variant Boussinesq equations, Appl. Math. Comput., 268 (2015), 865-872.
    [23] Y. Gu, W. Yuan, N. Aminakbari, et al. Exact solutions of the Vakhnenko-Parkes equation with complex method, J. Funct. Spaces, 2017 (2017), 1-6.
    [24] Y. Gu, W. Yuan, N. Aminakbari, et al. Meromorphic solutions of some algebraic differential equations related Painlevé equation IV and its applications, Math. Meth. Appl. Sci., 41 (2018), 3832-3840. doi: 10.1002/mma.4869
    [25] H. Roshid, M. Rahman, The exp(-φ(ξ))-expansion method with application in the (1+1)- dimensional classical Boussinesq equations, Results Phys., 4 (2014), 150-155. doi: 10.1016/j.rinp.2014.07.006
    [26] K. Khan, M. Akbar, The exp(-φ(ξ))-expansion method for finding traveling wave solutions of Vakhnenko-Parkes equation, Int. J. Dyn. Syst. Differ. Equ., 5 (2014), 72-83.
    [27] S. Islam, K. Khan, M. Akbar, Exact solutions of unsteady Korteweg-de Vries and time regularized long wave equations, Springerplus, 4 (2015), 1-11. doi: 10.1186/2193-1801-4-1
    [28] N. Kadkhoda, H. Jafari, Analytical solutions of the Gerdjikov-Ivanov equation by using exp(-φ(ξ))- expansion method, Optik, 139 (2017), 72-76. doi: 10.1016/j.ijleo.2017.03.078
    [29] A. Eremenko, Meromorphic traveling wave solutions of the Kuramoto-Sivashinsky equation, J. Math. Phys., 2 (2006), 278-286.
    [30] N. A. Kudryashov, Meromorphic solutions of nonlinear ordinary differential equations, Commun. Nonlinear Sci. Numer. simul., 15 (2010), 2778-2790. doi: 10.1016/j.cnsns.2009.11.013
    [31] N. A. Kudryashov, D. I. Sinelshchikov, M. V. Demina, Exact solutions of the generalized Bretherton equation, Phys. Lett. A, 375 (2011), 1074-1079. doi: 10.1016/j.physleta.2011.01.010
    [32] W. Yuan, Y. Li, J. Lin, Meromorphic solutions of an auxiliary ordinary differential equation using complex method, Math. Meth. Appl. Sci., 36 (2013), 1776-1782. doi: 10.1002/mma.2723
    [33] W. Yuan, Y. Wu, Q. Chen, et al. All meromorphic solutions for two forms of odd order algebraic differential equations and its applications, Appl. Math. Comput., 240 (2014), 240-251.
    [34] W. Yuan, Y. Li, J. Qi, All meromorphic solutions of some algebraic differential equations and their applications, Adv. Differ. Equ., 2014 (2014), 1-14. doi: 10.1186/1687-1847-2014-1
    [35] S. Lang, Elliptic Functions, Springer, New York, 1987.
  • This article has been cited by:

    1. Asim Zafar, Mustafa Inc, Muhammad Shakeel, Muhammad Mohsin, Analytical study of nonlinear water wave equations for their fractional solution structures, 2022, 36, 0217-9849, 10.1142/S0217984922500713
    2. Qinghao Zhu, Jianming Qi, Rodica Luca, On the Exact Solutions of Nonlinear Potential Yu–Toda–Sasa–Fukuyama Equation by Different Methods, 2022, 2022, 1607-887X, 1, 10.1155/2022/2179375
    3. Qinghao Zhu, Jianming Qi, Mohammad Mirzazadeh, Abundant Exact Soliton Solutions of the ( 2 + 1 )-Dimensional Heisenberg Ferromagnetic Spin Chain Equation Based on the Jacobi Elliptic Function Ideas, 2022, 2022, 1687-9139, 1, 10.1155/2022/7422491
    4. Yongyi Gu, Wenjun Yuan, Closed form solutions of nonlinear space‐time fractional Drinfel'd‐Sokolov‐Wilson equation via reliable methods, 2021, 0170-4214, 10.1002/mma.7868
    5. Yongyi Gu, Najva Aminakbari, New optical soliton solutions for the variable coefficients nonlinear Schrödinger equation, 2022, 54, 0306-8919, 10.1007/s11082-022-03645-4
    6. Najva Aminakbari, Yongyi Gu, Wenjun Yuan, Bernoulli $$(G'/G)$$-expansion method for nonlinear Schrödinger equation under effect of constant potential, 2021, 53, 0306-8919, 10.1007/s11082-021-02807-0
    7. Lingxiao Li, Jinliang Zhang, Mingliang Wang, The travelling wave solutions of nonlinear evolution equations with both a dissipative term and a positive integer power term, 2022, 7, 2473-6988, 15029, 10.3934/math.2022823
    8. Chaodong Chen, New singular wave solutions to the KdV‐Sawada‐Kotera‐Ramani equation by the modified simple equation method, 2021, 0170-4214, 10.1002/mma.7790
    9. Elahe Miri Eskandari, Nasir Taghizadeh, Sining Zheng, Applications of Two Methods in Exact Wave Solutions in the Space-Time Fractional Drinfeld–Sokolov–Wilson System, 2022, 2022, 1687-9651, 1, 10.1155/2022/4470344
    10. Yongyi Gu, Baixin Chen, Feng Ye, Najva Aminakbari, Soliton solutions of nonlinear Schrödinger equation with the variable coefficients under the influence of Woods–Saxon potential, 2022, 42, 22113797, 105979, 10.1016/j.rinp.2022.105979
    11. Muhammad Bilal Riaz, Faiza Naseer, Muhammad Abbas, Magda Abd El-Rahman, Tahir Nazir, Choon Kit Chan, Solitary wave solutions of Sawada-Kotera equation using two efficient analytical methods, 2023, 8, 2473-6988, 31268, 10.3934/math.20231601
    12. Jianming Qi, Qinghao Zhu, Guowei Zhang, Parameters and dynamical graphs analysis about the new dynamics traveling wave solutions of longitudinal bud equation in a magneto-electro-elastic round rod, 2023, 37, 0217-9849, 10.1142/S0217984923500318
    13. Muhammad Qasim, Fengping Yao, Muhammad Zafarullah Baber, Usman Younas, Investigating the higher dimensional Kadomtsev–Petviashvili–Sawada–Kotera–Ramani equation: exploring the modulation instability, Jacobi elliptic and soliton solutions, 2025, 100, 0031-8949, 025215, 10.1088/1402-4896/ada20c
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3915) PDF downloads(285) Cited by(13)

Figures and Tables

Figures(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog