Conservation laws with discontinuous flux

  • Received: 01 June 2006 Revised: 01 November 2006
  • Primary: 35L50, 35L65, 90B20; Secondary: 76S05.

  • We consider a hyperbolic conservation law with discontinuous flux. Such a partial differential equation arises in different applications, in particular we are motivated by a model of traffic flow. We provide a new formulation in terms of Riemann Solvers. Moreover, we determine the class of Riemann Solvers which provide existence and uniqueness of the corresponding weak entropic solutions.

    Citation: Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux[J]. Networks and Heterogeneous Media, 2007, 2(1): 159-179. doi: 10.3934/nhm.2007.2.159

    Related Papers:

    [1] Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina . Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2(1): 159-179. doi: 10.3934/nhm.2007.2.159
    [2] Christophe Chalons, Paola Goatin, Nicolas Seguin . General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433
    [3] Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada . A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks and Heterogeneous Media, 2021, 16(2): 187-219. doi: 10.3934/nhm.2021004
    [4] Maya Briani, Emiliano Cristiani . An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Networks and Heterogeneous Media, 2014, 9(3): 519-552. doi: 10.3934/nhm.2014.9.519
    [5] Wen Shen . Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks and Heterogeneous Media, 2018, 13(3): 449-478. doi: 10.3934/nhm.2018020
    [6] Jan Friedrich, Simone Göttlich, Annika Uphoff . Conservation laws with discontinuous flux function on networks: a splitting algorithm. Networks and Heterogeneous Media, 2023, 18(1): 1-28. doi: 10.3934/nhm.2023001
    [7] Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040
    [8] Alexander Kurganov, Anthony Polizzi . Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2009, 4(3): 431-451. doi: 10.3934/nhm.2009.4.431
    [9] Raimund Bürger, Kenneth H. Karlsen, John D. Towers . On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(3): 461-485. doi: 10.3934/nhm.2010.5.461
    [10] Felisia Angela Chiarello, Giuseppe Maria Coclite . Nonlocal scalar conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2023, 18(1): 380-398. doi: 10.3934/nhm.2023015
  • We consider a hyperbolic conservation law with discontinuous flux. Such a partial differential equation arises in different applications, in particular we are motivated by a model of traffic flow. We provide a new formulation in terms of Riemann Solvers. Moreover, we determine the class of Riemann Solvers which provide existence and uniqueness of the corresponding weak entropic solutions.


  • This article has been cited by:

    1. RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI, ROAD NETWORKS WITH PHASE TRANSITIONS, 2010, 07, 0219-8916, 85, 10.1142/S0219891610002025
    2. Shyam Sundar Ghoshal, Animesh Jana, John D. Towers, Convergence of a Godunov scheme to an Audusse–Perthame adapted entropy solution for conservation laws with BV spatial flux, 2020, 146, 0029-599X, 629, 10.1007/s00211-020-01150-y
    3. Ke Han, Terry L. Friesz, Tao Yao, A partial differential equation formulation of Vickrey’s bottleneck model, part I: Methodology and theoretical analysis, 2013, 49, 01912615, 55, 10.1016/j.trb.2012.10.003
    4. Yu-pei Lyu, Ming-min Guo, Peng Zhang, Rui Fang, Zhi-yang Lin, Ya-li Duan, Steady-state solution of traffic flow on a simple road network, 2021, 33, 1001-6058, 950, 10.1007/s42241-021-0084-y
    5. Clément Cancès, Asymptotic Behavior of Two-Phase Flows in Heterogeneous Porous Media for Capillarity Depending Only on Space. I. Convergence to the Optimal Entropy Solution, 2010, 42, 0036-1410, 946, 10.1137/090747981
    6. Graziano Crasta, Virginia De Cicco, A Chain Rule Formula in the Space BV and Applications to Conservation Laws, 2011, 43, 0036-1410, 430, 10.1137/100804462
    7. Boris Andreianov, Massimiliano D. Rosini, 2020, Chapter 7, 978-3-030-46078-5, 113, 10.1007/978-3-030-46079-2_7
    8. Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli, 2022, Chapter 3, 978-3-030-93014-1, 39, 10.1007/978-3-030-93015-8_3
    9. MIROSLAV BULÍČEK, PIOTR GWIAZDA, AGNIESZKA ŚWIERCZEWSKA-GWIAZDA, MULTI-DIMENSIONAL SCALAR CONSERVATION LAWS WITH FLUXES DISCONTINUOUS IN THE UNKNOWN AND THE SPATIAL VARIABLE, 2013, 23, 0218-2025, 407, 10.1142/S0218202512500510
    10. Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda, Petra Wittbold, Aleksandra Zimmermann, Multi-dimensional scalar balance laws with discontinuous flux, 2014, 267, 00221236, 2846, 10.1016/j.jfa.2014.07.009
    11. Boris Andreianov, Clément Cancès, On interface transmission conditions for conservation laws with discontinuous flux of general shape, 2015, 12, 0219-8916, 343, 10.1142/S0219891615500101
    12. Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli, 2022, Chapter 5, 978-3-030-93014-1, 111, 10.1007/978-3-030-93015-8_5
    13. Mauro Garavello, Benedetto Piccoli, Conservation laws on complex networks, 2009, 26, 0294-1449, 1925, 10.1016/j.anihpc.2009.04.001
    14. BENJAMIN BOUTIN, CHRISTOPHE CHALONS, PIERRE-ARNAUD RAVIART, EXISTENCE RESULT FOR THE COUPLING PROBLEM OF TWO SCALAR CONSERVATION LAWS WITH RIEMANN INITIAL DATA, 2010, 20, 0218-2025, 1859, 10.1142/S0218202510004817
    15. Boris Andreianov, Kenneth Hvistendahl Karlsen, Nils Henrik Risebro, A Theory of L 1-Dissipative Solvers for Scalar Conservation Laws with Discontinuous Flux, 2011, 201, 0003-9527, 27, 10.1007/s00205-010-0389-4
    16. MAURO GARAVELLO, BENEDETTO PICCOLI, COUPLING OF LIGHTHILL–WHITHAM–RICHARDS AND PHASE TRANSITION MODELS, 2013, 10, 0219-8916, 577, 10.1142/S0219891613500215
    17. W.L. Jin, L. Chen, Elbridge Gerry Puckett, 2009, Chapter 30, 978-1-4419-0819-3, 603, 10.1007/978-1-4419-0820-9_30
    18. S. Blandin, G. Bretti, A. Cutolo, B. Piccoli, Numerical simulations of traffic data via fluid dynamic approach, 2009, 210, 00963003, 441, 10.1016/j.amc.2009.01.057
    19. Boris Andreianov, Carlotta Donadello, Massimiliano D. Rosini, Entropy solutions for a two-phase transition model for vehicular traffic with metastable phase and time depending point constraint on the density flow, 2021, 28, 1021-9722, 10.1007/s00030-021-00689-5
    20. Alberto Bressan, Graziano Guerra, Wen Shen, Vanishing viscosity solutions for conservation laws with regulated flux, 2019, 266, 00220396, 312, 10.1016/j.jde.2018.07.044
    21. Nikola Konatar, Scalar conservation laws with Charatheodory flux revisited, 2020, 55, 0017095X, 101, 10.3336/gm.55.1.09
    22. Graziano Crasta, Virginia De Cicco, Guido De Philippis, Francesco Ghiraldin, Structure of Solutions of Multidimensional Conservation Laws with Discontinuous Flux and Applications to Uniqueness, 2016, 221, 0003-9527, 961, 10.1007/s00205-016-0976-0
    23. Corrado Lattanzio, Amelio Maurizi, Benedetto Piccoli, Moving Bottlenecks in Car Traffic Flow: A PDE-ODE Coupled Model, 2011, 43, 0036-1410, 50, 10.1137/090767224
    24. Mauro Garavello, Stefano Villa, The Cauchy problem for the Aw–Rascle–Zhang traffic model with locally constrained flow, 2017, 14, 0219-8916, 393, 10.1142/S0219891617500138
    25. Debora Amadori, Paola Goatin, Massimiliano D. Rosini, Existence results for Hughes' model for pedestrian flows, 2014, 420, 0022247X, 387, 10.1016/j.jmaa.2014.05.072
    26. Gabriella Bretti, Benedetto Piccoli, A Tracking Algorithm for Car Paths on Road Networks, 2008, 7, 1536-0040, 510, 10.1137/070697768
    27. Graziano Crasta, Virginia De Cicco, Guido De Philippis, Kinetic Formulation and Uniqueness for Scalar Conservation Laws with Discontinuous Flux, 2015, 40, 0360-5302, 694, 10.1080/03605302.2014.979998
    28. Graziano Guerra, Wen Shen, Vanishing Viscosity and Backward Euler Approximations for Conservation Laws with Discontinuous Flux, 2019, 51, 0036-1410, 3112, 10.1137/18M1205662
    29. M. Herty, Ch. Jörres, B. Piccoli, Existence of solution to supply chain models based on partial differential equation with discontinuous flux function, 2013, 401, 0022247X, 510, 10.1016/j.jmaa.2012.12.002
    30. John D. Towers, An existence result for conservation laws having BV spatial flux heterogeneities - without concavity, 2020, 269, 00220396, 5754, 10.1016/j.jde.2020.04.016
    31. Clément Cancès, Asymptotic Behavior of Two-Phase Flows in Heterogeneous Porous Media for Capillarity Depending Only on Space. II. Nonclassical Shocks to Model Oil-Trapping, 2010, 42, 0036-1410, 972, 10.1137/090747993
    32. E. Carlini, A. Festa, N. Forcadel, A Semi-Lagrangian Scheme for Hamilton--Jacobi--Bellman Equations on Networks, 2020, 58, 0036-1429, 3165, 10.1137/19M1260931
    33. Raimund Bürger, Kenneth H. Karlsen, John D. Towers, An Engquist–Osher-Type Scheme for Conservation Laws with Discontinuous Flux Adapted to Flux Connections, 2009, 47, 0036-1429, 1684, 10.1137/07069314X
    34. Fabio Ancona, Maria Teresa Chiri, Attainable profiles for conservation laws with flux function spatially discontinuous at a single point, 2020, 26, 1292-8119, 124, 10.1051/cocv/2020044
    35. K. H. Karlsen, J. D. Towers, Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition, 2017, 14, 0219-8916, 671, 10.1142/S0219891617500229
    36. Guillaume Costeseque, Jean-Patrick Lebacque, Régis Monneau, A convergent scheme for Hamilton–Jacobi equations on a junction: application to traffic, 2015, 129, 0029-599X, 405, 10.1007/s00211-014-0643-z
    37. Cyril Imbert, Régis Monneau, Hasnaa Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, 2013, 19, 1292-8119, 129, 10.1051/cocv/2012002
    38. Lorenzo Pareschi, Giuseppe Toscani, Andrea Tosin, Mattia Zanella, Hydrodynamic Models of Preference Formation in Multi-agent Societies, 2019, 29, 0938-8974, 2761, 10.1007/s00332-019-09558-z
    39. Wen Shen, On the Cauchy problems for polymer flooding with gravitation, 2016, 261, 00220396, 627, 10.1016/j.jde.2016.03.020
    40. S. Mishra, 2017, 18, 9780444639103, 479, 10.1016/bs.hna.2016.11.002
    41. Felisia Angela Chiarello, Giuseppe Maria Coclite, Nonlocal scalar conservation laws with discontinuous flux, 2022, 18, 1556-1801, 380, 10.3934/nhm.2023015
    42. F. A. Chiarello, H. D. Contreras, L. M. Villada, Existence of entropy weak solutions for 1D non-local traffic models with space-discontinuous flux, 2023, 141, 0022-0833, 10.1007/s10665-023-10284-5
    43. Shyam Sundar Ghoshal, John D. Towers, Ganesh Vaidya, BV regularity of the adapted entropy solutions for conservation laws with infinitely many spatial discontinuities, 2024, 19, 1556-1801, 196, 10.3934/nhm.2024009
    44. Boris Andreianov, Abraham Sylla, Finite volume approximation and well-posedness of conservation laws with moving interfaces under abstract coupling conditions, 2023, 30, 1021-9722, 10.1007/s00030-023-00857-9
    45. Alexander Keimer, Lukas Pflug, Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity, 2023, 361, 1778-3569, 1723, 10.5802/crmath.490
    46. Pierre Cardaliaguet, Nicolas Forcadel, Régis Monneau, A class of germs arising from homogenization in traffic flow on junctions, 2024, 21, 0219-8916, 189, 10.1142/S0219891624500073
    47. Aekta Aggarwal, Ganesh Vaidya, Convergence of the numerical approximations and well-posedness: Nonlocal conservation laws with rough flux, 2024, 0025-5718, 10.1090/mcom/3976
    48. P. Cardaliaguet, N. Forcadel, Microscopic Derivation of a Traffic Flow Model with a Bifurcation, 2024, 248, 0003-9527, 10.1007/s00205-023-01948-8
    49. Zhiyang Lin, Peng Zhang, Mingmin Guo, Yupei Lyu, Rui Jiang, S.C. Wong, Xiaoning Zhang, Steady-state solution to the LWR model on a single origin-destination parallel road network, 2024, 12, 2168-0566, 10.1080/21680566.2024.2341012
    50. Eduardo Abreu, Vitor Matos, John Pérez, Panters Rodríguez-Bermúdez, Riemann problem solutions for a balance law under Dirac-Delta source with a discontinuous flux, 2024, 21, 0219-8916, 1, 10.1142/S0219891624500012
    51. Boris Andreianov, Massimiliano D. Rosini, Graziano Stivaletta, On existence, stability and many-particle approximation of solutions of 1D Hughes' model with linear costs, 2023, 369, 00220396, 253, 10.1016/j.jde.2023.06.004
    52. Gulmira M. Aybosinova, Vladimir Vladimirovich Palin, On the conditions for the existence of a piecewise smooth solution of the Riemann problem for one class of conservation laws, 2025, 0003-6811, 1, 10.1080/00036811.2025.2473498
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5635) PDF downloads(315) Cited by(52)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog