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Abstract: In this paper, we obtain meromorphic exact solutions of the KdV-Sawada-Kotera equation
via two different systematic methods. Applying the exp(—¢(z))-expansion method, we achieve the
trigonometric, exponential, hyperbolic and rational function solutions for the mentioned equation. It is
more interesting that we firstly proposed the extended complex method based on the previous work of
Yuan et al., and as an example we use it to search exact solutions to the KdV-Sawada-Kotera equation.
Dynamic behaviors of solutions obtained by these two different systematic techniques are also shown
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various differential equations in the applied sciences.
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1. Introduction

Hirota and Ito [1] proposed the following Sawada-Kotera equation to theoretically study the reso-
nances of solitons in one dimension,

u; + b(156° + 15uit, + thyyrr)x = 0, (L.1)
which has a non-vanishing boundary condition

Uly—o = constant. (1.2)
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_a_

Replace u by u + {5; and apply the Galilei transformation to remove u,, then Eq (1.1) changes to
the KdV-Sawada-Kotera equation [2]

u + aBu? + uy), + b(156° + 15uu,, + ypey), = 0, (1.3)

where a, b are constants. It is a linear combination of the Sawada-Kotera equation and the KdV
equation, with considering a = 0, Eq (1.3) reduces to the Sawada-Kotera equation, when b = 0, Eq
(1.3) reduces to the KdV equation. In the past few years, many achievements have been made in the
study of KdV-Sawada-Kotera equation. About this equation, conservation laws are investigated by
Konno [3], and traveling wave solutions are discovered in [4]. Quasi-periodic wave and exact solitary
wave solutions to the KdV-Sawada-Kotera equation are obtained [5].

As we know, nonlinear differential equations (NLDEs) are widely utilized in fluid dynamics, solid
state physics, plasma physics, biology, nonlinear optics, chemistry and so on. The study to exact
solutions of various NLDE:s is extremely important in modern mathematics with ramifications to some
areas of physics, mathematics and other sciences. There are many systematic methods to seek exact
solutions of NLDE:s, for example, Hirota bilinear method [6, 7], modified simple equation method [8],
generalized (G’/G)-expansion method [9, 10], modified Kudryashov method [11, 12], exp function
method [13, 14], modified extended tanh method [15, 16], sine-Gordon expansion method [17, 18],
extended sine-Gordon expansion method [19,20], complex method [21-24] and exp(—(z))-expansion
method [25-28].

Eremenko showed that all meromorphic solutions of the Kuramoto Sivashinsky equation are elliptic
function and its degeneration in [29]. After that, Laurent series were applied by Kudryashov et al.
[30,31] to obtain meromorphic exact solutions to certain nonlinear differential equations. On the basis
of their work, Yuan et al. [32,33] established the complex method combining the theories of complex
analysis and complex differential equations. It is a powerful approach to obtain exact solutions for
NLDEs that admit (p, g) condition or are Briot-Bouquet (BB) equations [34]. Following their work,
we propose the extended complex method to get meromorphic exact solutions for NLDEs which neither
admit (p, g) condition nor BB equations. Therefore, the extended complex method is an enhancement
of the complex method and should deal with more NLDEs in applied sciences.

The exp(—y(z))-expansion approach is an effectual technique to seek analytical solutions for
NLDEs. A lot of researchers, for instance, Jafari, Khan, Roshid, etc [25-28], made good use of this
method to study NLDEs. In this article, we utilize two different systematic methods mentioned above
to seek meromorphic exact solutions of the KdV-Sawada-Kotera equation. Dynamic behaviors of the
solutions are shown by some graphs in which the profiles of Weierstrass elliptic function solutions have
never been shown in former literatures.

2. Description of the exp(—¢(z))-expansion method

Consider the following nonlinear PDE:
P(uyuy, Uy, Uy, Uyey -+ ) =0, 2.1)
where P is a polynomial consisted by the unknown function u(x, r) as well as its partial derivatives.
Step 1. Reduce Eq (2.1) to the ODE
Fu,u',u”,u"”,---)=0, 2.2)
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by traveling wave transform
u(x,t) =u(z), z=kx+rt

Step 2. Assume that Eq (2.2) has exact solutions as follows:

u(@) = ) B(exp(-y ()", (2.3)

=0
where B; (0 < 7 < m) are constants to be determined latter, such that B,, # 0 and ¢ = ¥/(z) admits the
following ODE:

Y¥'(2) =y + exp(—¥(2) + pexp(y(2)). (2.4)
The solutions of Eq (2.4) are given in the following.
When y? — 4y > 0, u # 0,

J) = In (y* — 4p) tanh(—5—(z + ¢)) -y ’ 2.5)
2u
P4
— 2 _ —
4@ =1n V& —4p) coth(———(z+¢)) -y ' 2.6)
2u
When y? — 4 < 0, u # 0,
) V@u—y?) _
4@ =1n V@u -y tan(——(z +0) -y ’ 27
2u
A — 2 Neu—rh _
V(@ = 1In V@ —y?)cot(——(z+¢c) -y . 2.8)
2u
When y? —4u >0,y # 0, u =0,
_ Y
W”]%wmum—J 29
When y? —4u =0,y # 0, u # 0,
[ 20+ +2)
Y(2) = ln( ~Gro ) (2.10)
Wheny? —4u =0,y =0,u =0,
Y(z) = In(z + ¢). .11)

In Egs (2.5)-(2.11), B,, # 0,v, u, c are constants. Taking the homogeneous balance between nonlinear
terms and highest order derivatives of Eq (2.2) yields the positive integer m.

Step 3. Insert Eq (2.3) into Eq (2.2) and collect the function exp(—y(z)) to yield the polynomial
to exp(—¥(z)). Letting all coefficients with same power of exp(—i/(z)) be zero to obtain a system of
algebraic equations. Solving these equations, we achieve the values of B,, # 0, y, 1 and substitute them
into Eq (2.3) as well as Eqgs (2.5)—(2.11) to accomplish the determination for analytical solutions of the
original PDE.
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3. Utilization of the exp(—¥(z))-expansion method to the KdV-Sawada-Kotera equation

Substituting
u(x,t) = u(z), z=kx+rt,

into Eq (1.3) and then integrating it we obtain

ru + 3kaw® + Kau’ + 15kbu’ + 15K buw’” + kbu’”” + ¢ = 0. (3.1)

where ( is the integration constant.
Taking the homogeneous balance between u’””” and uu” in Eq (3.1) to yields

u(z) = By + Bi exp(—(2)) + Ba(exp(~¢(2)))’, (3.2)

where B, # 0, B; and By are constants.

Substituting «””, uu’,u”,u’,u?, u into Eq.(3.1) and equating the coefficients about exp(—¢(z)) to
zero, we obtain

12244

V)

KbBy Y u + 141°bBy y*1* + 8 K°bB, y 1> + 16 k°bB, i* + 15k°bBy By 'y
+30k°bBy By i* + ak’By 'y + 2ak’ By + 15 kbBy® + 3kaBj + rBy + £ = 0,
el V@) .

Bi by*k> + 30 B, by*k°u + 22 B, by*k°u + 120 B, by ki + 30 k°bBy By 1
+15 By B, by*k> + 90 By B, by k> + 15 B,*by ki + 30 By B, bk + 16 B, bk 11
+B, ay2k3 + 6B, ayk3/,t + 2ak331,u +45 B%)Bl bk+6ByByak+ B, r=0,
62(—¢1(z)) .

16 B, by*k> + 15 B, by*k® + 232 B, by’ + 60 By by kK + 136 B, bk i1
+60 By B, by’k®> + 15 B?by*k* + 105 By By by k> + 30 B,>bk> 1> + 45 By By by k°
+120 By By bi’u + 30 Bibk’u + 4 By ay*k® + 3 By ay k> + 8 By ak’u + 45 By B, bk
+45 By B2bk + 6 By B ak + 3 B2ak + By r = 0,
63(—¢’(z)) .

130 B, by*k> + 50 B, by?k’ + 440 B, by I>u + 75 By B, by*k® + 40 B, bk’
+90 B2by I + 150 By B, by k> + 45 Biby k* + 30 By B, bk® + 10 By ay k°
+150 By B, bl + 90 By By By bk + 15 Bbk + 2 B; ak® + 6 B; By ak = 0,
e4<—w<z» .

330 B, by*k’> + 60 B, by k> + 60 B3by*k® + 240 B, bk’u + 195 B, B, by k’
+90 By By bk’ + 30 Bibk® + 45 By Bobk + 45 B{ By bk + 6 By ak® + 3 Byak
+120 B3bk’u = 0,
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S
336 B, by k> + 24 B, bk’ + 150 B2by k* + 120 B, B, bk’ + 45 B, B3bk = 0,
O
120 B, bk® + 90 B3bk® + 15 B3bk = 0.

We solve the above algebraic equations and derive two different families:
Family 1:
5k*b(y* + 8u) + a k(5k*b?*(y* — 4u)* — a?)

B, = —4k*, B, = —4yk*, By = — r=— , 3.3
2 1 Yy 0 55 r 55 (3.3)

where y and u are arbitrary constants.
Substituting Eq (3.3) into Eq (3.2) yields

SK*b(y* +8w) +a 4
15b

wz) = - Iy exp(=i(z)) — 4k*(exp(—y(2)))°. (3.4)

Applying Egs (2.5)—(2.11) into Eq (3.4) respectively, we get the following exact solutions of the KdV-
Sawada-Kotera equation.
Family 1.1: When y? — 4u > 0, u # 0,

5k*b(y* + 8u) + a 8k yu
u(z) = - 156 + N
(2 — 4z) tanh (YT“‘”(Z + c)) +y
_ 16k>u?
2 b
( V&% —4p) tanh( yY (z + c)) + y)
5k*b(y* + 8u) + a 8k>yu
u12(2) = = 15b " Ny
v (y? = 4u) coth (%M(z + c)) +y
16k>u?

(ﬂ?tmﬁwm(f_lmwg+ﬁr

Family 1.2: When y*> —4u <0, u # 0,

5k*b(y* + 8u) + a 8k>yu
ui(z) = - 15b - \/_
V@u—y )tan( oy (z+ c))
16k*u?

VA tan [ Y4 (4 o) :
( (¥ o)
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5k*b(y* + 8u) + a 8k>yu
u14(z) = - 55 - .
V@u—y )cot( by (z+ c))
16k%u?

Family 1.3: When y*> —4u >0,y # 0, u =0,
5K’by* + a 4k>y? 4k>y?
15b exp(y(z+c) =1 (exp(y(z+c)) — 1)*

ui5(z) = —

Family 1.4: Wheny*> —4u =0,y # 0, u # 0,

60k>bu + a . 2k*y3(z + ¢) ~ y*(z + ¢)?
15b y(z+c)+2  (y(z+c)+2)F

ue(z) = —

Family 1.5: Wheny? —4u=0,y=0,u =0,

@ a 4k?
u =—— - .
P15 T G+ o
Family 2:
2a + 5k*b(y* + 8u) k(4a® + 5k*b*(y* — 4u)?)
B, = —2k*,B) = —2yk*, By = — JF=— , 35
p 1 Yk”, By 300 r 00 (3.5)
where vy and y are arbitrary.
Substituting Eq (3.5) into Eq (3.2) yields
2a + 5k*b(y* + 8u)
u(@) = - Y 2Py exp(—¥(2)) — 2K (exp(—¥ (). (3.6)

300

Applying Egs (2.5)—(2.11) into Eq (3.6) respectively, we get the following exact solutions of the KdV-
Sawada-Kotera equation.
Family 2.1: When y*> —4u > 0, u # 0,

2a + 5k*b(y* + 8u) 4k*yu

ua1(2) = = 306 " Ny
V&2 = 4p) tanh (%“”(z + c)) +
_ 8](2/12
2 b
( VO = 4u) tanh( > (z + c)) + y)
@) = _2a + 5k>b(y* + 8u) N Ak>yu
1l = 306

VO&* = 4p) Coth( e c)) +y
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8k2,uz

V&2 = 4u) coth \/_(z+c) +y2.
| A

Family 2.2: When y*> —4u < 0, u # 0,

(@) 2a + 5k*b(y? + 8u) 4k*yu
232) = — -
306 V@u -y )tan( : ( + c))
~ 8](2/12
2’
(\/(4/J -7?) tan( VI (2 + C)) - 7)
Ura(2) = 2a + 5k*b(y* + 8u) Ak*yu
214(2) = — -
S0P Véu -y )Cot( Vs +c))
8k2 2

(mcot(m<z+c>) )

Family 2.3: When y*> —4u >0,y #0,u =0,
2a + 5k*by? 2k>y? 2k>y?

300 exp(yz+) -1 (exp(y(z+ ) — 1)
Family 2.4: When y*> —4u =0,y # 0, u # 0,
a + 30k*bu . By e+eo)  Byz+e)?

15b Yz+c)+2 2y(z+c)+2)*
Family 2.5: Wheny?> —4u=0,y=0,u =0,

uxs(z) = —

u(2) = —

a 2k?

Uy (z) = _E - G+ 6)2-

Figures 1-6 show the properties of the solutions.

uy, @) uy,(@)

‘ ‘
5 T0 s -6 -4 -2 [) 2 4 6

Figure 1. The 3D and 2D surfaces of u;,(z) by considering the valuesy = 4, u =3,k = 1,
r=1,c=1,b=1,a=-215and t = 0 for the 2D graphic.
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3997
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Figure 2. The 3D and 2D surfaces of u;,(z) by considering the values y =4, u =3,k =1,
r=1,c=1,b=1,a=-215and ¢t = 0 for the 2D graphic.

u,4(2) u,4(2)
50

ol
200+
_sol
0+
100}
200 150l
-400-] 200}
6004 2501
-300
-800
3501
10983~ 10
5 5 400
o o
-5 5 _a50 . . . . . .
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Figure 3. The 3D and 2D surfaces of u,3(z) by considering the valuesy = 4, u =5,k = 1,
r=1,c=1,b=1,a=-295and t = 0 for the 2D graphic.
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Figure 4. The 3D and 2D surfaces of u,4(z) by considering the valuesy = 4, u =5,k = 1,
r=1,c=1,b=1,a=-295and t = 0 for the 2D graphic.
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u,(2) u,5(2)

—20F

—30F

—a0f

50}

60 . . . . .
=Y -6 -4 -2 0 2 4 6
X

Figure 5. The 3D and 2D surfaces of u;5(z) by considering the valuesy = 1, u =0,k =1,
r=1,c=1,b=1,a=-20and ¢ = 0 for the 2D graphic.

U@ u(2)

—20}

301

—40

50}

- ~60 L L L L L L
10 -10 t -8 -6 -4 -2 0 2 4 6
x X

Figure 6. The 3D and 2D surfaces of u;4(z) by considering the values y = 1, u =
r=1,c=1,b=1,a=-30and ¢ = 0 for the 2D graphic.

4. The extended complex method

Step 1. Substitute the transformation 7 : u(x, ) — U(z), (x,t) — zinto a nonlinear PDE to yield an
ODE
G, u,u”,---)=0. 4.1)

Step 2. Determination of the weak (p, g) condition.
Assume that the meromorphic solutions U of Eq (4.1) have at least one pole and let g, p € N.
Substitute the Laurent series

U@ = ) Tid, T4 #0,4>0, 4.2)

k=—q

into Eq (4.1) to determine p distinct Laurent principal parts

-1
>ne,
k=—q

then we say that the weak (p,g) condition of Eq (4.1) holds.
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It is know that Weierstrass elliptic function ©(z) := ¢(z, g2, g3) has double periods and satisfies:

(©' (@) = 49(2)° ~ £20(2) — &3,

and it admit an addition formula [35] as follows:

1 [p’(z) + ' (20)

2
Pz—20) = -p@)+ 7 0 — o) ] = 9(20)-

Step 3. Substituting the indeterminate forms

zq: (—1)/B_;; di=2 (l (@,(Z) + Di)2 B ga(z)) . hj Boit 9'(2) + D
i=1

v = G- D a2 (4 p@) -G 2 p@-C

h—1

i=1 j=2

N Zq: (=1YB-nj &2

L4 (j= D! do? 9(2) + Bo,
h q
- Bij
U(z) = ; 2 .y + Bos

Ui < SN Bi
€= ), )t = gy +o-

i=1 j=I

4.3)

4.4)

(4.5)

into Eq (4.1) respectively yields a set of algebraic equations, and then solving these equations, we
achieve elliptic function solutions, simply periodic solutions and rational function solutions with a

h
pole at z = 0, in which Dl.2 = 4Cl.3 — 8,C; — g3, p-;; are determined by (4.2), and Z'B‘” = 0, and R(z),

i=1
R(e™) (a € C) have h(< p) distinct poles of multiplicity g.

Step 4. Derive the meromorphic solutions at arbitrary pole, and insert the inverse transform I~ back

to the meromorphic solutions to obtain exact solutions of the given PDE.
5. Utilization of the extended complex method to the KdV-Sawada-Kotera equation

Inserting (4.2) into Eq.(3.1) yields

a 5rb — ka?
T_ = _4k2’ T_ = O,T = ——’T = O,T =,
? ! 0T s ! 27 3006302
and )
a ka — 5rb
T :—2k2,T_ :(),T :__,T :O’T = — .
? ! 0T sy ! 27 1506302

Therefore we know that p = 2, g = 2, then the weak (2, 2) condition of Eq (3.1) hold.
By the weak (2, 2) condition and (4.3), we have the form of the elliptic solutions of Eq (3.1)

Ui0(z) = B-29(2) + Baos

with pole at z = 0.
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Substituting U((z) into Eq (3.1) yields

cLp'™'(2z) = 0, (5.1)

4
i=1

where

15 1
cn = —12Kbfags = — Kb ofaga + 15KbBYy + 3kafSsy = 5 ak'fags + o +

15
C12 = ~18KbB 28> = = K'BB%5g2 + 45 kb 50 + 6 kaB oo + 1 Bo,
c;3 =90 ksbﬁ_zﬂzo + 6ak3,8_2 +45 bkﬁ%zﬁzo +3 akﬁ%z,
ciy = 120bk°B_5 + 90 bkB, + 15 bkf?,.

Equate the coefficients of all powers of ¢(z) in Eq (5.1) to zero to achieve one set of algebraic
equations:
c11=0,c12=0,c13=0,c14=0.

Solve the above equations, then

a a*k — 5 br 2a’k +225¢b* — 15abr
=4k B = 8 = 5 83 =
B P = 15,82 = g 08 10800 53k .
and Sbr— a?k 2a%k + 2257 b — 15ab
a r—a a’k + {b° —15abr
= 2P By = ——— gy = g3 = — ’
= Po =158 = 5505 08 5400 b3k
then
Unio() = ~4p() - —
11,0 o 15b7
and
Unno(z) = —2K29(2) — ——
120 15b°

Thus, elliptic solutions of Eq (3.1) with arbitrary pole are

 ARo(r— o) L
Ui(z) = —4k"p(z - 20) 55’

and

a
= —2k? — - —
Uix(2) 9z - 20) 155°

where z, € C.
Use the addition formula to U;;(z) and U;,(z), then

0 (2) + D)2 . 60k*bC — a

_ A2 2
Un() = 429(2) k(g{)(z)—C =

and

K (¢'(2) + D\ 30k*bC —a
=2k p(z) — —
Uix(2) 9(2) 2 (sO(Z)—C) + 156 )

AIMS Mathematics Volume 5, Issue 4, 3990-4010.
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2 3 2
2 3 _ a’k=5bu _ 2a’k+225¢ b —15 abu
where C* = 4D _gZD_g3' 8 = 60 b2k ° 83 =~ 10800 b3k7

2aPk+225 ¢ b*—15abr -
- 5300 3K in the latter case.

By (4.4) and the weak (2, 2) condition, we have the indeterminate form of rational solutions

ﬁlZ ﬁll

Ux(z) = — +— + B
z 4

. 2
in the former case, g, = %, g3 =

with pole at z = 0.

Substituting U,((z) into Eq (3.1) yields
7 .

ez =0, (5.2)
=1

1

where
a1 = 1206K°B1 + 90 bk’ + 15 bkBi”,

¢y = 24 BIBy, + 120 bICBy By, + 45 bkBy1 17,
23 = 90bI*B1oBia + 30 bKB11” + 6 ak’Bia + 45 bkBioB1n” + 45 bkB11 Bz + 3 akBin’,
Cas = 30DI>B10B11 + 2 ak’ By + 90 bkB1oB11B12 + 15 bkB11> + 6 akBy B2,
Cas = 45 bkf31*B1y + 45 bkB1oB11° + 6 akPBioBis + 3 akPyi? + rBia,
c26 = 45 bkP1o°Br1 + 6 akBioPii + i,
a7 = 15kbB1o* + 3kaBio> + rBio + L.

Equate the coefficients of all powers of z in Eq (5.2) to zero to achieve a system of algebraic equa-
tions:
€21 = 0,020 =0,¢23 = 0,24 = 0,25 = 0,26 =0,¢27 = 0.

Solving the above equations, we get

a
= —4k*,B11 = 0,810 = ——,
B2 B Bio 150
and g
= =2k%,B11 = 0,810 = ——=,
B2 Bui Bio 156
then
Unso(2) = 4k a
21,02) = 2 150°
and )
2k a
Uno(2) = EECERRTN
where r = & = ko

Insert U(z) = R(n) into Eq (3.1) to yield
Eba*(RYn* + 6R"'n* + TR'n* + R'n) + 15K°ba’*R(mR’ + °R”)
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+ 15kbR* + 3kaR* + ak®>a* (R’ + n*R") + rR + £ = 0,

where n = e** (a € C).

Substituting
by b1

+
(e —17 " ew—1

Uso(2) = + by,

into the Eq (5.3), we have
7

Z C3iaze(7—i)a1(eaz _ 1)—6 — 0’

i=1
in which
c31 = 15bkby, + 3 akbi, + rbyg + ¢,

ez = a'bk’byy + 157k’ bioby, + ad’k’byy — 90 bkby, + 45 bkbiby, — 18 akbi,
+661kb1()b11 — 6rb10 + rb11 — 6(,

c33 = 10a*bi’byy + 16 a*bk’by — 30 a?bk’byoby + 60 a”bk’byoby, + 15 &”bk’by,
~2ad’i’byy + 4aa’kbyy + 225 bkbyy® — 225 bkby*by, + 45 bkbo*by + 45 bkbob?,
+45 akb?, — 30 akboby| + 6 akbigbiy + 3kabt, + 15rbyg — Srbyy + rbyy + 15¢,

34 = 66 ' bk’byy — 90 a?bk’bobyy — 15 aPbk’by* + 75 &*bk’by b1y — 6 ad’ kb,
—300 bkb;, + 450 bkbi,b1, — 180 bkbiybia — 180 bkbyoby, + 90 bkbyoby1byy + 15 kbb;,
+60 akblob“ - 24 akb10b12 - 12kab%1 + 6(1](]711[912 -20 I"bl() + 10 "bu — 4rb12 — 20(

—60 akb?,,

c35 = —=10a*bk’byy + 36 &*bk’byy + 30 &°bk’bigby, — 15 &*bk’bT, — 30 &bk’ by1bys
+60 a?bk’bi, + 2 ad’k’by; + 225 bkb}, — 450 bkb? by, + 270 bkb by, + 270 bkb b3,

—270 bkbyoby b1y + 45 bkb\ob?, — 45 kbb}, + 45 bkb? by, + 45 akb?, — 60 akb,obi,

+36 akbyoby, + 18 kab?, — 18 akby by, + 3 kab?, + 15rbig — 107by; + 6 rbyy + 15,

c36 = —a*blbyy + 2a*bk’byy — 15 a*bi’byoby; + 30 a*bk’bygby, + 15?3 b3,
—45 a?bk’by by, + 30 &2bkbY, — ad’k’by; + 2 aa’k’byy — 90 bkb], + 18 akby by,
+225 bkb3 by, — 180 bkbiybi, — 180 bkbob7, + 270 bkboby by, + 45 kbb}, — 6 rbg
—90 bkb3 by + 45 bkb,, b1, — 18 akbi, + 30 akboby, — 24 akbobyy — 6 kabi, + 5 by,
~12 kab?, — 90 bkb,ob?, — 4 rby, — 6£,

(5.3)

(5.4)
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c37 = 15bkb}, — 45 bkbjby| + 45 bkbiybyy + 45 bkbob:, — 90 bkb b by; + 45 bkb b7,

—15kbb;, + 45 bkbi, b1y — 45 bkby1b7, + 15 kbbi, + 3 akbyy* — 6 akboby; + 6 akb,obi,
+3 kabt, — 6 akby by, + 3 kab3, + rbyg — rby; + by + L.

Equate the coefficients of all powers about ¢** in Eq (5.4) to zero to achieve a system of algebraic
equations:

c31=0,03,=0,c33 =0,c34 =0,¢35 = 0,36 = 0,37 = 0.

Solving the above equations, we get

S5k2ba® + a
by = —4k*a?, byy = —4k*a?, byg = —————,
12 @ 11 (04 10 15b
(—5 b2 + az) k (10 a* bkt — 5 aa’bi + az) k (5 a2bi + a)
r= sh 6= 225 b2 :
and b
S5keba” + a
by = —2k2@2,bll = —2k20/2,b10 = _15—19’
(—5 bR + az) k (10 a* bkt — 5 aa’bi + az) k (5 a2bi® + a)
"= sh 6= 22552

So simply periodic solutions of Eq (3.1) with pole at z = 0 are

4k a? 4k o 5k*ba* + a

U =— - -
10 =~ TR T e o 1) 150
3 4k a%e™  Sk*ba? +a
(e® —1)2 15b
10k*ba? — a
= —k*a? ch% _—
a’ co + 55 ,
and
2k a? 2k*a? 5k*ba’* + a
Uspo(z) = - 5~ -
(ez—1) (ez—1) 156
2k’ 5kPba’+a
(e —1)2 156
B _kza2 coth? % + 5k*ba’ — 2a
2 2 300
Similar to Usy(z), we substitute
bis b

11
+ b1,

Uald) = e e i
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into the Eq (5.3) to yield

5k*ba* + a

by, = —4k26¥2,bl1 = 4k2012,b10 = - 15b 5

(—5 a b2kt + az) k . (10 a* b2t — 5 aa®bk® + az) k (5 a’bk? + a)
r= NES ;

5b 225 b2
and e
S5keba” + a
b, = 2k2% by, = 2kK2a* by = ———— =
12 @, D11 @, D10 15b s
(—5 b2 + al) k (10 a* bkt — 5 aa’bi + az) k (5 a2bi + a)
' sh 6= 225 b2 ’
then
Usio(2) = — 4k*a? N 4k*a? B 5k2ba* + a
MO = T 112 T (e 4 1) 15b
_ 4k*a%e™  Sk*ba? + a
(€% + 1)? 15b
— 10k%ba?
P tanh & - 471K
@ tanit = 150
and
Usno2) = 2k%a’? N 2k%a? 5k2ba? + a
2O = T i 12 T e+ 1) 15b
3 2k%ae™ 5k2ba® + a
(€% + 1)2 15b
_ ke canh? & _ 2a — 5k*ba’?
2 2 300
Substituting
USO(Z) — b14 b13 b12 bll + blo’

+ + +
(e —1) (e +1)? ew—-1 ex+1
into the Eq (5.3) to yield

2(5k2ba>
bu — 4202, bys = —4k2a%, by, = 4K, by = 43a?, byg = —%,
(—5 bR + az) k (10 a*b*k* — 5 aa’bi + a2) k (5 bl + a)

"= sh 6= 22552 ’

and
2(5k*ba’* + a)

15b
(—5 a b2kt + az) k (10 a* b2kt — 5 aa®bk® + az) k (5 a’bk? + a)

r= sh 6= 22552 ’

bis — 2k*a%, byy = —=2k*a?, by = —2k*a%, by = 2k*a?, by = —
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then
4k*a? 4k*a? 4k*a? 4k*a? 2(5k*ba’ + a)
Usi0(2) = —— >~ >~ + -
(e =1 (e+1)? (e2—1) (e¥+1) 15b
B 4k*a’e™ N 4k*a’e™  2(5k*ba’ + a)
(e —1)2 (e +1)? 15b ’
and
2k*a? 2k*a? 2k*a? 2k*a? 2(5k*ba? + a)
Usz0(2) = —— > > + -
(e =1 (e+1)? (e2—-1) (e¥2+1) 15b

+
(e —1)> (e +1)° 15b
Collecting meromorphic solutions of Eq (3.1) in above procedures, we have the following solutions
with arbitrary pole:

2k*a%e®  2k*ate™  2(5k*ba’ + a)

’ 2 2 _
(U @) = 4op() - & (W @+ D)  60%C

pl-C 156 ’
K (¢'(z) + D\*  30k*bC —
@U() = 2K9(2) - 5(8;8— C) Pt
k- &8 2_15abu - —a
W?ir:z(zjsz ;‘t?‘:’)—gzD—g3, 82= ﬁ’ g =" k+1202850€z3k715 % in the former case, g» = 51b5b2k25k’ 8=
a’k+ (b —=15abr - .
- = 100DT in the latter case;
4k? a
3)Us () = — - ,
B3 U (2) G—z? 15
2k? a
DUxn(2) = “G-ar 13b
where r = "5%2,52 %3,,2;
- 10k*ba® —
(5)Usi(2) = —k%a? coth? TE— %) | @ -a
156
k*a? a(z—-1z20) Sk*ba’ -2a
6)Us(z) = ——— coth? ,
(6)U3(2) 5 co 7 300
- — 10k*ba?
IUa(2) = —K2? tanh? TEZ2) _ 4 :
(NU4([) @ tan > 55
k*a? a(z—z0) 2a-5k*ba’
8)Us(z) = ——— tanh? - ,
B Usn(2) > an > 30b
N _ AkPa?e T ARPPe™ ™ 2(5k*ba’ + a)
NUsi(z) = e 12 + = 55 ,
0 _ 2kPa?e T 2k?e™ ™ 2(5k*ba’ + a)
( )USZ(Z) - _(ea(Z_Z()) _ 1)2 + (ea/(Z_ZO) + 1)2 - 15b )
-5a*b2k*+a?)k 10 &*b2k* -5 aa®bk*+a2 k(5 a2bk*+a
where 7 = %’{:( 225;2 )( +).
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Figures 7—11 show the properties of the solutions.

15

5 10
10 5 2 L L L L L
15 0 0 2 4 6 8 10 12
t

Figure 7. The 3D and 2D surfaces of U,,(z) by considering the values k = 0.28, r = 0.42,
a=-379,b=497,D = -0.032, u = 1.32, { = —0.071 and ¢ = O for the 2D graphic.
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Figure 8. The 3D and 2D surfaces of U,,(z) by considering the valuesk = 0.28, r = 0.42,
a=-379,b=497,D = -0.032, u = 1.32, { = —0.071 and ¢ = O for the 2D graphic.
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Figure 9. The 3D and 2D surfaces of U,,(z) by considering the values k = 1,r=1,b =1,
a =-15,zp = —1 and ¢ = O for the 2D graphic.
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Figure 10. The 3D and 2D surfaces of Us,(z) by considering the values k = 1,r=1,b =1,
a=-5a=2,zy=-5and ¢ = 0 for the 2D graphic.
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Figure 11. The 3D and 2D surfaces of Uy, (z) by considering the values k = 1, r=1,b =1,
a=-5 a=2,z)=-5and ¢ = 0 for the 2D graphic.

6. Conclusions
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In this paper, we derive meromorphic exact solutions to the KdV-Sawada-Kotera equation via two
different systematic methods. Five types of solutions are constructed, including hyperbolic, trigono-
metric, exponential, elliptic and rational function solutions. Dynamic behaviors of these solutions are
given by some graphs. Observing from the figures, we know that the obtained solutions are soliton
solutions. Among of them, figures 3, 7 and 8 show multiple soliton solutions, and others show singu-
lar soliton solutions. The graphs of Weierstrass elliptic function solutions U;;(z) and Uj,(z) are more
interesting and have never been shown in other literatures. We can use the ideas of this study to other

differential equations in complexity and nonlinear science.
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