Research article

A two-sweep shift-splitting iterative method for complex symmetric linear systems

  • Received: 04 October 2019 Accepted: 06 February 2020 Published: 18 February 2020
  • MSC : 65F10, 65F15, 65F50

  • Recently, Chen and Ma [21] constructed the generalized shift-splitting (GSS) preconditioner, and gave the corresponding theoretical analysis and numerical experiments. In this paper, based on the generalized shift-splitting (GSS) preconditioner, we generalize their algorithms and further study the two-sweep shift-splitting (TSSS) preconditioner for complex symmetric linear systems. Moreover, by similar theoretical analysis, we obtain that the two-sweep shift-splitting iterative method is unconditionally convergent. In finally, one example is provided to confirm the effectiveness.

    Citation: Li-Tao Zhang, Xian-Yu Zuo, Shi-Liang Wu, Tong-Xiang Gu, Yi-Fan Zhang, Yan-Ping Wang. A two-sweep shift-splitting iterative method for complex symmetric linear systems[J]. AIMS Mathematics, 2020, 5(3): 1913-1925. doi: 10.3934/math.2020127

    Related Papers:

  • Recently, Chen and Ma [21] constructed the generalized shift-splitting (GSS) preconditioner, and gave the corresponding theoretical analysis and numerical experiments. In this paper, based on the generalized shift-splitting (GSS) preconditioner, we generalize their algorithms and further study the two-sweep shift-splitting (TSSS) preconditioner for complex symmetric linear systems. Moreover, by similar theoretical analysis, we obtain that the two-sweep shift-splitting iterative method is unconditionally convergent. In finally, one example is provided to confirm the effectiveness.


    加载中


    [1] O. Axelsson, A. Kucherov, Real valued iterative methods for solving complex symmetric linear systems, Numer. Linear Algebra Appl., 7 (2000), 197-218. doi: 10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO;2-S
    [2] Z. Z. Bai, G. H. Golub, M. K. Ng, Hermitian and skew-Hermitian splitting methods for nonHermitian positive definite linear systems, SIAM J. Matrix Anal. A, 24 (2003), 603-626. doi: 10.1137/S0895479801395458
    [3] Z. Z. Bai, G. H. Golub, M. K. Ng, On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, Linear Algebra Appl., 428 (2008), 413-440. doi: 10.1016/j.laa.2007.02.018
    [4] Z. Z. Bai, M. Benzi, F. Chen, et al. Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems, IMA J. Numer. Anal., 33 (2013), 343-369. doi: 10.1093/imanum/drs001
    [5] Z. Z. Bai, On Hermitian and skew-Hermitian splitting iteration methods for continuous Sylvester equations, J. Comput. Math., 29 (2011), 185-198. doi: 10.4208/jcm.1009-m3152
    [6] Z. Z. Bai, M. Benzi, F. Chen, On preconditioned MHSS iteration methods for complex symmetric linear systems, Numer. Algorithms, 56 (2011), 297-317. doi: 10.1007/s11075-010-9441-6
    [7] Z. Z. Bai, On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems, Computing, 89 (2010), 171-197. doi: 10.1007/s00607-010-0101-4
    [8] Z. Z. Bai, M. Benzi, F, Chen, Modified HSS iteration methods for a class of complex symmetric linear systems, Computing, 87 (2010), 93-111. doi: 10.1007/s00607-010-0077-0
    [9] Z. Z. Bai, X. P. Guo, On Newton-HSS methods for systems of nonlinear equations with positivedefinite Jacobian matrices, J. Comput. Math., 28 (2010), 235-260. doi: 10.4208/jcm.2009.10-m2836
    [10] Z. Z. Bai, Optimal parameters in the HSS-like methods for saddle-point problems, Numer. Linear Algebra Appl., 16 (2009), 447-479. doi: 10.1002/nla.626
    [11] Z. Z. Bai, X. Yang, On HSS-based iteration methods for weakly nonlinear systems, Appl. Numer. Math., 59 (2009), 2923-2936. doi: 10.1016/j.apnum.2009.06.005
    [12] Z. Z. Bai, G. H. Golub, L. Z. Lu, et al., Block triangular and skew-Hermitian splitting methods for positive-definite linear systems, SIAM J. Sci. Comput., 26 (2005), 844-863. doi: 10.1137/S1064827503428114
    [13] Z. Z. Bai, G. H. Golub, M. K. Ng, On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl., 14 (2007), 319-335. doi: 10.1002/nla.517
    [14] Z. Z. Bai, G. H. Golub, J. Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), 1-32. doi: 10.1007/s00211-004-0521-1
    [15] M. Benzi, D. Bertaccini, Block preconditioning of real-valued iterative algorithms for complex linear systems, IMA J. Numer. Anal., 28 (2008), 598-618.
    [16] M. Benzi, A generalization of the Hermitian and skew-Hermitian splitting iteration, SIAM J. Matrix Anal. Appl., 31 (2009), 360-374. doi: 10.1137/080723181
    [17] M. Benzi, D. Bertaccini, Block preconditioning of real-valued iterative algorithms for complex linear systems, IMA J. Numer. Anal., 28 (2008), 598-618.
    [18] M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005), 1-137. doi: 10.1017/S0962492904000212
    [19] Y. Cao, Z. R. Ren, Two variants of the PMHSS iteration method for a class of complex symmetric indefinite linear systems, Appl. Math. Comput., 264 (2015), 61-71.
    [20] Y. Cao, J. Du, Q. Niu, Shift-splitting preconditioners for saddle point problems, J. Comput. Appl. Math., 272 (2014), 239-250. doi: 10.1016/j.cam.2014.05.017
    [21] C. R. Chen, C. F. Ma, A generalized shift-splitting preconditioner for complex symmetric linear systems, J. Comput. Appl. Math., 344 (2018), 691-700. doi: 10.1016/j.cam.2018.06.013
    [22] C. R. Chen, C. F. Ma, A generalized shift-splitting preconditioner for saddle point problems, Appl. Math. Lett., 43 (2015), 49-55. doi: 10.1016/j.aml.2014.12.001
    [23] D. Day, M. A. Heroux, Solving complex-valued linear systems via equivalent real formulations, SIAM J. Sci. Comput., 23 (2001), 480-498. doi: 10.1137/S1064827500372262
    [24] C. L. Li, C. F. Ma, Efficient parameterized rotated shift-splitting preconditioner for a class of complex linear systems, Numer. Algorithms, 80 (2019), 337-354. doi: 10.1007/s11075-018-0487-1
    [25] C. L. Li, C. F. Ma, On Euler preconditioner SHSS iterative method for a class of complex symmetric linear systems, ESAIM Math. Model. Num., 53 (2019), 1607-1627. doi: 10.1051/m2an/2019029
    [26] L. Li, T. Z. Huang, X. P. Liu, Modified Hermitian and skew-Hermitian splitting methods for nonHermitian positive-definite linear systems, Numer. Linear Algebra Appl., 14 (2007), 217-235. doi: 10.1002/nla.528
    [27] X. Li, A. L. Yang, Y. J. Wu, Lopsided PMHSS iteration method for a class of complex symmetric linear systems, Numer. Algorithms, 66 (2014), 555-568. doi: 10.1007/s11075-013-9748-1
    [28] Y. Saad, Iterative Methods for Sparse Linear Systems, 2 Eds., SIAM, Philadelphia, 2003.
    [29] D. K. Salkuyeh, D. Hezari, V. Edalatpour, Generalized successive overrelaxation iterative method for a class of complex symmetric linear system of equations, Int. J. Comput. Math., 92 (2015), 802-815. doi: 10.1080/00207160.2014.912753
    [30] D. K. Salkuyeh, M. Masoudi, D. Hezari, On the generalized shift-splitting preconditioner for saddle point problems, Appl. Math. Lett., 48 (2015), 55-61. doi: 10.1016/j.aml.2015.02.026
    [31] S. L. Wu, Several variants of the Hermitian and skew-Hermitian splitting method for a class of complex symmetric linear systems, Numer. Linear Algebr., 22 (2015), 338-356. doi: 10.1002/nla.1952
    [32] A. L. Yang, J. An, Y. J. Wu, A generalized preconditioned HSS method for non-Hermitian positive definite linear systems, Appl. Math. Comput., 216 (2010), 1715-1722.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4164) PDF downloads(394) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog