Loading [MathJax]/jax/output/SVG/jax.js

Multiscale stochastic homogenization of monotone operators

  • Received: 01 February 2006 Revised: 01 September 2006
  • 35B27, 35B40.

  • Multiscale stochastic homogenization is studied for divergence structure parabolic problems. More specifically we consider the asymptotic behaviour of a sequence of realizations of the form
    uεωtdiv(a(T1(xε1)ω1,T2(xε2)ω2,t,Duεω))=f.
    It is shown, under certain structure assumptions on the random map a(ω1,ω2,t,ξ), that the sequence \{u^\omega_\e} of solutions converges weakly in Lp(0,T;W01,p(Ω)) to the solution u of the homogenized problem utdiv(b(t,Du))=f.

    Citation: Nils Svanstedt. Multiscale stochastic homogenization of monotone operators[J]. Networks and Heterogeneous Media, 2007, 2(1): 181-192. doi: 10.3934/nhm.2007.2.181

    Related Papers:

    [1] Nils Svanstedt . Multiscale stochastic homogenization of monotone operators. Networks and Heterogeneous Media, 2007, 2(1): 181-192. doi: 10.3934/nhm.2007.2.181
    [2] Patrick Henning . Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Networks and Heterogeneous Media, 2012, 7(3): 503-524. doi: 10.3934/nhm.2012.7.503
    [3] Fabio Camilli, Claudio Marchi . On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks and Heterogeneous Media, 2011, 6(1): 61-75. doi: 10.3934/nhm.2011.6.61
    [4] Liselott Flodén, Jens Persson . Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales. Networks and Heterogeneous Media, 2016, 11(4): 627-653. doi: 10.3934/nhm.2016012
    [5] Martin Heida, Benedikt Jahnel, Anh Duc Vu . Regularized homogenization on irregularly perforated domains. Networks and Heterogeneous Media, 2025, 20(1): 165-212. doi: 10.3934/nhm.2025010
    [6] Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye . A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks and Heterogeneous Media, 2017, 12(4): 619-642. doi: 10.3934/nhm.2017025
    [7] Antoine Gloria Cermics . A direct approach to numerical homogenization in finite elasticity. Networks and Heterogeneous Media, 2006, 1(1): 109-141. doi: 10.3934/nhm.2006.1.109
    [8] Mogtaba Mohammed, Mamadou Sango . Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks and Heterogeneous Media, 2019, 14(2): 341-369. doi: 10.3934/nhm.2019014
    [9] Luca Lussardi, Stefano Marini, Marco Veneroni . Stochastic homogenization of maximal monotone relations and applications. Networks and Heterogeneous Media, 2018, 13(1): 27-45. doi: 10.3934/nhm.2018002
    [10] Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343
  • Multiscale stochastic homogenization is studied for divergence structure parabolic problems. More specifically we consider the asymptotic behaviour of a sequence of realizations of the form
    uεωtdiv(a(T1(xε1)ω1,T2(xε2)ω2,t,Duεω))=f.
    It is shown, under certain structure assumptions on the random map a(ω1,ω2,t,ξ), that the sequence \{u^\omega_\e} of solutions converges weakly in Lp(0,T;W01,p(Ω)) to the solution u of the homogenized problem utdiv(b(t,Du))=f.


  • This article has been cited by:

    1. Xin Wang, Liqun Cao, Yaushu Wong, Multiscale approach for stochastic elliptic equations in heterogeneous media, 2014, 85, 01689274, 54, 10.1016/j.apnum.2014.06.008
    2. NILS SVANSTEDT, CONVERGENCE OF QUASI-LINEAR HYPERBOLIC EQUATIONS, 2007, 04, 0219-8916, 655, 10.1142/S0219891607001306
    3. Nils Svanstedt, 2008, Chapter 44, 978-3-540-71991-5, 318, 10.1007/978-3-540-71992-2_44
    4. Nils Svanstedt, Multiscale stochastic homogenization of convection-diffusion equations, 2008, 53, 0862-7940, 143, 10.1007/s10492-008-0017-x
    5. Gabriel Nguetseng, Hubert Nnang, Nils Svanstedt, Deterministic homogenization of quasilinear damped hyperbolic equations, 2011, 31, 02529602, 1823, 10.1016/S0252-9602(11)60364-0
    6. Mogtaba Mohammed, Mamadou Sango, Homogenization of Neumann problem for hyperbolic stochastic partial differential equations in perforated domains, 2016, 97, 18758576, 301, 10.3233/ASY-151355
    7. Nils Svanstedt, Stochastic homogenization of a class of monotone eigenvalue problems, 2010, 55, 0862-7940, 385, 10.1007/s10492-010-0014-8
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3504) PDF downloads(172) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog