Multiscale stochastic homogenization of monotone operators

  • Received: 01 February 2006 Revised: 01 September 2006
  • 35B27, 35B40.

  • Multiscale stochastic homogenization is studied for divergence structure parabolic problems. More specifically we consider the asymptotic behaviour of a sequence of realizations of the form
    $\frac{\partial u^\omega_\varepsilon}{\partial t}- $div$(a(T_1(\frac{x}{\varepsilon_1})\omega_1, T_2(\frac{x}{\varepsilon_2})\omega_2 ,t, D u^\omega_\varepsilon))=f.$
    It is shown, under certain structure assumptions on the random map $a(\omega_1,\omega_2,t,\xi)$, that the sequence $\{u^\omega_\e}$ of solutions converges weakly in $ L^p(0,T;W^{1,p}_0(\Omega))$ to the solution $u$ of the homogenized problem $ \frac{\partial u}{\partial t} - $div$( b( t,D u )) = f$.

    Citation: Nils Svanstedt. Multiscale stochastic homogenization of monotone operators[J]. Networks and Heterogeneous Media, 2007, 2(1): 181-192. doi: 10.3934/nhm.2007.2.181

    Related Papers:

  • Multiscale stochastic homogenization is studied for divergence structure parabolic problems. More specifically we consider the asymptotic behaviour of a sequence of realizations of the form
    $\frac{\partial u^\omega_\varepsilon}{\partial t}- $div$(a(T_1(\frac{x}{\varepsilon_1})\omega_1, T_2(\frac{x}{\varepsilon_2})\omega_2 ,t, D u^\omega_\varepsilon))=f.$
    It is shown, under certain structure assumptions on the random map $a(\omega_1,\omega_2,t,\xi)$, that the sequence $\{u^\omega_\e}$ of solutions converges weakly in $ L^p(0,T;W^{1,p}_0(\Omega))$ to the solution $u$ of the homogenized problem $ \frac{\partial u}{\partial t} - $div$( b( t,D u )) = f$.


    加载中
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3416) PDF downloads(172) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog