In this article, we present an extension of the splitting algorithm proposed in [
Citation: Jan Friedrich, Simone Göttlich, Annika Uphoff. Conservation laws with discontinuous flux function on networks: a splitting algorithm[J]. Networks and Heterogeneous Media, 2023, 18(1): 1-28. doi: 10.3934/nhm.2023001
In this article, we present an extension of the splitting algorithm proposed in [
[1] | M. Bulíček, P. Gwiazda, J. Málek, A. Świerczewska Gwiazda, On scalar hyperbolic conservation laws with a discontinuous flux, Math. Models. Methods. Appl. Sci., 21 (2011), 89–113. https://doi.org/10.1142/S021820251100499X doi: 10.1142/S021820251100499X |
[2] | R. Bürger, C. Chalons, R. Ordoñez, L. M. Villada, A multiclass lighthill-whitham-richards traffic model with a discontinuous velocity function, Netw. Heterog. Media., 16 (2021), 187–219. https://doi.org/10.3934/nhm.2021004 doi: 10.3934/nhm.2021004 |
[3] | J. Carrillo, Conservation laws with discontinuous flux functions and boundary condition, J. Evol. Equ., 3 (2003), 283–301. https://doi.org/10.1007/s00028-003-0095-x doi: 10.1007/s00028-003-0095-x |
[4] | A. Ceder, A deterministic traffic flow model for the two-regime approach, Trans. Res. Rec., 567 (1976), 16–30. |
[5] | A. Ceder, A. D. May, Further evaluation of single-and two-regime traffic flow models, Trans Res Rec, 567 (1976), 1–15. |
[6] | G. M. Coclite, M. Garavello, B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862–1886. https://doi.org/10.1137/S0036141004402683 doi: 10.1137/S0036141004402683 |
[7] | J.P. Dias, M. Figueira, On the approximation of the solutions of the Riemann problem for a discontinuous conservation law, Bull. Braz. Math. Soc. (N.S.), 36 (2005), 115–125. https://doi.org/10.1007/s00574-005-0031-5 doi: 10.1007/s00574-005-0031-5 |
[8] | L. C. Edie, Car-following and steady-state theory for noncongested traffic, Operations Research, 9 (1961), 66–76. |
[9] | L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, Providence: American Mathematical Society, 1998. |
[10] | A. Festa, S. Göttlich, M. Pfirsching, A model for a network of conveyor belts with discontinuous speed and capacity, Netw. Heterog. Media, 14 (2019), 389–410. https://doi.org/10.3934/nhm.2019016 doi: 10.3934/nhm.2019016 |
[11] | M. Garavello, K. Han, B. Piccoli, Models for vehicular traffic on networks, AIMS Series on Applied Mathematics, Springfield: American Institute of Mathematical Sciences, 2016. |
[12] | M. Garavello, B. Piccoli, Traffic flow on networks, Springfield: American Institute of Mathematical Sciences (AIMS), 2006. |
[13] | T. Gimse, Conservation laws with discontinuous flux functions, SIAM J. Math. Anal., 24 (1993), 279–289. https://doi.org/10.1137/0524018 doi: 10.1137/0524018 |
[14] | S. Göttlich, A. Klar, P. Schindler, Discontinuous conservation laws for production networks with finite buffers, SIAM J. Appl. Math., 73 (2013), 1117–1138. https://doi.org/10.1137/120882573 doi: 10.1137/120882573 |
[15] | H. Holden, N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999–1017. https://doi.org/10.1137/S0036141093243289 doi: 10.1137/S0036141093243289 |
[16] | J. P. Lebacque, The Godunov scheme and what it means for first order traffic flow models, Proc. 13th Intrn. Symp. Transportation and Traffic Theory, (1996). |
[17] | R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge: Cambridge University Press, 2002. |
[18] | M. J. Lighthill, G. B. Witham, On kinematic waves Ⅱ. A theory of traffic flow on long crowded roads, Royal Society, A 229 (1955), 317–345. https://doi.org/10.1098/rspa.1955.0089 doi: 10.1098/rspa.1955.0089 |
[19] | Y. Lu, S. C. Wong, M. Zhang, C.W. Shu, The entropy solutions for the lighthill-whitham-richards traffic flow model with a discontinuous flow-density relationship, Trans Sci, 43 (2009), 511–530. https://doi.org/10.1287/trsc.1090.0277 doi: 10.1287/trsc.1090.0277 |
[20] | S. Martin, J. Vovelle, Convergence of implicit finite volume methods for scalar conservation laws with discontinuous flux function, Math Model Num Analysis, 42 (2008), 699–727. https://doi.org/10.1051/m2an:2008023 doi: 10.1051/m2an:2008023 |
[21] | P. Richards, Shock waves on highway, Operations Research, 4 (1956), 42–51. https://doi.org/10.1287/opre.4.1.42 doi: 10.1287/opre.4.1.42 |
[22] | J. D. Towers, A splitting algorithm for LWR traffic models with flux discontinuous in the unknown, J. Comput. Phys., 421 (2020), 109722. https://doi.org/10.1016/j.jcp.2020.109722 doi: 10.1016/j.jcp.2020.109722 |
[23] | M. Treiber, A. Kesting, Traffic flow dynamics, Data, models and simulatio, Berlin: Springer, 2013. |
[24] | J. K. Wiens, J. M. Stockie, J. F. Williams, Riemann solver for a kinematic wave traffic model with discontinuous flux, J. Comput. Phys., 242 (2013), 1–23. https://doi.org/10.1016/j.jcp.2013.02.024 doi: 10.1016/j.jcp.2013.02.024 |