1.
|
RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI,
ROAD NETWORKS WITH PHASE TRANSITIONS,
2010,
07,
0219-8916,
85,
10.1142/S0219891610002025
|
|
2.
|
Shyam Sundar Ghoshal, Animesh Jana, John D. Towers,
Convergence of a Godunov scheme to an Audusse–Perthame adapted entropy solution for conservation laws with BV spatial flux,
2020,
146,
0029-599X,
629,
10.1007/s00211-020-01150-y
|
|
3.
|
Ke Han, Terry L. Friesz, Tao Yao,
A partial differential equation formulation of Vickrey’s bottleneck model, part I: Methodology and theoretical analysis,
2013,
49,
01912615,
55,
10.1016/j.trb.2012.10.003
|
|
4.
|
Yu-pei Lyu, Ming-min Guo, Peng Zhang, Rui Fang, Zhi-yang Lin, Ya-li Duan,
Steady-state solution of traffic flow on a simple road network,
2021,
33,
1001-6058,
950,
10.1007/s42241-021-0084-y
|
|
5.
|
Clément Cancès,
Asymptotic Behavior of Two-Phase Flows in Heterogeneous Porous Media for Capillarity Depending Only on Space. I. Convergence to the Optimal Entropy Solution,
2010,
42,
0036-1410,
946,
10.1137/090747981
|
|
6.
|
Graziano Crasta, Virginia De Cicco,
A Chain Rule Formula in the Space BV and Applications to Conservation Laws,
2011,
43,
0036-1410,
430,
10.1137/100804462
|
|
7.
|
Boris Andreianov, Massimiliano D. Rosini,
2020,
Chapter 7,
978-3-030-46078-5,
113,
10.1007/978-3-030-46079-2_7
|
|
8.
|
Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli,
2022,
Chapter 3,
978-3-030-93014-1,
39,
10.1007/978-3-030-93015-8_3
|
|
9.
|
MIROSLAV BULÍČEK, PIOTR GWIAZDA, AGNIESZKA ŚWIERCZEWSKA-GWIAZDA,
MULTI-DIMENSIONAL SCALAR CONSERVATION LAWS WITH FLUXES DISCONTINUOUS IN THE UNKNOWN AND THE SPATIAL VARIABLE,
2013,
23,
0218-2025,
407,
10.1142/S0218202512500510
|
|
10.
|
Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda, Petra Wittbold, Aleksandra Zimmermann,
Multi-dimensional scalar balance laws with discontinuous flux,
2014,
267,
00221236,
2846,
10.1016/j.jfa.2014.07.009
|
|
11.
|
Boris Andreianov, Clément Cancès,
On interface transmission conditions for conservation laws with discontinuous flux of general shape,
2015,
12,
0219-8916,
343,
10.1142/S0219891615500101
|
|
12.
|
Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli,
2022,
Chapter 5,
978-3-030-93014-1,
111,
10.1007/978-3-030-93015-8_5
|
|
13.
|
Mauro Garavello, Benedetto Piccoli,
Conservation laws on complex networks,
2009,
26,
0294-1449,
1925,
10.1016/j.anihpc.2009.04.001
|
|
14.
|
BENJAMIN BOUTIN, CHRISTOPHE CHALONS, PIERRE-ARNAUD RAVIART,
EXISTENCE RESULT FOR THE COUPLING PROBLEM OF TWO SCALAR CONSERVATION LAWS WITH RIEMANN INITIAL DATA,
2010,
20,
0218-2025,
1859,
10.1142/S0218202510004817
|
|
15.
|
Boris Andreianov, Kenneth Hvistendahl Karlsen, Nils Henrik Risebro,
A Theory of L 1-Dissipative Solvers for Scalar Conservation Laws with Discontinuous Flux,
2011,
201,
0003-9527,
27,
10.1007/s00205-010-0389-4
|
|
16.
|
MAURO GARAVELLO, BENEDETTO PICCOLI,
COUPLING OF LIGHTHILL–WHITHAM–RICHARDS AND PHASE TRANSITION MODELS,
2013,
10,
0219-8916,
577,
10.1142/S0219891613500215
|
|
17.
|
W.L. Jin, L. Chen, Elbridge Gerry Puckett,
2009,
Chapter 30,
978-1-4419-0819-3,
603,
10.1007/978-1-4419-0820-9_30
|
|
18.
|
S. Blandin, G. Bretti, A. Cutolo, B. Piccoli,
Numerical simulations of traffic data via fluid dynamic approach,
2009,
210,
00963003,
441,
10.1016/j.amc.2009.01.057
|
|
19.
|
Boris Andreianov, Carlotta Donadello, Massimiliano D. Rosini,
Entropy solutions for a two-phase transition model for vehicular traffic with metastable phase and time depending point constraint on the density flow,
2021,
28,
1021-9722,
10.1007/s00030-021-00689-5
|
|
20.
|
Alberto Bressan, Graziano Guerra, Wen Shen,
Vanishing viscosity solutions for conservation laws with regulated flux,
2019,
266,
00220396,
312,
10.1016/j.jde.2018.07.044
|
|
21.
|
Nikola Konatar,
Scalar conservation laws with Charatheodory flux revisited,
2020,
55,
0017095X,
101,
10.3336/gm.55.1.09
|
|
22.
|
Graziano Crasta, Virginia De Cicco, Guido De Philippis, Francesco Ghiraldin,
Structure of Solutions of Multidimensional Conservation Laws with Discontinuous Flux and Applications to Uniqueness,
2016,
221,
0003-9527,
961,
10.1007/s00205-016-0976-0
|
|
23.
|
Corrado Lattanzio, Amelio Maurizi, Benedetto Piccoli,
Moving Bottlenecks in Car Traffic Flow: A PDE-ODE Coupled Model,
2011,
43,
0036-1410,
50,
10.1137/090767224
|
|
24.
|
Mauro Garavello, Stefano Villa,
The Cauchy problem for the Aw–Rascle–Zhang traffic model with locally constrained flow,
2017,
14,
0219-8916,
393,
10.1142/S0219891617500138
|
|
25.
|
Debora Amadori, Paola Goatin, Massimiliano D. Rosini,
Existence results for Hughes' model for pedestrian flows,
2014,
420,
0022247X,
387,
10.1016/j.jmaa.2014.05.072
|
|
26.
|
Gabriella Bretti, Benedetto Piccoli,
A Tracking Algorithm for Car Paths on Road Networks,
2008,
7,
1536-0040,
510,
10.1137/070697768
|
|
27.
|
Graziano Crasta, Virginia De Cicco, Guido De Philippis,
Kinetic Formulation and Uniqueness for Scalar Conservation Laws with Discontinuous Flux,
2015,
40,
0360-5302,
694,
10.1080/03605302.2014.979998
|
|
28.
|
Graziano Guerra, Wen Shen,
Vanishing Viscosity and Backward Euler Approximations for Conservation Laws with Discontinuous Flux,
2019,
51,
0036-1410,
3112,
10.1137/18M1205662
|
|
29.
|
M. Herty, Ch. Jörres, B. Piccoli,
Existence of solution to supply chain models based on partial differential equation with discontinuous flux function,
2013,
401,
0022247X,
510,
10.1016/j.jmaa.2012.12.002
|
|
30.
|
John D. Towers,
An existence result for conservation laws having BV spatial flux heterogeneities - without concavity,
2020,
269,
00220396,
5754,
10.1016/j.jde.2020.04.016
|
|
31.
|
Clément Cancès,
Asymptotic Behavior of Two-Phase Flows in Heterogeneous Porous Media for Capillarity Depending Only on Space. II. Nonclassical Shocks to Model Oil-Trapping,
2010,
42,
0036-1410,
972,
10.1137/090747993
|
|
32.
|
E. Carlini, A. Festa, N. Forcadel,
A Semi-Lagrangian Scheme for Hamilton--Jacobi--Bellman Equations on Networks,
2020,
58,
0036-1429,
3165,
10.1137/19M1260931
|
|
33.
|
Raimund Bürger, Kenneth H. Karlsen, John D. Towers,
An Engquist–Osher-Type Scheme for Conservation Laws with Discontinuous Flux Adapted to Flux Connections,
2009,
47,
0036-1429,
1684,
10.1137/07069314X
|
|
34.
|
Fabio Ancona, Maria Teresa Chiri,
Attainable profiles for conservation laws with flux function spatially discontinuous at a single point,
2020,
26,
1292-8119,
124,
10.1051/cocv/2020044
|
|
35.
|
K. H. Karlsen, J. D. Towers,
Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition,
2017,
14,
0219-8916,
671,
10.1142/S0219891617500229
|
|
36.
|
Guillaume Costeseque, Jean-Patrick Lebacque, Régis Monneau,
A convergent scheme for Hamilton–Jacobi equations on a junction: application to traffic,
2015,
129,
0029-599X,
405,
10.1007/s00211-014-0643-z
|
|
37.
|
Cyril Imbert, Régis Monneau, Hasnaa Zidani,
A Hamilton-Jacobi approach to junction problems and application to traffic flows,
2013,
19,
1292-8119,
129,
10.1051/cocv/2012002
|
|
38.
|
Lorenzo Pareschi, Giuseppe Toscani, Andrea Tosin, Mattia Zanella,
Hydrodynamic Models of Preference Formation in Multi-agent Societies,
2019,
29,
0938-8974,
2761,
10.1007/s00332-019-09558-z
|
|
39.
|
Wen Shen,
On the Cauchy problems for polymer flooding with gravitation,
2016,
261,
00220396,
627,
10.1016/j.jde.2016.03.020
|
|
40.
|
S. Mishra,
2017,
18,
9780444639103,
479,
10.1016/bs.hna.2016.11.002
|
|
41.
|
Felisia Angela Chiarello, Giuseppe Maria Coclite,
Nonlocal scalar conservation laws with discontinuous flux,
2022,
18,
1556-1801,
380,
10.3934/nhm.2023015
|
|
42.
|
F. A. Chiarello, H. D. Contreras, L. M. Villada,
Existence of entropy weak solutions for 1D non-local traffic models with space-discontinuous flux,
2023,
141,
0022-0833,
10.1007/s10665-023-10284-5
|
|
43.
|
Shyam Sundar Ghoshal, John D. Towers, Ganesh Vaidya,
BV regularity of the adapted entropy solutions for conservation laws with infinitely many spatial discontinuities,
2024,
19,
1556-1801,
196,
10.3934/nhm.2024009
|
|
44.
|
Boris Andreianov, Abraham Sylla,
Finite volume approximation and well-posedness of conservation laws with moving interfaces under abstract coupling conditions,
2023,
30,
1021-9722,
10.1007/s00030-023-00857-9
|
|
45.
|
Alexander Keimer, Lukas Pflug,
Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity,
2023,
361,
1778-3569,
1723,
10.5802/crmath.490
|
|
46.
|
Pierre Cardaliaguet, Nicolas Forcadel, Régis Monneau,
A class of germs arising from homogenization in traffic flow on junctions,
2024,
21,
0219-8916,
189,
10.1142/S0219891624500073
|
|
47.
|
Aekta Aggarwal, Ganesh Vaidya,
Convergence of the numerical approximations and well-posedness: Nonlocal conservation laws with rough flux,
2024,
0025-5718,
10.1090/mcom/3976
|
|
48.
|
P. Cardaliaguet, N. Forcadel,
Microscopic Derivation of a Traffic Flow Model with a Bifurcation,
2024,
248,
0003-9527,
10.1007/s00205-023-01948-8
|
|
49.
|
Zhiyang Lin, Peng Zhang, Mingmin Guo, Yupei Lyu, Rui Jiang, S.C. Wong, Xiaoning Zhang,
Steady-state solution to the LWR model on a single origin-destination parallel road network,
2024,
12,
2168-0566,
10.1080/21680566.2024.2341012
|
|
50.
|
Eduardo Abreu, Vitor Matos, John Pérez, Panters Rodríguez-Bermúdez,
Riemann problem solutions for a balance law under Dirac-Delta source with a discontinuous flux,
2024,
21,
0219-8916,
1,
10.1142/S0219891624500012
|
|
51.
|
Boris Andreianov, Massimiliano D. Rosini, Graziano Stivaletta,
On existence, stability and many-particle approximation of solutions of 1D Hughes' model with linear costs,
2023,
369,
00220396,
253,
10.1016/j.jde.2023.06.004
|
|
52.
|
Gulmira M. Aybosinova, Vladimir Vladimirovich Palin,
On the conditions for the existence of a piecewise smooth solution of the Riemann problem for one class of conservation laws,
2025,
0003-6811,
1,
10.1080/00036811.2025.2473498
|
|