Citation: A. K. Mittal, L. K. Balyan. Chebyshev pseudospectral approximation of two dimensional fractional Schrodinger equation on a convex and rectangular domain[J]. AIMS Mathematics, 2020, 5(3): 1642-1662. doi: 10.3934/math.2020111
[1] | E. A. B. Abdel-Salam, E. A. Yousif, M. A. El-Aasser, Analytical solution of the space-time fractional nonlinear schrödinger equation, Rep. Math. Phys., 77 (2016), 19-34. doi: 10.1016/S0034-4877(16)30002-7 |
[2] | Z. Asgari, S. Hosseini, Efficient numerical schemes for the solution of generalized time fractional burgers type equations, Numer. Algorithms, 77 (2018), 763-792. doi: 10.1007/s11075-017-0339-4 |
[3] | A. Bhrawy, M. Abdelkawy, A fully spectral collocation approximation for multi-dimensional fractional schrödinger equations, J. Comput. Phys., 294 (2015), 462-483. doi: 10.1016/j.jcp.2015.03.063 |
[4] | A. Bhrawy, M. A. Zaky, Highly accurate numerical schemes for multi-dimensional space variable-order fractional schrödinger equations, Comput. Math. Appl., 73 (2017), 1100-1117. doi: 10.1016/j.camwa.2016.11.019 |
[5] | J. P. Boyd. Chebyshev and Fourier Spectral Methods, Courier Corporation, 2001. |
[6] | A. Chechkin, R. Gorenflo, I. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations, Phys. Rev. E, 66 (2002), 046129. |
[7] | J. B. Chen, M. Z. Qin, Y. F. Tang, Symplectic and multi-symplectic methods for the nonlinear schrödinger equation, Comput. Math. Appl., 43 (2002), 1095-1106. doi: 10.1016/S0898-1221(02)80015-3 |
[8] | X. Cheng, J. Duan, D. Li, A novel compact adi scheme for two-dimensional riesz space fractional nonlinear reaction-diffusion equations, Appl. Math. Comput., 346 (2019), 452-464. |
[9] | M. Dehghan, A. Taleei, A compact split-step finite difference method for solving the nonlinear schrödinger equations with constant and variable coefficients, Comput. Phys. Commun., 181 (2010), 43-51. doi: 10.1016/j.cpc.2009.08.015 |
[10] | K. Diethelm, The Analysis of Fractional Differential Equations: An Application-oriented Exposition Using Differential Operators of Caputo Type, Springer Science and Business Media, 2010. |
[11] | J. Dong, Scattering problems in the fractional quantum mechanics governed by the 2d spacefractional schrödinger equation, J. Math. Phys., 55 (2014), 032102. |
[12] | J. Dong, M. Xu, Some solutions to the space fractional schrödinger equation using momentum representation method, J. Math. Phys., 48 (2007), 072105. |
[13] | W. Fan, F. Liu, A numerical method for solving the two-dimensional distributed order spacefractional diffusion equation on an irregular convex domain, Appl. Math. Lett., 77 (2018), 114-121. doi: 10.1016/j.aml.2017.10.005 |
[14] | W. Fan, H. Qi, An efficient finite element method for the two-dimensional nonlinear time-space fractional schrödinger equation on an irregular convex domain, Appl. Math. Lett., 86 (2018), 103-110. doi: 10.1016/j.aml.2018.06.028 |
[15] | B. Jin, B. Li, Z. Zhou, Subdiffusion with a time-dependent coefficient: Analysis and numerical solution, Math. Comput., 88 (2019), 2157-2186. doi: 10.1090/mcom/3413 |
[16] | G. Jumarie, An approach to differential geometry of fractional order via modified riemannliouville derivative, Acta Math. Sin., 28 (2012), 1741-1768. doi: 10.1007/s10114-012-0507-3 |
[17] | D. Li, J. Wang, J. Zhang, Unconditionally convergent l1-galerkin fems for nonlinear timefractional schrodinger equations, SIAM J. Sci. Comput., 39 (2017), A3067-A3088. |
[18] | D. Li, C. Wu, Z. Zhang, Linearized galerkin fems for nonlinear time fractional parabolic problems with non-smooth solutions in time direction, J. Sci Comput., 80 (2019), 403-419. doi: 10.1007/s10915-019-00943-0 |
[19] | L. Li, D. Li, Exact solutions and numerical study of time fractional burgers' equations, Appl. Math. Lett., 100 (2020), 106011. |
[20] | M. Li, A high-order split-step finite difference method for the system of the space fractional cnls, Eur. Phys. J. Plus, 134 (2019), 244. |
[21] | M. Li, X. M. Gu, C. Huang, et al. A fast linearized conservative finite element method for the strongly coupled nonlinear fractional schrödinger equations, J. Comput. Phys., 358 (2018), 256-282. doi: 10.1016/j.jcp.2017.12.044 |
[22] | M. Li, C. Huang, W. Ming, A relaxation-type galerkin fem for nonlinear fractional schrödinger equations. Numer. Algorithms, 83 (2019), 99-124. |
[23] | M. Li, C. Huang, P. Wang, Galerkin finite element method for nonlinear fractional schrödinger equations, Numer. Algorithms, 74 (2017), 499-525. doi: 10.1007/s11075-016-0160-5 |
[24] | M. Li, C. Huang, Z. Zhang, Unconditional error analysis of galerkin fems for nonlinear fractional schrödinger equation, Appl. Anal., 97 (2018), 295-315. doi: 10.1080/00036811.2016.1262947 |
[25] | M. Li, C. Huang, Y. Zhao, Fast conservative numerical algorithm for the coupled fractional kleingordon-schrödinger equation, Numer. Algorithms, 82 (2019), 1-39. doi: 10.1007/s11075-018-0591-2 |
[26] | M. Li, D. Shi, J. Wang, et al. Unconditional superconvergence analysis of the conservative linearized galerkin fems for nonlinear klein-gordon-schrödinger equation, Appl. Numer. Math., 142 (2019), 47-63. doi: 10.1016/j.apnum.2019.02.004 |
[27] | Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552. doi: 10.1016/j.jcp.2007.02.001 |
[28] | Y. F. Luchko, M. Rivero, J. J. Trujillo, et al. Fractional models, non-locality, and complex systems, Comput. Math. Appl., 59 (2010), 1048-1056. doi: 10.1016/j.camwa.2009.05.018 |
[29] | J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci., 16 (2011), 1140-1153. doi: 10.1016/j.cnsns.2010.05.027 |
[30] | Z. Mao, G. E. Karniadakis, Fractional burgers equation with nonlinear non-locality: Spectral vanishing viscosity and local discontinuous galerkin methods, J. Comput. Phys., 336 (2017), 143-163. doi: 10.1016/j.jcp.2017.01.048 |
[31] | A. K. Mittal, A stable time-space Jacobi pseudospectral method for two-dimensional sine-Gordon equation, J. Appl. Math. Comput., 63 (2020), 1-26. |
[32] | A. K. Mittal, L. K. Balyan, A highly accurate time-space pseudospectral approximation and stability analysis of two dimensional brusselator model for chemical systems, Int. J. Appl. Comput. Math., 5 (2019), 140. |
[33] | A. Mohebbi, Analysis of a numerical method for the solution of time fractional burgers equation, B. Iran. Math. Soc., 44 (2018), 457-480. doi: 10.1007/s41980-018-0031-z |
[34] | A. Mohebbi, M. Dehghan, The use of compact boundary value method for the solution of twodimensional schrödinger equation, J. Comput. Appl. Math., 225 (2009), 124-134. doi: 10.1016/j.cam.2008.07.008 |
[35] | K. Oldham, J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Elsevier, 1974. |
[36] | B. Ross, The development of fractional calculus, Hist. Math., 4 (1977), 75-89. doi: 10.1016/0315-0860(77)90039-8 |
[37] | H. Rudolf, Applications of Fractional Calculus in Physics, World Scientific, 2000. |
[38] | L. N. Trefethen, Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations, 1996. |
[39] | L. Wei, Y. He, X. Zhang, et al. Analysis of an implicit fully discrete local discontinuous galerkin method for the time-fractional schrödinger equation, Finite Elem. Anal. Des., 59 (2012), 28-34. doi: 10.1016/j.finel.2012.03.008 |
[40] | E. Yousif, E. B. Abdel-Salam, M. El-Aasser, On the solution of the space-time fractional cubic nonlinear schrödinger equation, Results Phys., 8 (2018),702-708. doi: 10.1016/j.rinp.2017.12.065 |
[41] | F. Zeng, C. Li, F. Liu, et al. The use of finite difference/element approaches for solving the timefractional subdiffusion equation, SIAM J. Sci. Comput., 35 (2013), A2976-A3000. |
[42] | G. Zhang, C. Huang, M. Li, A mass-energy preserving galerkin fem for the coupled nonlinear fractional schrödinger equations, Eur. Phys. J. Plus, 133 (2018), 155. |
[43] | H. Zhang, X. Jiang, C. Wang, et al. Galerkin-legendre spectral schemes for nonlinear space fractional schrödinger equation, Numer. Algorithms, 79 (2018), 337-356. doi: 10.1007/s11075-017-0439-1 |
[44] | X. Zhao, Z. Z. Sun, Z. P. Hao, A fourth-order compact adi scheme for two-dimensional nonlinear space fractional schrodinger equation, SIAM J. Sci. Comput., 36 (2014), A2865-A2886. |